Please use this identifier to cite or link to this item:
Title: Computations of diffuse fraction of global irradiance: Part 2 – Neural Networks
Authors: Tapakis, Rogiros 
Michaelides, S. 
Charalambides, Alexandros G. 
Keywords: Solar altitude;Clearness index;Diffuse fraction;Neural Networks;Solar irradiance;Time
Category: Environmental Engineering
Field: Engineering and Technology
Issue Date: 1-Dec-2016
Publisher: Elsevier Ltd
Source: Solar Energy,1 December 2016, Volume 139, Pages 723-732
Abstract: Solar energy is the feedstock for various applications of renewable energy systems, thus, the necessity of calculating and using global tilted irradiance is acknowledged for the computations of the performance and monitoring of Photovoltaic (PV) Parks and other solar energy applications. Thus, the aim of our research is to develop a model for the correlation of diffuse fraction (kd) and the clearness index (kt), that can then be used for the evaluation of the diffuse irradiance given the global irradiance. In a companion paper, existing simple empirical models were reviewed and compared based on 10 years of data from Cyprus and then, analytical approaches for the computation of diffuse fraction were employed, where solar altitude was introduced as an additional parameter in the calculations. In the present paper, the same dataset was used, and three additional parameters were introduced to the calculations: global irradiance on the horizontal plane, extraterrestrial irradiance on the horizontal plane and the time of the day. These parameters were chosen due to the strong dependence of the diffuse fraction/clearness index correlation to the season/day of the year and time of day. Due to the non-linear influence of these parameters to the kt–kd correlations and the additional interaction between them, the employment of analytical methods is not applicable. Thus, non-parametric regression analysis was adopted, using supervised machine learning methodologies such as Artificial Neural Networks, which are able to learn the key information patterns from multivariate input. Comparing the non-parametric regression to the analytical models developed in the companion paper, it is shown herewith that the accuracy of the models was slightly improved. The statistical indicators MBE, RMSE and R2 of the best fit model were −4.69%, 21.54% and 0.90 respectively.
ISSN: 0038-092X
DOI: 10.1016/j.solener.2015.12.042
Rights: © 2016 Elsevier Ltd
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Citations 50

checked on Oct 16, 2019

Page view(s) 50

Last Week
Last month
checked on Oct 21, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.