Please use this identifier to cite or link to this item:
Title: Effects of uncertain topographic input data on two-dimensional flow modeling in a gravel-bed river
Authors: Legleiter, Carl J.
Kyriakidis, Phaedon
McDonald, Richard R.
Nelson, Jonathan M.
Keywords: Spatialstochastic simulation strategy;2D model;Gravel-bed river
Category: Environmental Engineering
Field: Engineering and Technology
Issue Date: Mar-2011
Publisher: AGU Publications
Source: Water Resources Research, 2011, Volume 47, Issue 3, pages 1-24
Abstract: Many applications in river research and management rely upon two-dimensional (2D) numerical models to characterize flow fields, assess habitat conditions, and evaluate channel stability. Predictions from such models are potentially highly uncertain due to the uncertainty associated with the topographic data provided as input. This study used a spatial stochastic simulation strategy to examine the effects of topographic uncertainty on flow modeling. Many, equally likely bed elevation realizations for a simple meander bend were generated and propagated through a typical 2D model to produce distributions of water-surface elevation, depth, velocity, and boundary shear stress at each node of the model's computational grid. Ensemble summary statistics were used to characterize the uncertainty associated with these predictions and to examine the spatial structure of this uncertainty in relation to channel morphology. Simulations conditioned to different data configurations indicated that model predictions became increasingly uncertain as the spacing between surveyed cross sections increased. Model sensitivity to topographic uncertainty was greater for base flow conditions than for a higher, subbankfull flow (75% of bankfull discharge). The degree of sensitivity also varied spatially throughout the bend, with the greatest uncertainty occurring over the point bar where the flow field was influenced by topographic steering effects. Uncertain topography can therefore introduce significant uncertainty to analyses of habitat suitability and bed mobility based on flow model output. In the presence of such uncertainty, the results of these studies are most appropriately represented in probabilistic terms using distributions of model predictions derived from a series of topographic realizations.
ISSN: 1944-7973 (Online)
DOI: 10.1029/2010WR009618
Rights: Copyright by the American Geophysical Union.
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Citations 5

checked on May 28, 2019


checked on Jun 5, 2019

Page view(s)

Last Week
Last month
checked on Jun 11, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.