Please use this identifier to cite or link to this item:
Title: Validation of calipso space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece
Authors: Mamouri, Rodanthi-Elisavet 
Amiridis, Vassilis 
Papayannis, Alexandros D. 
Giannakaki, Elina 
Tsaknakis, Georgios 
Balis, Dimitris S. 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Keywords: Aerosols;Optical radar;Backscattering;Troposphere
Issue Date: 14-Sep-2009
Source: Atmospheric Measurement Techniques, 2009, vol. 2, no. 2, pp. 513-522
Volume: 2
Issue: 2
Start page: 513
End page: 522
Journal: Atmospheric Measurement Techniques 
Abstract: We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E). A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground-based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60%) which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.
ISSN: 1867-8548
DOI: 10.5194/amt-2-513-2009
Rights: © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.
Type: Article
Affiliation: National Technical University Of Athens 
Affiliation : National Technical University Of Athens 
National Observatory of Athens 
Aristotle University of Thessaloniki 
Appears in Collections:Άρθρα/Articles

Files in This Item:
File Description SizeFormat
Validation of Calipso space borne derived attenuated.pdf551.89 kBAdobe PDFView/Open
CORE Recommender
Show full item record

Citations 50

checked on Jul 25, 2021


Last Week
Last month
checked on Apr 22, 2021

Page view(s) 50

Last Week
Last month
checked on Aug 2, 2021

Download(s) 50

checked on Aug 2, 2021

Google ScholarTM



Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.