Please use this identifier to cite or link to this item:
Title: Signal decomposition and coding using a multiresolution transform
Authors: Memon, Qurban A. 
Kasparis, Takis 
Keywords: Approximation theory;Harmonic analysis;Multispectral photography;Algorithms
Category: Electrical Engineering - Electronic Engineering - Information Engineering
Field: Engineering and Technology
Issue Date: Feb-1998
Publisher: Taylor & Francis
Source: International Journal of Systems Science, 1998, vol. 29, no. 2, pp. 111-120
Journal: International Journal of Systems Science 
Abstract: Signal representation and data coding for one and multidimensional signals have recently received considerable attention due to their importance to several modern technologies. Many useful contributions have been reported that employ wavelets and transform methods. Block transforms, particularly the discrete cosine transform, have been used in image-video coding. Signal decomposition has widely been used in conjunction with the discrete cosine transform for signal compression. In this paper, we explore the approximate trigonometric expansions for the purpose of signal decomposition and coding. Specifically, we give system interpretation to the approximate Fourier expansion using harmonic analysis. Furthermore, we apply the approximate trigonometric expansions to multispectral imagery, and investigate the potential of adaptive coding using blocks of images. The variable length basis functions computed by varying the user-defined parameter of the approximate trigonometric expansions are used for adaptive transform coding of images. Based on signal statistics, the proposed algorithm switches between a transform coder and a subband coder. It is shown that these expansions can be implemented by fast Fourier transform algorithm. Sample results for representing multidimensional signals are given to illustrate the efficiency of the proposed method. For comparison purposes, the results will be compared with techniques using block discrete cosine transform.
ISSN: 1464-5319
DOI: 10.1080/00207729808929503
Collaboration : GIK Institute of Engineering Sciences and Technology
University of Central Florida
Rights: © Taylor & Francis
Type: Article
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

Page view(s)

Last Week
Last month
checked on May 23, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.