Please use this identifier to cite or link to this item:
Title: Ethnicity as a factor for the estimation of the risk for preeclampsia: A neural network approach
Authors: Nicolaides, Kypros H.
Neokleous, Kleanthis C.
Schizas, Christos N.
Neocleous, Costas 
Keywords: Preeclampsia;Neural predictor;Ethnicity;Gestational age
Category: Electrical Engineering, Electronic Engineering, Information Engineering
Field: Engineering and Technology
Issue Date: 2010
Publisher: Springer-Verlag
Source: 6th Hellenic Conference on Artificial Intelligence: Theories, Models and Applications, SETN, 2010, Athens, Greece.
Abstract: A large number of feedforward neural structures, both standard multilayer and multi-slab schemes have been applied to a large data base of pregnant women, aiming at generating a predictor for the risk of preeclampsia occurrence at an early stage. In this study we have investigated the importance of ethnicity on the classification yield. The database was composed of 6838 cases of pregnant women in UK, provided by the Harris Birthright Research Centre for Fetal Medicine in London. For each subject 15 parameters were considered as the most influential at characterizing the risk of preeclampsia occurrence, including information on ethnicity. The same data were applied to the same neural architecture, after excluding the information on ethnicity, in order to study its importance on the correct classification yield. It has been found that the inclusion of information on ethnicity, deteriorates the prediction yield in the training and test (guidance) data sets but not in the totally unknown verification data set.
ISBN: 9783642128417
ISSN: 03029743
DOI: 10.1007/978-3-642-12842-4_49
Rights: © Springer-Verlag Berlin Heidelberg 2010. All rights reserved.
Type: Conference Papers
Appears in Collections:Δημοσιεύσεις σε συνέδρια/Conference papers

Show full item record

Page view(s)

Last Week
Last month
checked on Aug 18, 2019

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons