Please use this identifier to cite or link to this item:
Title: On the quantification of missing value impact on voting advice applications
Authors: Agathokleous, Marilena
Tsapatsoulis, Nicolas 
Katakis, Ioannis 
Keywords: Missing values;Classifiers;Recommender systems;Voting advice applications
Category: Electrical Engineering - Electronic Engineering - Information Engineering
Field: Engineering and Technology
Issue Date: 2013
Publisher: Springer Berlin Heidelberg
Source: 14th International Conference Engineering Applications of Neural Networks, 2013, Halkidiki, Greece, 13-16 September
Abstract: Voting Advice Application (VAA) is a web application that recommends a candidate or a party to a voter. From an online questionnaire, which voters and candidates are called to answer, the VAA proposes to each individual voter the candidate who replied like him/her. It is very important the voters to reply in all questions of the questionnaire, because every question has its meaning and is responding to the political position of a each party. Missing values might mislead the VAA and impede it to have complete knowledge about the voter, as a result to offer him/her the wrong candidate. In this paper we quantitatively investigate the effect of missing values in VAAs by examining the impact of the number of missing values to different methods of voting prediction. For our experiment we have used the data obtained from the May parliamentary elections in Greece in 2012. The corresponding dataset is made freely available to other researchers working in the areas of VAA and recommender systems through the Web.
DOI: 10.1007/978-3-642-41013-0_51
Rights: Springer-Verlag Berlin Heidelberg
Type: Conference Papers
Appears in Collections:Δημοσιεύσεις σε συνέδρια/Conference papers

Show full item record

Citations 20

checked on Apr 25, 2019

Page view(s)

Last Week
Last month
checked on Jun 12, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.