Please use this identifier to cite or link to this item:
Title: Femtosecond laser inscribed phase masks for fibre Bragg grating sensor inscription
Authors: Sugden, Kate 
Lee, Graham 
Kalli, Kyriacos 
Yan, Zhijun 
Adebayo, Dotun 
Komodromos, Michael 
Koutsides, Charalambos 
Keywords: Femtosecond laser inscriptions;Fibre bragg grating sensors;Higher-order diffraction;Inscription;Interference effects;Laser-material interactions;Phase masks;Talbot effects;Fiber bragg gratings;Masks;Rapid prototyping;Ultrafast lasers;Ultrashort pulses
Category: Chemical Engineering
Field: Engineering and Technology
Issue Date: 15-Oct-2012
Source: (2012) Proceedings of SPIE - The International Society for Optical Engineering, 8421, art. no. 84214V; 22nd International Conference on Optical Fiber Sensors, Beijing, China, 15-19 October 2012
Journal: Proceedings of SPIE - The International Society for Optical Engineering 
Conference: International Conference on Optical Fiber Sensors 
Abstract: We present femtosecond laser inscribed phase masks for the inscription of Bragg gratings in optical fibres. The principal advantage is the flexibility afforded by the femtosecond laser inscription, where sub-surface structures define the phase mask period and mask properties. The masks are used to produce fibre Bragg gratings having different orders according to the phase mask period. The work demonstrates the incredible flexibility of femtosecond lasers for the rapid prototyping of complex and reproducible mask structures. We also consider three-beam interference effects, a consequence of the zeroth-order component present in addition to higher-order diffraction components. 2012 SPIE.
ISBN: 978-081949103-9
ISSN: 0277-786X
DOI: 10.1117/12.975102
Rights: © 2012 SPIE.
Type: Conference Papers
Appears in Collections:Δημοσιεύσεις σε συνέδρια/Conference papers

Show full item record


checked on Apr 28, 2018

Page view(s) 50

Last Week
Last month
checked on Sep 18, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.