Please use this identifier to cite or link to this item:
Title: Variants in the 3' untranslated region of the ovine acetyl-coenzyme A acyltransferase 2 gene are associated with dairy traits and exhibit differential allelic expression
Authors: Miltiadou, Despoina 
Symeou, A. 
Constantinou, C. 
Psifidi, Androniki 
Banos, Georgios 
Tzamaloukas, Ouranios 
Keywords: 3′ untranslated region cis-acting SNP; ACAA2 association; dairy sheep; gene expression
Category: Agricultural Biotechnology
Field: Agricultural Sciences
Issue Date: Aug-2017
Journal: Journal of dairy science 
Abstract: The acetyl-CoA acyltransferase 2 (ACAA2) gene encodes an enzyme of the thiolase family that is involved in mitochondrial fatty acid elongation and degradation by catalyzing the last step of the respective β-oxidation pathway. The increased energy needs for gluconeogenesis and triglyceride synthesis during lactation are met primarily by increased fatty acid oxidation. Therefore, the ACAA2 enzyme plays an important role in the supply of energy and carbon substrates for lactation and may thus affect milk production traits. This study investigated the association of the ACAA2 gene with important sheep traits and the putative functional involvement of this gene in dairy traits. A single nucleotide substitution, a T to C transition located in the 3' untranslated region of the ACAA2 gene, was used in mixed model association analysis with milk yield, milk protein yield and percentage, milk fat yield and percentage, and litter size at birth. The single nucleotide polymorphism was significantly associated with total lactation production and milk protein percentage, with respective additive effects of 6.81 ± 2.95 kg and -0.05 ± 0.02%. Additionally, a significant dominance effect of 0.46 ± 0.21 kg was detected for milk fat yield. Homozygous TT and heterozygous CT animals exhibited higher milk yield compared with homozygous CC animals, whereas the latter exhibited increased milk protein percentage. Expression analysis from age-, lactation-, and parity-matched female sheep showed that mRNA expression of the ACAA2 gene from TT animals was 2.8- and 11.8-fold higher in liver and mammary gland, respectively. In addition, by developing an allelic expression imbalance assay, it was estimated that the T allele was expressed at an average of 18% more compared with the C allele in the udder of randomly selected ewes. We demonstrated for the first time that the variants in the 3' untranslated region of the ovine ACAA2 gene are differentially expressed in homozygous ewes of each allele and exhibit allelic expression imbalance within heterozygotes in a tissue-specific manner, supporting the existence of cis-regulatory DNA variation in the ovine ACAA2 gene. This is the first study reporting differential allelic imbalance expression of a candidate gene associated with milk production traits in dairy sheep.
ISSN: 00220302
DOI: 10.3168/jds.2016-12326
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Citations 5

checked on Mar 31, 2020


checked on Mar 31, 2020

Page view(s)

Last Week
Last month
checked on Apr 4, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.