Please use this identifier to cite or link to this item:
Title: Thermal and physical characteristics of soils in Cyprus for use in shallow geothermal energy applications
Authors: Ramos, Rute 
Aresti, Lazaros 
Yiannoukos, Loukas 
Tsiolakis, Efthymios 
Pekris, Joseph 
Vieira, Ana 
Florides, Georgios A. 
Christodoulides, Paul 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Keywords: Ground thermal conductivity;Heat probe comparison;Soil thermal properties;Thermal conductivity laboratory thermal test;Thermal conductivity methodology
Issue Date: 1-Dec-2019
Source: Energy, Ecology and Environment,2019, vol. 4, no. 6, pp. 300-309
Volume: 4
Issue: 6
Start page: 300
End page: 309
Journal: Energy, Ecology and Environment 
Abstract: © 2019, The Joint Center on Global Change and Earth System Science of the University of Maryland and Beijing Normal University. Ground heat exchangers in conjunction with shallow geothermal energy system applications have received significant attention in the case of renewable energy. Soil thermal properties such as thermal conductivity and specific or volumetric heat capacity are important aspects for the design of such systems, affecting the performance. They can be obtained with the use of empirical prediction models, laboratory tests and/or in situ tests. Laboratory tests can be performed either under steady-state or under transient conditions and have the advantage of requiring small volumes of soil and producing fast results. There are many types of heat probes commercially available, with limited—though—comparative assessment available in the literature. The current paper deals with the assessment of ground characteristics of seven samples of soil and rock collected from a certain area in the Mediterranean island of Cyprus. Such properties are the thermal conductivity, the thermal diffusivity, the volumetric heat capacity, but there are some other physical properties also. The laboratory testing was done under transient conditions and included measurements taken by two needle probes and one surface probe from two different commercial apparatuses. Comparison of the obtained results for the thermal properties of the samples was made and was also supported by numerical simulations using the COMSOL Multiphysics software through a finite element analysis method on the convection–diffusion equation for heat transfer. Laboratory testing on physical properties of the samples such as moisture content, specific gravity, permeability and particle size distribution was also performed, yielding useful results related to the assessment of the thermal properties.
ISSN: 2363-7692
DOI: 10.1007/s40974-019-00137-2
Type: Article
Affiliation : Cyprus University of Technology 
National Laboratory for Civil Engineering 
Geological Survey Department of the Ministry of Agriculture 
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

Google ScholarTM



Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.