Please use this identifier to cite or link to this item:
Title: Geostatistics for conflation and accuracy assessment of digital elevation models
Authors: Goodchild, Michael F.
Kyriakidis, Phaedon 
Shortridge, Ashton M. 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Keywords: Digital elevation model;Geomorphology;Flow accumulation
Issue Date: 1999
Source: International Journal of Geographical Information Science, 1999, vol. 13, no. 7, pp. 677-707
Volume: 13
Issue: 7
Start page: 677
End page: 707
Journal: International Journal of Geographical Information Science 
Abstract: A geostatistical methodology is proposed for integrating elevation estimates derived from digital elevation models (DEMs) and elevation measurements of higher accuracy, e.g., elevation spot heights. The sparse elevation measurements (hard data) and the abundant DEM-reported elevations (soft data) are employed for modeling the unknown higher accuracy (reference) elevation surface in a way that properly reflects the relative reliability of the two sources of information. Stochastic conditional simulation is performed for generating alternative, equiprobable images (numerical models) of the unknown reference elevation surface using both hard and soft data. These numerical models reproduce the hard elevation data at their measurement locations, and a set of auto and crosscovariance models quantifying spatial correlation between data of the two sources of information at various spatial scales. From this set of alternative representations of the reference elevation, the probability that the unknown reference value is greater than that reported at each node in the DEM is determined. Joint uncertainty associated with spatial features observed in the DEM, e.g. the probability for an entire ridge existing, is also modeled from this set of alternative images. A case study illustrating the proposed conflation procedure is presented for a portion of a USGS one-degree DEM. It is suggested that maps of local probabilities for over or underestimation of the unknown reference elevation values from those reported in the DEM, and joint probability values attached to different spatial features, be provided to DEM users in addition to traditionally reported summary statistics used to quantify DEM accuracy. Such a metadata element would be a valuable tool for subsequent decision-making processes that are based on the DEM elevation surface, or for targeting areas where more accurate elevation measurements are required. © 1999 Taylor & Francis Group, LLC.
ISSN: 1365-8816
DOI: 10.1080/136588199241067
Rights: © Taylor & Francis
Type: Article
Affiliation : Stanford University 
University of California Santa Barbara 
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

Citations 5

checked on Sep 2, 2020


Last Week
Last month
checked on Oct 18, 2020

Page view(s) 20

Last Week
Last month
checked on Oct 21, 2020

Google ScholarTM



Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.