Please use this identifier to cite or link to this item:
Title: High-speed FPGA implementation of secure hash algorithm for IPSec and VPN applications
Authors: Kakarountas, Athanasios P.
Theodoridis, George
Milidonis, Athanasios 
Goutis, Costas E.
Michail, Harris 
Keywords: FPGA;Hardware implementation;Hash function;High-speed performance
Category: Electrical Engineering - Electronic Engineering - Information Engineering
Field: Engineering and Technology
Issue Date: Aug-2006
Source: (2006) Journal of Supercomputing, vol.37, no. 2, pp. 179-195
Journal: Journal of Supercomputing 
Abstract: Hash functions are special cryptographic algorithms, which are applied wherever message integrity and authentication are critical. Implementations of these functions are cryptographic primitives widely used in common cryptographic schemes and security protocols such as Internet Protocol Security (IPSec) and Virtual Private Network (VPN). In this paper, a novel FPGA implementation of the Secure Hash Algorithm 1 (SHA-1) is proposed. The proposed architecture exploits the benefits of pipeline and re-timing of execution through pre-computation of intermediate temporal values. Pipeline allows division of the calculation of the hash value in four discreet stages, corresponding to the four required rounds of the algorithm. Re-timing is based on the decomposition of the SHA-1 expression to separate information dependencies and independencies. This allows pre-computation of intermediate temporal values in parallel to the calculation of other independent values. Exploiting the information dependencies, the fundamental operational block of SHA-1 is modified so that maximum operation frequency is increased by 30% approximately with negligible area penalty compared to other academic and commercial implementations. The proposed SHA-1 hash function was prototyped and verified using a XILINX FPGA device. The implementation's characteristics are compared to alternative implementations proposed by the academia and the industry, which are available in the international IP market. The proposed implementation achieved a throughput that exceeded 2,5 Gbps, which is the highest among all similar IP cores for the targeted XILINX technology. © 2006 Springer Science + Business Media, LLC.
ISSN: 0920-8542
DOI: 10.1007/s11227-006-5682-5
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Citations 50

checked on Aug 12, 2019


checked on Aug 11, 2019

Page view(s)

Last Week
Last month
checked on Aug 18, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.