Please use this identifier to cite or link to this item:
Title: Biodegradation and toxicity of emerging contaminants: Isolation of an exopolysaccharide-producing Sphingomonas sp. for ionic liquids bioremediation
Authors: Koutinas, Michalis 
Vasquez Christodoulou, Marlen 
Nicolaou, Euthimia 
Pashali, Petros 
Kyriakou, Eleni 
Loizou, Elena 
Papadaki, Aikaterini 
Koutinas, Apostolis A. 
Vyrides, Ioannis 
Major Field of Science: Natural Sciences
Field Category: Chemical Sciences
Keywords: Ionic liquid;Biodegradation;Toxicity assessment;Extracellular polymeric substances;Emerging contaminants
Issue Date: 5-Mar-2019
Source: Journal of Hazardous Materials, 2019, vol. 365, pp. 88-96
Volume: 365
Start page: 88
End page: 96
Journal: Journal of Hazardous Materials 
Abstract: Ionic liquids (ILs) have been characterized as contaminants of emerging concern (CEC) that often resist biodegradation and impose toxicity upon environmental release. Sphingomonas sp. MKIV has been isolated as an extreme microorganism capable for biodegradation of major classes of ILs. Six imidazolium-, pyridinium- and ammonium-based ILs (pyridinium trifluoromethanesulfonate [Py][CF3SO3], 1-(4-pyridyl)pyridinium chloride [1-4PPy][Cl], 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium methanesulfonate [BMIM][MeSO4], tetrabutylammonium iodide [n-Bu4N][I] and tetrabutylammonium hexafluorophosphate [n-Bu4N][PF6]) were used for microbial growth. The strain achieved 91% and 87% removal efficiency for cultures supplemented with 100 mg L-1 of [BMIM][MeSO4] and [n-Bu4N][I] respectively. The metabolic activity of MKIV was inhibited following preliminary stages of cultures conducted using [BMIM][MeSO4], [BMIM][Br], [Py][CF3SO3] and [n-Bu4N][PF6], indicating potential accumulation of inhibitory metabolites. Thus, a comprehensive toxicological study of the six ILs on Aliivibrio fischeri, Daphnia magna and Raphidocelis subcapitata was conducted demonstrating that the compounds impose moderate and low toxicity. The end-products from [BMIM][MeSO4] and [n-Bu4N][I] biodegradation were assessed using Aliivibrio fischeri, exhibiting increased environmental impact of the latter following biotreatment. MKIV produced 19.29 g L-1 of biopolymer, comprising mainly glucose and galacturonic acid, from 25 g L-1 of glucose indicating high industrial significance for bioremediation and exopolysaccharide production.
ISSN: 0304-3894
DOI: 10.1016/j.jhazmat.2018.10.059
Rights: © Elsevier
Type: Article
Affiliation : Cyprus University of Technology 
Agricultural University of Athens 
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record


checked on Sep 14, 2021


Last Week
Last month
checked on Apr 22, 2021

Page view(s)

Last Week
Last month
checked on Sep 21, 2021

Google ScholarTM



Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.