Please use this identifier to cite or link to this item:
Title: Biowaste-based biochar: A new strategy for fermentative bioethanol overproduction via whole-cell immobilization
Authors: Kyriakou, Maria 
Chatziiona, Vasiliki K. 
Costa, Costas 
Kallis, Michalis 
Koutsokeras, Loukas E. 
Constantinides, Georgios 
Koutinas, Michalis 
Keywords: Biochar;Bioethanol;Immobilized biocatalysts;K. marxianus
Category: Chemical Sciences
Field: Natural Sciences
Issue Date: 15-May-2019
Publisher: Elsevier Ltd.
Source: Applied Energy, 2019, Volume 242, Pages 480-491
Journal: Applied Energy 
Abstract: This work explores the potential use of biochar as a microbial cell carrier enhancing the efficiency of alcoholic fermentations. Olive kernels, vineyard prunings, sewage sludge and seagrass residues were applied as biowaste for biochar production through pyrolysis at two different temperatures (250 °C and 500 °C), while a commercial type of non-biomass char was also employed for benchmarking purposes. Apart from vineyard prunings pyrolyzed at 250 °C, all other carbonaceous materials presented crystalline phases including halite, calcite, sylvite and/or silicon. Moreover, increase in pyrolysis temperature enhanced biochar's porosity and BET-specific surface area, which reached 41.7 m 2 g −1 for VP-based biochar remaining at lower levels (0.15–5.3 m 2 g −1 ) in other specimens tested. Elemental analysis demonstrated reduction in oxygen and increase in the carbon content of biochars produced at elevated temperatures, while biochar from seagrass included residues of chloride (0.3–5.14%). Three major yeasts were immobilized on materials exhibiting the highest surface areas and applied in repeated batch fermentations using Valencia orange peel hydrolyzates as feedstock. The biocatalysts developed using S. cerevisiae and K. marxianus immobilized on vineyard prunings-based biochar exhibited exceptional ethanol productivities as compared to the relevant literature, which reached 7.2 g L −1 h −1 and 7.3 g L −1 h −1 respectively. Although the aforementioned strains improved biofuel production by 36–52% compared to the conventional process, P. kudriavzevii KVMP10 was not efficient following immobilization on biochar. The approach constitutes an innovative method for bioenergy production, demonstrating a novel application of biochar in industrial biotechnology which incorporates important technological advances such as enhanced biofuel production and biomass recycling.
ISSN: 0306-2619
DOI: 10.1016/j.apenergy.2019.03.024
Rights: © 2019 Elsevier Ltd
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record


checked on Oct 14, 2019

Page view(s)

Last Week
Last month
checked on Oct 15, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.