Please use this identifier to cite or link to this item:
Title: New insights into the antimicrobial treatment of water on Ag-supported solids
Authors: Theofilou, Stathis P. 
Constantinou, Barbara K. 
Chatziiona, Vasiliki K. 
Pantelidou, Nantia 
Plyastsov, Semyon 
Kapnisis, Konstantinos 
Savva, Petros G. 
Meshkovsky, Igor 
Anayiotos, Andreas 
Costa, Costas 
Keywords: Ag-supported solids;Antimicrobial process;Disinfection;Psuedocatalysis;Silver
Category: Chemical Sciences
Field: Natural Sciences
Issue Date: 4-Apr-2019
Publisher: John Wiley and Sons Ltd
Source: Journal of Chemical Technology and Biotechnology, 2019, Volume 94, Issue 4, Pages 1134-1143
Journal: Journal of Chemical Technology and Biotechnology 
Abstract: BACKGROUND: Silver (Ag) has been long known to be a strong antimicrobial agent and has been used as such either as AgNO3 or in the form of nanoparticles. The antimicrobial activity of nanosilver is believed to be due to free metal ion toxicity, the consequent generation of excess reactive oxygen species and inhibition of gene expression in several cells. RESULTS: The antimicrobial activity of Ag/Al2O3 spheres was studied after suppression of free Ag ions by using a suitable complexing agent (Ag+ scavenger). It was found that Ag/Al2O3 retained its antimicrobial activity even after the addition of the Ag+ complexing agent, which is in contrast to the behaviour of an AgNO3 solution which became completely inactive. Initial/preliminary transmission electron microscopy and Fourier transform infrared studies indicate possible phospholipid residues on the Ag-supported solid surface. •OH radicals were confirmed to be formed during the antimicrobial process. CONCLUSIONS: The present work provides strong evidence that the antimicrobial property of Ag-supported solids is not exclusively due to the dissolution of surface silver (free Ag+). A possible simplified mechanism is proposed in which the initiation of the antimicrobial reaction is proposed to be a heterogeneous intersurface process, which might include the interaction between the partially positively charged, surface silver atoms and the negatively charged outer membrane (OM) of microbes, and the subsequent activation of a free radical mechanism. Further study and confirmation of the above findings might be decisive for the development of novel Ag-supported solids with limited metal surface dissolution but strong antimicrobial activity useful for the confrontation of particular environmental challenges.
ISSN: 02682575
DOI: 10.1002/jctb.5860
Rights: © 2018 Society of Chemical Industry
Type: Article
Appears in Collections:Άρθρα/Articles

Show full item record

Page view(s)

Last Week
Last month
checked on Nov 21, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.