Please use this identifier to cite or link to this item: https://ktisis.cut.ac.cy/handle/10488/13410
DC FieldValueLanguage
dc.contributor.authorHermerschmidt, Felix-
dc.contributor.authorBurmeister, David-
dc.contributor.authorLigorio, Giovanni-
dc.contributor.authorPozov, Sergey M.-
dc.contributor.authorWard, Richard-
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorList-Kratochvil, Emil J. W.-
dc.date.accessioned2019-03-31T18:21:12Z-
dc.date.available2019-03-31T18:21:12Z-
dc.date.issued2018-12-
dc.identifier.citationAdvanced Materials Technologies, 2018, Volume 3, Issue 12, Article number 1800146en_US
dc.identifier.issn2365709X-
dc.identifier.urihttp://ktisis.cut.ac.cy/handle/10488/13410-
dc.description.abstractLow cost electronics are targeted by using solution-based, upscalable printing technologies, focusing on cost-efficient materials and additive processes to yield conducting structures with minimal material consumption. Copper nanoparticles (CuNPs) can form the basis for such processes. However, due to the susceptibility of Cu to oxidation, the usual postdeposition treatment methods include expensive and instrumentally elaborate flash lamp and laser sintering approaches. A simple, truly low temperature (130 °C), easy to scale process is reported by using formic acid to sinter structures that are inkjet-printed using an industrial scale CuNP ink. Electrical conductivity of up to 16% bulk Cu is observed when sintering is carried out at 130 °C and more than 25% bulk Cu conductivity is observed above 150 °C. Four-point measurements and photoemission spectroscopy detail the formation of a conducting Cu film under the influence of formic acid. Adhesion and bending tests confirm the stability of the thin (<500 nm) printed structures to up to 2% tensile strain. The developed sintering process is specifically targeted for flexible low cost and low temperature compatible plastic substrates such as polyethylene terephthalate. The results underline the suitability of the inkjet process for upscalable Cu electrode production in electronic devices.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.relation.ispartofAdvanced Materials Technologiesen_US
dc.rights© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.subjectCopper nanoparticle inken_US
dc.subjectHigh conductivityen_US
dc.subjectInkjet-printed electronicsen_US
dc.subjectLow cost flexible substratesen_US
dc.subjectLow temperature sinteringen_US
dc.titleTruly low temperature sintering of printed copper ink using formic aciden_US
dc.typeArticleen_US
dc.collaborationHumboldt-Universitat zu Berlinen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationIntrinsiq Materials Ltd.en_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscription Journalen_US
dc.countryGermanyen_US
dc.countryCyprusen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1002/admt.201800146en_US
cut.common.academicyear2018-2019en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1other-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn2365-709X-
crisitem.journal.publisherWiley-
Appears in Collections:Άρθρα/Articles
Show simple item record

SCOPUSTM   
Citations 50

2
checked on Jul 5, 2019

WEB OF SCIENCETM
Citations

5
checked on Oct 8, 2019

Page view(s)

52
Last Week
3
Last month
1
checked on Oct 15, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.