Please use this identifier to cite or link to this item:
Title: Synthesis of new photosensitive H2BBQ2+[ZnCl4]2−/[(ZnCl)2(μ-BBH)] complexes, through selective oxidation of H2O to H2O2
Authors: Stylianou, Marios 
Hadjiadamou, Ioanna 
Drouza, Chryssoula 
Hayes, Sophia C. 
Lariou, Ε. 
Tantis, Iosif 
Lianos, Panagiotis 
Tsipis, Athanassios C. 
Keramidas, Anastasios D. 
Major Field of Science: Agricultural Sciences
Field Category: Agricultural Biotechnology
Keywords: Monopropellant;Liquid Rocket Propellant;Specific Impulse
Issue Date: 2017
Source: Dalton Transactions, 2017, vol. 46, no. 11, pp. 3688-3699
Volume: 46
Issue: 11
Start page: 3688
End page: 3699
DOI: 10.1039/c6dt04643f
Journal: Dalton Transactions 
Abstract: A new two-electron photosensitizer, H2BBQ2+[ZnCl4]2−/[(ZnCl)2(μ-BBH)] (BBQ stands for 2,5-bis[bis(pyridin-2-ylmethyl)amino]-1,4-quinone and BBH stands for 2,5-bis[bis(pyridin-2-ylmethyl)amino]-1,4-hydroquinone), has been synthesized and the oxidation state of the ligand was determined by X-ray crystallography and NMR spectroscopy. Under light illumination the H2BBQ2+[ZnCl4]2− + ZnCl2 is reduced quantitatively to [(ZnCl)2(μ-BBH)] (pH ∼ 5) oxidizing H2O to H2O2 as is evident by trap experiments. Electrochemistry gave a reversible two-electron ligand-centered redox wave for [(ZnCl)2(μ-BBH)]. UV-Vis, luminescence and EPR spectroscopies reveal the slow formation of a stable quinone diradical, intermediate of the reaction. DFT calculations are in agreement with the proposed mechanism. Based on this property an aqueous {[(ZnCl)2(μ-BBH)]||H2O2} solar rechargeable galvanic cell has been constructed.
ISSN: 1477-9234
DOI: 10.1039/c6dt04643f
Rights: © The Royal Society of Chemistry
Type: Article
Affiliation : University of Cyprus 
Cyprus University of Technology 
University of Patras 
University of Ioannina 
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

Citations 50

checked on Jun 15, 2021

Citations 20

Last Week
Last month
checked on Apr 22, 2021

Page view(s) 50

Last Week
Last month
checked on Jun 16, 2021

Google ScholarTM



Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.