
Research Article
A Probabilistic Spatial Distribution Model for Wire
Faults in Parallel Network-on-Chip Links

Arseniy Vitkovskiy, Paul Christodoulides, and Vassos Soteriou

Faculty of Engineering and Technology, Cyprus University of Technology, 3603 Limassol, Cyprus

Correspondence should be addressed to Paul Christodoulides; paul.christodoulides@cut.ac.cy

Received 4 October 2014; Accepted 11 January 2015

Academic Editor: Jinhu Lü

Copyright © 2015 Arseniy Vitkovskiy et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

High-performance chip multiprocessors contain numerous parallel-processing cores where a fabric devised as a network-on-
chip (NoC) efficiently handles their escalating intertile communication demands. Unfortunately, prolonged operational stresses
cause accelerated physically induced wearout leading to permanent metal wire faults in links. Where only a subset of wires may
malfunction, enduring healthy wires are leveraged to sustain connectivity when a partially faulty link recovery mechanism is
utilized, where its data recovery latency overhead is proportional to the number of consecutive faulty wires. With NoC link failure
models being ultimately important, albeit being absent from existing literature, the construction of a mathematical model towards
the understanding of the distribution of wire faults in parallel on-chip links is very critical. This paper steps in such a direction,
where the objective is to find the probability of having a “fault segment” consisting of a certain number of consecutive “faulty” wires
in a parallel NoC link. First, it is shown how the given problem can be reduced to an equivalent combinatorial problem through
partitions and necklaces.Then the proposed algorithm counts certain classes of necklaces bymaking a separation between periodic
and aperiodic cases. Finally, the resulting analytical model is tested successfully against a far more costly brute-force algorithm.

1. Introduction

Continuous complementary metal-oxide-semiconductor
(CMOS) transistor miniaturization, following Moore’s law,
has sparked the multicore era [1, 2] in which the architectural
paradigm dictates that software application execution is
handled by numerous processing cores that operate in
parallel. This modular design of chips, including general-
purpose chip multiprocessors (CMPs), not only ensures
ultrahigh performance attainment but also provides a
number of advantageous attributes such as those of power
and thermal management, reconfigurability, and fault-tole-
rance, among others [3–5]. Networks-on-chips (NoCs) [6, 7],
microscale equivalents of large-scale interconnection net-
works [8, 9], which also draw similarities to complex net-
works [10–12], as they are homogenous and exhibit clustering
behaviour and short-distance communication between
node-pairs, have become the de facto communication
backbone in these multicore chips, including CMPs such as
the Tilera TILE64 CMP [2] and Intel’s 48-core Single-chip

Cloud Computer (SCC) [1], hence becoming inherent
components in these parallel on-chip systems.

Unfortunately, deep submicron CMOS process tech-
nology is marred by increasing susceptibility to wearout,
expected to increase by 10x in the next 10 years by ITRS
[13], dramatically shortening the useful lifespan of multicore
systems. Point-to-point links, comprising a set of parallel
metallic wires [14], interconnect neighbouring routers, allow-
ing message transfers on-chip. Prolonged operational stress
onto these parallel wires gives rise to accelerated wearout, due
to physical failure mechanisms primarily including electro-
migration (EM) and negative bias temperature instability [15]
that cause permanent device faults that can, in turn, quickly
lead to architectural-level failures and possible catastrophic
NoC operational failure.

Faults induced by these anomalies are widely predicted
to become increasingly common in the near future [16].
Research indicates that about 20% of all link errors are caused
by permanent failures, occurring both at manufacture-time
and at run-time [17, 18]. Moreover, the wire repeaters

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 410172, 13 pages
http://dx.doi.org/10.1155/2015/410172

2 Mathematical Problems in Engineering

(buffers), that is, the link drivers found in each router, the
output latches, and the flip-flops of pipelined links are also
susceptible and potentially vulnerable [19].

Even an isolated intrarouter or communication link
failure in the NoC fabric can turn a static regular topology
into an irregular one with subconnected geometry; hence,
either physical connectivity among routers may not exist at
all, and/or the associated routing protocol may not be able
to advance packets to their destinations due to protocol-level
violation(s) [20]. In-transit messages cannot traverse faulty
links, with back-pressure causing the effects of the fault(s)
to spread backwards, quickly causing congestion, and even
leading the entire system to stall indefinitely. Further, vital
components such as vital input/output (I/O) and various off-
chip memory modules may be partitioned away from the
CMP as well, making them inaccessible. Indeed, a number of
surveys [4, 5, 21, 22], which outline the design challenges and
lay the roadmap in future multicore design, have emphasized
the need to conduct research and identify the primary
challenges inNoC reliabilitymaintenance techniques, includ-
ing link-level fault diagnosis and tolerance, as a means to
safeguard the scalability and performance sustainability of
general-purpose CMPs and application-driven systems-on-
chips (SoCs).

The facts that high data rate on-chip links are suscep-
tible to increasing failure rates that decelerate the NoC’s
performance, that the NoC is critical to a CMP’s overall
functionality, and that no real link failure data are readily
available from manufacturers (for obvious reasons) point to
the crucial need in constructing a mathematical model to
aid in the understanding and exploration of the distribution
of wire faults in parallel on-chip links. This model can
potentially be coupled to fault-tolerant mechanisms at the
chip’s architectural-level to realize improvements in intercore
communication resiliency [1, 2]. This work takes decisive
steps in such a direction.

In this paper, we derive and demonstrate combinatorics-
based models that can be used to calculate the spatial
probability distribution of individual wire faults in a parallel
network-on-chip (NoC) [6] interconnect link given its bit-
width (summation of the numbers of single-bit width healthy
and unhealthy wires in this parallel link) and a given number
of faulty single-bit width wires that reside in this link.
Modern NoCs employ interrouter links comprising several
unidirectional parallel wires [14] that can transfer an entire
data flit in one clock cycle. Since each wire is associated
with separate driver circuitry, a particular driver failure only
affects its associated wire in a parallel NoC link. (The terms
“unhealthy,” “corrupted,” “nonoperational,” and “faulty” are
used interchangeably throughout this paper.) (A flit, or flow-
control unit, is a logical segment of a packetized message. In
wormhole flow-control, often employed in NoCs, a packet
containing data, comprised of a series of bits, is often split into
several flits to reduce buffering requirements and to achieve
efficient communication among router nodes.)

Previous research studies in [23–25], where the first
two works constitute our previously published research,
target the recovery of partially corrupted packetized data
being retransmitted, using a partially faulty link recovery

mechanism (PFLRM) that employs a shifting mechanism
which leverages the existing healthy links in a partially faulty
link, that is, a parallel NoC link in which a subset of its
wires are faulty while the remaining wires are operational.
These mechanisms retransmit a flit in a bit-shifted scheme
from the sender router at every clock cycle, for a given
number of cycles, so as to eventually receive all the essential
information to enable recovery and reconstruction of the
flit data at the receiver router. Under these mechanisms,
it has been shown that the consecutiveness or “clustering”
of these faulty wires, where each such cluster is separated
from its neighboring clusters with at least a healthy link in
between them, directly affects the recovery latency required
to restore the received partially corrupted flit data at the
receiver routers, hence directly impacting negatively the NoC
performance. We are, therefore, particularly interested in the
number of such consecutive faulty wires in a parallel NoC
link as the “maximum wire fault clustering” (i.e., the longest
existing consecutiveness of faulty wires in a parallel link, i.e.,
fault-segment) correlates to the number of overhead clock
cycles that are required to retransmit a flit over a partially
faulty parallel NoC link, as Section 2 will demonstrate with
a detailed example; the wider this fault clustering is, the
greater the number of flit retransmissions are needed for
flit recovery, hence the lower the performances of the NoC
and of the entire CMP. Note that we consider the two edge
wires of the parallel link to be virtually consecutive for the
functional purposes of the packetized message bit-shifting
mechanism that forms part of the recovery in [23–25]; hence,
the link arrangement forms a virtual ring, with the edge wires
“touching” each other, as demonstrated in the example of
Figures 1(a) and 1(b) where 5 wires are assumed to exist in
a parallel link. We adopt a random spatial distribution of
faulty wires in the parallel NoC link and aim to determine
the probability distribution of corrupted (and noncorrupted)
flit data bits (or associated NoC link wires), as no real data
for wire failures in NoC links are published by IC manu-
facturers. (The terms “consecutive,” “clustering,” “adjacent,”
and “segment(s)” are used interchangeably throughout this
paper.)

To effectively calculate the levels of these “parallel wire
segmentations,” we derive (or perfect) a novel algorithm that
can be used to determine the segmentation probability for an
ordered collection of objects (i.e., parallel wires in aNoC link)
of two distinct classes: faulty wires and healthy or “nonfaulty”
wires. The algorithm presented here is a more rigorous
extension of a preliminary algorithmpresented in [26], which
heavily depended on a stated (unproven) conjecture that led
to non-100%-precise results.

The goal of a complete mathematical model describing
the probability distribution of the length of a fault-segment
for a given number of parallel NoC wires and faulty wires
is reached through a series of combinatorial arguments with
regard to partitions and necklaces. Necklaces, apart from
their intrinsic usefulness in the field of combinatorics, have
proven to be a powerful tool in other areas of mathematics
and other sciences. Some customary notions and theories
related to necklaces include the Lyndon word [27], the actual
homonym necklace problem (see, e.g., [28]), the necklace

Mathematical Problems in Engineering 3

Links

Max. error
clustering

Wire faults
occurrence

Send test vectors

Test
vectors
received

Er
ro

r d
et

ec
te

d
at

 d
ow

ns
tre

am
 ro

ut
er

Error
detected

Fault1 2a

Calculation of flit recovery latency

2b

Rotated flit retransmission, downstream flit data reassembly and final data recovery (derotation)

3 Derotate flit
(recovered)

XOR

Initial flit D
vector E

Fault vector F generation using
test vectors T1 and T2

T1 T2

d0

d1

d2

d3

d4

d0

d1

d2

d3

d4

CLK1

CLK1

CLK2

CLK2

CLK3

CLK3

0 + 0 = 0

1 + 0 = 1

0 + 0 = 0

0 + 0 = 0

0

1

0

1

0

1

0

1

0

1

1

1

1

1

0

1

0

1

1

1

0

1

0

0

1 1 + 0 = 1

0 + 1 = 1

1 + 0 = 1

0 + 1 = 1

0 + 0 = 0

1 + 0 = 1

0 + 1 = 1

1 + 1 = 1

0 + 1 = 1

0 + 1 = 1

1 + 0 = 1

R3 ≪ 2 = D

XOR

AND

OR+

Nonfaulty flit bit
Faulty flit bit

Clock cycle

Faultless link wire

Faulty link wire

Newly recovered healthy flit bit

D

1 · E + (R0 ≫ 1) · E = R1 D

2 · E + (R1 ≫ 1) · E = R2 D

3 · E + (R2 ≫ 1) · E = R3

x0 · 0 + 0 · 1 = 0

d1 · 1 + 0 · 0 = d1

x2 · 0 + 0 · 1 = 0

x3 · 0 + 0 · 1 = 0

d4 · 1 + 0 · 0 = d4 d3 · 1 + 0 · 0 = d3

x4 · 0 + d4 · 1 = d4

d0 · 1 + 0 · 0 = d0

x1 · 0 + d1 · 1 = d1

x2 · 0 + 0 · 1 = 0

·

x3 · 0 + d3 · 1 = d3

d4 · 1 + d4 · 0 = d4

x0 · 0 + d0 · 1 = d0

x1 · 0 + d1 · 1 = d1

d2 · 1 + d2 · 0 = d2

E + (R2 ≫ 1) = R3E + (R0 ≫ 1) = R1 E + (R1 ≫ 1) = R2

d{0,1,...,4}

x{0,1,...,4}

CLK{1,2,3}

(a)

The five parallel link wires forming a virtual “ring”

d0 d1

d2

d3

d4

(b)

Figure 1: (a) Demonstration of the PFLRM functionality under all three phases of recovery, using a 5-bit flit width, a faulty wire clustering
of 2, and a total of 3 faulty wires (60% faulty wires). Stuck-at-one permanent faults are assumed. In phase 2-a the fault vector is rotated twice
until all bits of vector R

3
equal 1, indicating a maximum fault clustering of 2. The boxed bit numbers under phase 3 indicate the respective

newly recovered flit bits from the received and corrupted flit vector D. The final two-position anticlockwise deshifting at the downstream
router recovers the final flit to exactly equal to 𝑛 + 1, the error-free flit being sent from the upstream router; the recovery phase takes 3 clock
cycles (CLK

{1,2,3}
) to complete (1 base plus 2 recovery cycles). (b)The five wires comprising the same parallel NoC link forming a virtual “ring.”

4 Mathematical Problems in Engineering

splitting problem [29], and most notably a proof of Fermat’s
little theorem [30].

The rest of this paper is organized as follows. Section 2
presents an overview of the partially faulty link recovery
mechanism, published in our previous works [23, 24], which
forms the basis for the proposed faulty wire distribution
model presented in the paper. Next, in Section 3 the problem
definition is formally given. Section 4 accommodates the
algorithm that leads to the determination of the probability
distribution of the length of fault-segments for a given
number of wires and faulty wires comprising a parallel NoC
link. The algorithm is constructed through basic counting
principles and probability rules, where appropriate, and
through a derivation showing its correspondence to an equiv-
alent necklace problem. In Section 5, an arithmetic example
demonstrates the effectiveness of the obtained analytical
model, which is also verified by the results of a brute-force
algorithm, with a runtime computation comparison of our
analytical model versus the brute-force approach demon-
strating its advantageous speedup. The further applicability
of the presented algorithm is discussed in Section 6. Finally,
Section 7 concludes this paper.

2. Demonstration of the Partially Faulty
Link Recovery Mechanism

For purposes of completeness, we give an outline of the
partially fault link recovery mechanism (PFLRM), which
forms the basis on which we build our distribution model
presented in this paper. A full description of the mechanism
can be found in [23, 24]. The PFLRM scheme can detect
bit corruptions in received flit data caused by independent
wire failures in a parallel NoC link [14]. This detection
initiates a data recovery process, whereby the downstream
router instructs the upstream router to retransmit the flit(s)
appropriately bit-rotated over a respective number of cycles,
so as to bypass the faulty wire(s) that cause(s) the respective
flit-bit error(s). Healthy bit fragments are extracted from each
of received bit-rotated incarnations of the unhealthy flit and
placed in an assembly block. PFLRM reacts dynamically to
bypass permanent wire faults. While PFLRM also works for
transient faults, for clarity we focus on permanent faults only.

Preliminarily, we denote an initially healthy parallel NoC
link as a vector D = (𝑑

0
, 𝑑
1
, . . . , 𝑑

𝑛
), where 𝑛 ∈ Z+, of 𝑛 + 1

noncorrupted flit bits sent from an upstream router towards
a downstream router. Each such vector member represents
the relevant and distinct bit of a flit traversing a relevant wire
of a link. When faults occur, some of these wires, or link
vector members, become faulty, and as a result a flit will be
received at the downstream router with some of its bits being
corrupted (while the remaining flit bits remain healthy and
contain the correct data), denoted asD. Individual corrupted
flit bits are denoted as 𝑥

𝑖
, 𝑖 ∈ {0, 1, . . . , 𝑛}. The relevant posi-

tions (placements or distribution) of faulty wires are assumed
to be random. In our example of Figure 1(a) we assume
that the wires carrying flit bits 𝑑

0
, 𝑑
2
, and 𝑑

3
between the

upstream and the downstream routers in a 5-bit link become
faulty simultaneously, respectively, denoted as 𝑥

0
, 𝑥
2
, and 𝑥

3
.

The same figure shows how PFLRM reconstructs corrupted
flits transmitted over a partially faulty link (PFL) in a 3-phase
scheme: (1) dynamic fault occurrence and detection, (2-a)
fault vector generation, (2-b) flit recovery latency calculation,
and (3) flit retransmission (upstream router), reassembly,
and final flit recovery (downstream router). All 3 phases are
executed when a wire fault(s) originally occurs; after the fault
vector is generated, only the last phase is required, until later
a new wire becomes faulty.

In phase 1, the error detection block in the downstream
router detects the error (but does not recover or distinguish
which bit(s) are erroneous), causing the initiation of phase 2-
a. In phase 2-a, the upstream router stops the transmission of
subsequent flits without dropping any packets and transmits
two consecutive test vectors, T

1
and T

2
, to the downstream

router containing alternating “zeros” and “ones” with a one-
bit shift difference between the two (refer to Figure 1(a) phase
2-a). Stuck-at-zero or stuck-at-one errors in any of the link
wires are detected by a bitwise exclusive or (XOR) operation
in the downstream router, indicated by a corresponding 0 in
the respective generated fault vector E.

The gist in recovering received flits corrupted during
transmission is to utilize this fault vector as many times as
required to extract healthy flit bits and use them to reassemble
the entire healthy flit at the downstream router; then, repeat
for the next flit(s). To do this, each healthy flit D at the
upstream router is rotated clockwise a number of times, one
bit position at every clock cycle 𝑖, such that D

𝑖
= D
𝑖−1

≫ 1,
where ≫ denotes one-bit clockwise rotation, 𝑖 ∈ Z+, and
𝑖 < 𝑛 + 1 (the bit-width of the link) and sent over the parallel
PFL a finite number of times (see next) to bypass faulty wires,
while recovering flit bits over the remaining healthy wires.
Due to this bit-rotationalmechanism the wires at the edges of
the link are considered to be virtually adjacent to each other,
forming a “ring.” For each rotated version of the received
corrupted flit D, the healthy bits are compared against the
fault vector and a flit recovery vector R

𝑖
is generated each

time, such that

D
1
= D, R

0
= 0, R

𝑖
= D
𝑖
⋅ E + (R

𝑖−1
≫ 1) ⋅ E;

𝑖 ∈ Z
+
, 𝑖 < 𝑛 + 1,

(1)

where R
𝑖−1

is the partially recovered flit vector from the
previous clock cycle and E is the bit-wise negation of the
fault vector E. In other terms, if a bit from the current
received flit vector D is healthy (i.e., it utilized a faultless
wire to arrive at the downstream router), as denoted by
the corresponding bit (logic 1) of the fault vector E, then
it is extracted and assembled in the current flit recovery
vector R

𝑖
. Otherwise, that bit of R

𝑖
is left unconsidered for

recovery; instead, the previously recovered corresponding flit
bit is retrieved. For instance, in phase 3 of our example in
Figure 1(a), in the first cycle of recovery (CLK

1
), flit bits 𝑑

1

and 𝑑
4
are recovered; in CLK

2
, these bits are rotated and flit

bits 𝑑
0
and 𝑑

3
are recovered at their relative bit placement,

with 𝑑
2
being recovered last in CLK

3
.The relative rotations of

the transmitted unhealthy flit vector D
𝑖
and the flit recovery

vector R
𝑖
in each cycle ensure that the recovered flit vector R

𝑖

is progressively built.

Mathematical Problems in Engineering 5

The recovery vector R
𝑖
requires a final (𝑖 − 1)-bit anti-

clockwise derotation to reproduce the healthy flit vector D
downstream. The number of these derotations is directly
related to the number of consecutive faulty link wires; we
refer to this as the “maximum wire fault clustering”; this
also determines the number of additional clock cycles that
are required to transmit a flit over the PFL for recovery
purposes, referred to as the “flit recovery latency,” with phase
2-b of PFLRM being exactly responsible in determining
its size. Since in our example it equals two (with wires
carrying flit bits 𝑑

0
and 𝑑

3
in Figure 1(a) being adjacent), R

3

is finally anticlockwise-rotated two bit positions to recover
D. As mentioned above, possible wire faults at the link
edges are also considered consecutive (bits 𝑑

0
and 𝑑

4
in

Figure 1(a)), hence forming a “ring,” as Figure 1(b) shows, due
to the bit-rotational nature of the PFLRM algorithm; this
is a vital postulation which is considered in our proposed
mathematical model in this paper (see Sections 3 to 5). Phase
2-b utilizes the samehardware and recovery principle as those
of phase 3, which recovers the actual flit. It basically rotates
the initial fault vector E and compares it with its previous
rotated version, assembling the logic-1 fault vector bits, until
all bits equal 1, indicating the absence of errors, as vector
R
3
of Figure 1(a) shows. Since it uses the same hardware as

that of phase 3 (calculation of the max wire clustering), (1) is
reutilized with D

𝑖
replaced by E (the fault vector acts as our

“data flit”), such that

R
0
= 0, R

𝑖
= E ⋅ E + (R

𝑖−1
≫ 1) ⋅ E or

R
𝑖
= E + (R

𝑖−1
≫ 1) ⋅ E;

𝑖 ∈ Z
+
, 𝑖 < 𝑛 + 1.

(2)

As the same mathematical principles ((1) and (2)), and, thus,
hardware, are used for both the calculation of flit recovery
latency and actual flit recovery, the PFLRM hardware over-
head can be reduced. In theory, PFLRM can tolerate up to
𝑛 faults (flit bit width minus 1), though in such scenario the
recovery latency is prohibitive.

3. Problem Definition

As in Section 2, we assume a parallel NoC link consisting of
𝑊wires (𝑊 being equal to the size of vectorD) that are placed
in parallel, wrapped around a common axis forming a ring
shape (refer to the example contained in Figure 1 and outlined
in Section 2). Each of these wires may be either healthy or
faulty, but not both. The number of faulty wires 𝐹 (𝐹 being
equal to the number of 𝑑

𝑖
’s in vectorD), 0 ≤ 𝐹 ≤ 𝑊,𝑊 > 0,

and the position (placement) of faulty wires are both random.
Consecutively positioned (adjacent) faulty wires form a

fault-segment (in Figure 1(a) wires 2 and 3 form single fault-
segment of size two, while wire 0 forms a separate fault-
segment of size one). Let 𝑆, 𝑆 ≤ 𝐹 (𝑆 = 0 ⇔ 𝐹 = 0), denote
the size (or length) of the largest fault-segment present in the
link.

Note that one should not view the representation depicted
in Figure 1 in terms of graph theory, let alone random graph

theory, as at best the links (possible nodes) can only form
a complete cycle (“ring”), or a graph consisting of several
connected components, where each node can only have
exactly two neighbors (with all clear implications regarding
the clustering coefficients) [31, 32]. Exploring the probability
distributions of the occurrence of such configurations is
beyond the scope of the current paper. What is actually
desired here is the following. For given values of 𝑊 and 𝐹,
we seek to find the probability distribution of 𝑆, 𝑃

𝑊
(𝑆 | 𝐹).

4. Algorithm Derivation

Hereafter, we present an algorithm in order to find the
probability 𝑃

𝑊
(𝑆 | 𝐹) for each value of 𝑆, for given values of

𝑊 and 𝐹. We find it useful to demonstrate the construction
of the algorithm through arithmetic examples that clarify all
notions involved.

4.1. Number of Possible Wire Arrangements. Let 𝐴(𝑊, 𝐹) =

{𝑎
1
, 𝑎
2
, . . . , 𝑎

|𝐴|
} denote the set of all possible wire arrange-

ments 𝑎
𝑖
for given 𝑊 and 𝐹 values. The cardinality (i.e.,

number of elements) of set 𝐴(𝑊, 𝐹) is simply equal to the
number of combinations in choosing 𝐹 faulty wires out of𝑊
wires, given by

|𝐴 (𝑊, 𝐹)| = 𝐶 (𝐹,𝑊) = (

𝑊

𝐹

) =

𝑊!

𝐹! (𝑊 − 𝐹)!

. (3)

Similarly, let 𝐴(𝑊, 𝐹, 𝑆) ⊆ 𝐴(𝑊, 𝐹) denote the set of all
possible wire arrangements for given 𝑊, 𝐹, and 𝑆 values.
Then, the problem reduces to finding |𝐴(𝑊, 𝐹, 𝑆)|, which
when divided by |𝐴(𝑊, 𝐹)| will yield exactly the required
probability distribution 𝑃

𝑊
(𝑆 | 𝐹).

4.2. Size of Fault-Segment. Let 𝐻 denote the number of
healthy wires in a parallel link; that is, 𝐻 = 𝑊 − 𝐹 (𝐻
being equal to the number of 𝑥

𝑖
’s in vector D). From the

problem definition, the size of the largest fault-segment 𝑆 has
a lower bound which is equal to zero. However, it is possible
to define the greatest lower bound of 𝑆 more precisely (refer
to Example 1 for demonstration) as

⌈

𝐹

𝐻

⌉ ≤ 𝑆 ≤ 𝐹. (4)

Example 1. Let 𝑊 = 14 and 𝐹 = 8. Then, 𝐻 = 𝑊 − 𝐹 = 6

and the greatest lower bound of 𝑆 is ⌈𝐹/𝐻⌉ = ⌈8/6⌉ = 2 ≤ 𝑆.
Consequently, for this case 𝑆 can never be equal to 0 or 1. An
illustration of such a wire arrangement is

× × I × I × I × ×I × I × I, (5)

with 𝑆 = 2 (clustering of faulty wires 1 and 2, as well as of 8
and 9), where the link is shown as an “unwrapped” transverse
section, with I and × denoting a healthy and faulty wires,
respectively. The same link/wire representation is adopted
throughout the remaining length of this paper.

6 Mathematical Problems in Engineering

4.3. Number of Fault-Segments. Let 𝜎 denote the number of
fault-segments in a parallel link. It is not difficult to see (refer
to Example 2) that

⌈

𝐹

𝑆

⌉ ≤ 𝜎 ≤ min (𝐹 − 𝑆 + 1,𝐻) , 𝑆 > 0. (6)

Example 2. Let 𝑊 = 14, 𝐹 = 8, and 𝑆 = 4. Then, 𝜎min =

⌈𝐹/𝑆⌉ = ⌈8/4⌉ = 2. Moreover, 𝜎max = min(𝐹 − 𝑆 + 1,𝐻) =

min(5, 6) = 5. Such wire arrangements for 𝜎 = 2, 3, 4, and 5
are, respectively, the following:

× × × × II × × × ×IIII,

× × × × I × ×II × ×III,

× × × × I × II × ×I × II,

× × × × I × I × I × I × II.

(7)

Now let 𝑆 = 2 for the same𝑊 and 𝐹 values. Then, 𝜎min =

⌈𝐹/𝑆⌉ = ⌈8/2⌉ = 4. Moreover, 𝜎max = min(𝐹 − 𝑆 + 1,𝐻) =

min(7, 6) = 6. Such wire arrangement for 𝜎 = 4, 5, and 6 are,
respectively, the following:

× × I × ×I × ×I × ×III,

× × I × ×I × ×II × I × I,

× × I × ×I × I × I × I × I.

(8)

4.4. Initial Computations. Using basic counting and proba-
bility principles, it was noticed that for certain value choices
of 𝑆 and 𝐹, 𝑃

𝑊
(𝑆 | 𝐹) can be obtained as follows:

𝑃
𝑊

(0 | 0) = 1, 𝑃
𝑊

(1 | 1) = 1,

𝑃
𝑊

(𝑆 = 𝑊 | 𝐹 = 𝑊) = 1,

𝑃
𝑊

(𝑆 = 𝑊 − 1 | 𝐹 = 𝑊 − 1) = 1,

𝑃
𝑊

(𝑆 | 𝐹) =

(𝑆 + 1)

(
𝑊

𝐹
)

(when 𝐹 =

𝑊𝑆

𝑆 + 1

) ,

𝑃
𝑊

(𝑆 | 𝐹) =

𝑊(
𝑊−𝑆−2

𝐹−𝑆
)

(
𝑊

𝐹
)

(when ⌈

(𝐹 + 1)

2

⌉ ≤ 𝑆 ≤ 𝐹 ≤ 𝑊 − 2) .

(9)

The number of wire arrangements for𝑊 = 16 are shown
in Table 1.

The next step is to find a general algorithm for all possible
(including the nonboldface in Table 1) cases.

4.5. String Representation of Wire Arrangements. The set
𝐴
𝑖
of 𝑡
𝑖
(equivalent) rotations (or circular shifts) {𝑎

𝑖
, 𝑎
𝑖+1

,

. . . , 𝑎
𝑖+𝑡𝑖−1

} of a wire arrangement 𝑎
𝑖

∈ 𝐴(𝑊, 𝐹, 𝑆) can
equivalently be represented by the string 𝑟

𝑖
= 𝑠
𝑖1
𝑠
𝑖2
⋅ ⋅ ⋅ 𝑠
𝑖𝐻
,

where 𝑠
𝑖𝑗
is the size of the 𝑗th fault-segment followed by a

single healthy wire. Making the convention that 𝑠
1

= 𝑆, we
have

𝐻

∑

𝑗=1

𝑠
𝑖𝑗
= 𝐹 (0 ≤ 𝑠

𝑖𝑗
≤ 𝑆) . (10)

Note that (10) allows for 𝑠
𝑖,𝑗 ̸=1

= 0, denoting an empty
fault-segment followed by a single healthy wire (refer to
Example 3 below).

Example 3. Let𝑊 = 14,𝐹 = 8, and 𝑆 = 4.Then,𝐻 = 𝑊−𝐹 =

6. Clearly, one of the respective wire arrangements, namely,
𝑎 = ××××II××I×II×I, can be expressed by the string 𝑟 =

𝑠
1
𝑠
2
𝑠
3
𝑠
4
𝑠
5
𝑠
6
= 402101. At the same time thewire arrangement

I × × × ×II × ×I ×II× (arising by the unary circular right
shift of 𝑎) is equivalent to the initial wire arrangement 𝑎 and,
thus, can also be denoted by the string 𝑟. Similarly, all circular
shifts of 𝑎 form an equivalence class represented by the string
𝑟.

Clearly, the set of strings 𝑟
𝑖
has a one-to-one corre-

spondence to the set of nonintersecting subsets 𝐴
𝑖

=

{𝑎
𝑖
, 𝑎
𝑖+1

, . . . , 𝑎
𝑖+𝑡𝑖−1

} ⊆ 𝐴(𝑊, 𝐹, 𝑆) (with cardinality |𝐴
𝑖
| = 𝑡
𝑖
).

Thus, ⋃𝑛
𝑖=1

𝐴
𝑖
= {𝑎
1
, 𝑎
2
, . . . , 𝑎

|𝐴(𝑊,𝐹,𝑆)|
} = 𝐴(𝐹,𝑊, 𝑆), where 𝑛

is the number of all subsets𝐴
𝑖
and the actual number of wire

arrangements can be found as follows:

|𝐴 (𝑊, 𝐹, 𝑆)| =

𝑛

∑

𝑖=1

𝐴
𝑖

=

𝑛

∑

𝑖=1

𝑡
𝑖
. (11)

The string representation for a wire arrangement, as
described above, will then allow us to find all subsets 𝐴

𝑖
. We

now introduce some terminology that will help us to reach
this goal.

Definition 4. (a) The string 𝑟
𝑖

= 𝑠
𝑖1
𝑠
𝑖2
⋅ ⋅ ⋅ 𝑠
𝑖𝐻

is said to be
periodic if and only if there exists positive integer 1 ≤ 𝜏

𝑖
< 𝐻

such that 𝑠
𝑖,𝑗+𝜏

= 𝑠
𝑖𝑗
, for all 𝑗 = 1, 2, . . . , 𝐻 − 𝜏

𝑖
. We call 𝜏

𝑖
the

period of string 𝑟
𝑖
.

(b) If there is more than one 𝜏
𝑖
satisfying the condition (a)

above, then the string is said to havemultiple periods that are
all divisors of𝐻.

(c) If condition (a) is not satisfied, although the string
𝑟
𝑖
is nonperiodic, for the sake of generality, the period is

considered to be 𝜏
𝑖
= 𝐻.

(d) The period 𝑡
𝑖
of any wire arrangement 𝑎

𝑖
∈ 𝐴(𝑊, 𝐹, 𝑆)

from subset 𝐴
𝑖
, represented by the respective string 𝑟

𝑖
of

period 𝜏
𝑖
, can be obtained as follows:

𝑡
𝑖
=

𝜏𝑖

∑

𝑗=1

(𝑠
𝑖𝑗
+ 1) =

𝜏𝑖

∑

𝑗=1

𝑠
𝑖𝑗
+ 𝜏
𝑖
. (12)

Definition 5. (a) The frequency 𝜙
𝑖
of string 𝑟

𝑖
= 𝑠
𝑖1
𝑠
𝑖2
⋅ ⋅ ⋅ 𝑠
𝑖𝐻

is the number of occurrences of a repeating substring
𝑠
𝑖1
𝑠
𝑖2
⋅ ⋅ ⋅ 𝑠
𝑖𝜏𝑖
within 𝑟

𝑖
, where 𝜏

𝑖
is the period of 𝑟

𝑖
and is given

by

𝜙
𝑖
=

𝐻

𝜏
𝑖

. (13)

(b) If string 𝑟
𝑖
has multiple periods, then it also has

multiple frequencies.
(c) If string 𝑟

𝑖
is nonperiodic, that is, 𝜏

𝑖
= 𝐻, then its

frequency 𝜙
𝑖
= 1.

Mathematical Problems in Engineering 7

Table 1: The number of wire arrangements, |𝐴(𝑊, 𝐹, 𝑆)|, for 𝑊 = 16 and all possible 𝐹 and 𝑆. The results obtained using the set of (9) are
shown in boldface.They exactly coincide with the results from a brute-force algorithm implemented in theMATLAB computing environment
(Section 5.1).

𝑆 = 0 𝑆 = 1 𝑆 = 2 𝑆 = 3 𝑆 = 4 𝑆 = 5 𝑆 = 6 𝑆 = 7 𝑆 = 8 𝑆 = 9 𝑆 = 10 𝑆 = 11 𝑆 = 12 𝑆 = 13 𝑆 = 14 𝑆 = 15 𝑆 = 16

𝐹 = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐹 = 1 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐹 = 2 0 104 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐹 = 3 0 352 192 16 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐹 = 4 0 660 968 176 16 0 0 0 0 0 0 0 0 0 0 0 0
𝐹 = 5 0 672 2640 880 160 16 0 0 0 0 0 0 0 0 0 0 0
𝐹 = 6 0 336 4224 2568 720 144 16 0 0 0 0 0 0 0 0 0 0
𝐹 = 7 0 64 4032 4704 1920 576 128 16 0 0 0 0 0 0 0 0 0
𝐹 = 8 0 2 2212 5432 3304 1344 448 112 16 0 0 0 0 0 0 0 0
𝐹 = 9 0 0 608 3776 3696 2016 896 336 96 16 0 0 0 0 0 0 0
𝐹 = 10 0 0 56 1400 2560 1976 1120 560 240 80 16 0 0 0 0 0 0
𝐹 = 11 0 0 0 208 960 1184 896 560 320 160 64 16 0 0 0 0 0
𝐹 = 12 0 0 0 4 136 360 424 336 240 160 96 48 16 0 0 0 0
𝐹 = 13 0 0 0 0 0 32 80 112 96 80 64 48 32 16 0 0 0
𝐹 = 14 0 0 0 0 0 0 0 8 16 16 16 16 16 16 16 0 0
𝐹 = 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
𝐹 = 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(d) The frequency 𝑓
𝑖
of the wire arrangement 𝑎

𝑖
∈

𝐴(𝑊, 𝐹, 𝑆) is the number of occurrences of a repeating
subarrangement within 𝑎

𝑖
and is given by

𝑓
𝑖
=

𝑊

𝑡
𝑖

. (14)

Clearly, using (12)–(14), the respective frequencies 𝑓
𝑖

and 𝜙
𝑖
of the wire arrangement 𝑎

𝑖
∈ 𝐴(𝑊, 𝐹, 𝑆) and the

corresponding string 𝑟
𝑖
are equal; that is, 𝑓

𝑖
= 𝜙
𝑖
.

Example 6. The wire arrangement × × ×III × × × III ∈

𝐴(12, 6, 3) has a period of 𝑡 = 6 and a frequency of𝑓 = 𝑊/𝑡 =

2, while the corresponding string 𝑟 = 𝑠
1
𝑠
2
𝑠
3
𝑠
4
𝑠
5
𝑠
6
= 300300

is of period 𝜏 = 3 and of frequency 𝜙 = 𝐻/𝜏 = 2.
Note that due to the convention in the definition of string

𝑟
𝑖
(refer to (11)), one string 𝑟

𝑖
corresponds to 𝑡

𝑖
equivalent

rotations of wire arrangements (refer to Example 7). If string
𝑟
𝑖
is nonperiodic, that is, 𝜏

𝑖
= 𝐻, then by (10) and (12) the

number of equivalent rotations of wire arrangements is

𝑡
𝑖
=

𝜏𝑖

∑

𝑗=1

𝑠
𝑖𝑗
+ 𝜏
𝑖
= 𝐹 + 𝐻 = 𝑊. (15)

Moreover, substituting (12) into (11) yields

|𝐴 (𝑊, 𝐹, 𝑆)| =

𝑛

∑

𝑖=1

𝑡
𝑖
=

𝑛

∑

𝑖=1

(

𝜏𝑖

∑

𝑗=1

𝑠
𝑖𝑗
+ 𝜏
𝑖
) =

𝑛

∑

𝑖=1

𝜏𝑖

∑

𝑗=1

𝑠
𝑖𝑗
+ 𝑛𝜏
𝑖
.

(16)

Example 7. Let𝑊 = 10, 𝐹 = 6, and 𝑆 = 3.Then,𝐻 = 𝑊−𝐹 =

4. A nonperiodic string 𝑟 = 3300 corresponds to 𝑡 = 𝑊 = 10

equivalent rotations of wire arrangements, demonstrated as
follows:

× × ×I × × × III,

I × × × I × × × II,

II × × × I × × × I,

III × × × I × ××,

×III × × × I × ×,

× × III × × × I×,

× × ×III × × × I,

I × × × III × ××,

×I × × × III × ×,

× × I × × × III ×.

(17)

However, the periodic string 𝑟 = 3030 with 𝜏 = 2

corresponds to only 𝑡 = 𝑠
1
+ 𝑠
2
+ 𝜏 = 3 + 0 + 2 = 5 equivalent

rotations of wire arrangements:

× × ×II × × × II,

I × × × II × × × I,

II × × × II × ××,

×II × × × II × ×,

× × II × × × II ×.

(18)

Clearly, the introduction of the notion of the string 𝑟
𝑖
,

with its one-to-one correspondence to subset𝐴
𝑖
, as explained

8 Mathematical Problems in Engineering

above, has reduced the current problem to finding all possible
such sets 𝐴

𝑖
, for all 𝑖 = 1, 2, . . . , 𝑛, and their cardinalities,

which are nothing else than the periods 𝑡
𝑖
(related to periods

𝜏
𝑖
of the strings 𝑟

𝑖
through (13) and (14)) of wire arrangements

𝑎
𝑖
in 𝐴
𝑖
.

4.6. Partitioning of the Number of Faulty Wires and Corre-
sponding Necklaces. We use integer partitions in order to find
all string representations of all wire arrangements.

Definition 8. A 𝑘-partition 𝑝 of a positive integer 𝑛 is a
partition consisting of exactly 𝑘 terms, adding zeroswhenever
necessary.

Returning to the presented problem for a parallel link
arrangement of 𝑊 wires, with 𝐹 faulty wires and the largest
fault-segment 𝑆, an𝐻-partition 𝑝 of (integer) 𝐹 consists of𝐻
(number of healthy wires) terms, with the largest term being
equal to 𝑆 (refer to Example 9).

Example 9. Let𝑊 = 15,𝐹 = 9, and 𝑆 = 3.Then,𝐻 = 𝑊−𝐹 =

6. The 6-partitions of 𝐹 = 9, with the largest term being equal
to 𝑆 = 3, are given as follows:

3 + 3 + 3 + 0 + 0 + 0,

3 + 3 + 2 + 1 + 0 + 0,

3 + 3 + 1 + 1 + 1 + 0,

3 + 2 + 2 + 2 + 0 + 0,

3 + 2 + 2 + 1 + 1 + 0,

3 + 2 + 1 + 1 + 1 + 1.

(19)

Each partition 𝑝 defines a set of strings, which are given
by specific permutations of 𝑝’s characters. For instance, 𝑝 =

3 + 3 + 3 + 0 + 0 + 0 corresponds to a set of strings, namely,
𝑟
1
= 333000, 𝑟

2
= 330030, 𝑟

3
= 303030, and 𝑟

4
= 300330.

Hence, still, knowing the actual 𝐻-partitions corresponding
to given 𝑊, 𝐹, and 𝑆 does not solve the problem, as the
number of strings per partition must be found. This can be
achieved by noting that the number of all possible strings
𝑟
𝑖
with nonintersecting sets of equivalent rotations of wire

arrangements can be represented by the number of necklaces
for each partition 𝑝 (refer to Example 11 for illustration). We
recall the definition of a necklace as follows.

Definition 10. A 𝐾-ary necklace of length 𝑛 is an equivalence
class of 𝑛-character strings over an alphabet of size 𝐾, taking
all rotations as equivalent [33].

Example 11. Let 𝑊 = 8, 𝐹 = 5, and 𝑆 = 4. Then, 𝐻 = 3. It
turns out that there is only one 3-partition of 𝐹 = 5, with the
largest term being equal to 𝑆 = 4; namely,

𝑝 = 4 + 1 + 0. (20)

All necklaces for the 3-partition above, with the corre-
sponding equivalent rotations of wire arrangements, are

4 + 1 + 0: × × × ×I × II, I × × × ×I × I,

II × × × ×I×, ×II × × × ×I,

I × II × × × ×, ×I × II × ××,

× ×I × II × ×, × × ×I × II×,

4 + 0 + 1: × × × ×II × I, I × × × ×II×,

× I × × × ×II, I × I × × × ×I,

II × I × × × ×, ×II × I × ××,

× ×II × I × ×, × × ×II × I ×.

(21)

Note that there is a one-to-one correspondence between
the necklaces above and (all possible, for this case) strings
𝑟
𝑖
, whose corresponding sets of equivalent rotations of wire

arrangements do not intersect.
For each𝐻-partition one can compute the corresponding

number of necklaces (refer to (23)), which in turn can be
used to compute the number of wire arrangements. Hence,
the problem reduces to finding (a) all such partitions 𝑝, as
described above, and, subsequently, (b) their corresponding
number of necklaces.

There are a number of known algorithms that can actually
generate such a list of 𝐻-partitions in a constant amortized
time [34]. Note here that a partition can be extended to an
𝐻-partition by simply adding the necessary number of zeros.

An alternativeway to approach the problemof finding the
required partitions is by defining a string 𝜂

𝑖
= 𝑛
0
𝑛
1
𝑛
2
⋅ ⋅ ⋅ 𝑛
𝑆
,

where 𝑛
𝑘
is equal to the number of occurrences of integer

𝑘 in a string 𝑟
𝑖
. Then, from the way the strings 𝑟

𝑖
and 𝜂

𝑖

are constructed and from (6) and (10), we set the following
constrained system of equations:

𝑆

∑

𝑘=1

(𝑆 + 1 − 𝑗) 𝑛
𝑘
= 𝐹,

𝑛
0
+

𝑆

∑

𝑘=1

𝑛
𝑘
= 𝐻,

𝑆

∑

𝑘=1

𝑛
𝑘
∈ [⌈

𝐹

𝑆

⌉ ,min (𝐹 − 𝑆 + 1,𝐻)] ,

𝑛
𝑘
∈ Ζ
+

0
, 𝑛
1

̸= 0.

(22)

Let us now introduce a new string 𝜂
∗

𝑖
= 𝑛
𝑙
𝑛
𝑚
⋅ ⋅ ⋅ 𝑛
𝑆
that

arises by excluding any zero terms from string 𝜂
𝑖
. Let 𝐾 ≤

𝑆 be the number of nonzero terms in string 𝜂
𝑖
; we can find

Mathematical Problems in Engineering 9

the number of𝐾-ary necklaces for the corresponding original
string 𝑟

𝑖
as follows:

𝑁
𝑖
(𝑛
𝑙
, 𝑛
𝑚
, . . . , 𝑛

𝑆
)

=

1

𝑛

∑

𝑗|gcd(𝑛𝑙 ,𝑛𝑚,...,𝑛𝑆)
𝜑 (𝑗) (

(𝑛/𝑗)!

(𝑛
𝑙
/𝑗)! (𝑛

𝑚
/𝑗)! ⋅ ⋅ ⋅ (𝑛

𝑆
/𝑗)!

) ,

(23)

where 𝑁
𝑖
(𝑛
𝑙
, 𝑛
𝑚
, . . . , 𝑛

𝑆
) denotes the number of 𝐾-ary neck-

laces composed of 𝑛
𝑗
occurrences of 𝑗 = 𝑙, 𝑚, . . . , 𝑆, 𝑛 =

∑
𝑆

𝑗=𝑙
𝑛
𝑗

= 𝐻, and 𝜑(𝑗) = 𝑗∏
𝑞|𝑗

(1 − 1/𝑞) is Euler’s totient
function, defined as a number of positive integers less than
or equal to 𝑗 that are coprime to 𝑗 [35, 36].

However, (23) counts all necklaces corresponding to
strings 𝑟

𝑖
(refer to Example 7 for explanation), whether the

latter are periodic or not. Clearly one should distinguish
between periodic and nonperiodic strings. In order to do
so, we simply consider all periods 𝑡

𝑖
(and corresponding

frequencies 𝑓
𝑖
) of the set 𝐴(𝑊, 𝐹, 𝑆), such that 𝐹/𝑓

𝑖
≥ 𝑆, and

compute all aperiodic necklaces (or Lyndon words) of sets
𝐴(𝑊/𝑓

𝑖
, 𝐹/𝑓
𝑖
, 𝑆) for each 𝑓

𝑖
(including 𝑓

1
= 1) separately,

according to the following formula [35]:

𝐿
𝑖
(𝑛
𝑙
, 𝑛
𝑚
, . . . , 𝑛

𝑆
)

=

1

𝑛

∑

𝑗|gcd(𝑛𝑙 ,𝑛𝑚,...,𝑛𝑆)
𝜇 (𝑗) (

(𝑛/𝑗)!

(𝑛
𝑙
/𝑗)! (𝑛

𝑚
/𝑗)! ⋅ ⋅ ⋅ (𝑛

𝑆
/𝑗)!

) ,

(24)

where

𝑛 =

𝑆

∑

𝑗=𝑙

𝑛
𝑗
= 𝐻,

𝜇 (𝑗) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

0, if 𝑗 has one or more repeated

prime factors,

1, if 𝑗 = 1,

(−1)
𝑘
, if 𝑗 is a product of 𝑘 distinct primes

(25)

is theMoebius function.

4.7. Full Model for the Probability Distribution. Following
the analysis above, it is not difficult to derive the following
equation from (11) and (24) that yields the desired number of
wire arrangements (once the number of𝐻-partitions, strings,
i.e., necklaces, and frequencies are known):

|𝐴 (𝑊, 𝐹, 𝑆)| = ∑

𝑖

𝑡
𝑖
∑

𝑗

𝐿
𝑖𝑗
, (26)

where 𝑖 denotes the index for each of the Lyndon words
corresponding to the 𝐻-partitions of 𝐹 and 𝑗 the index of
the Lyndon word that corresponds to the 𝐻-partition. The

probability distribution 𝑃
𝑊
(𝑆 | 𝐹) for all 𝑆 (in the appropriate

domain as given in (4)) is simply given by

𝑃
𝑊

(𝑆 | 𝐹) =

|𝐴 (𝑊, 𝐹, 𝑆)|

|𝐴 (𝑊, 𝐹)|

=

∑
𝑖
𝑡
𝑖
∑
𝑗
𝐿
𝑖𝑗

(
𝑊

𝐹
)

. (27)

5. Demonstration of the Effectiveness of
the Derived Model and Results

The derived algorithm in Section 4 can be summarized as
follows.

Analytical Algorithm to Measure the Number of Clustering
Fault-Segments Based on Combinatorial Arguments

Scope. Generate all 𝐹-combinations 𝑓
𝐹−1

, . . . , 𝑓
1
, 𝑓
0
of 𝑊

numbers {0, 1, . . . ,𝑊 − 1}, given that 𝑊 ≥ 𝐹 ≥ 0. Measure
the number of 𝑆 fault-segment sizes such as 0 < 𝑆 ≤ 𝑊 and
𝑆 ≤ 𝑊.

Label 1 (input). Set𝑊, 𝐹, and 𝑆.

Label 2 (compute periods and frequencies). Find all common
factors of 𝑊 and 𝐹 (frequencies 𝑓

𝑖
, 𝑖 = 1 : 𝑛), 𝐹/𝑓

𝑖
≥ 𝑆 (𝑡

𝑖

period, 𝑡
𝑖
𝑓
𝑖
= 𝑊).

Label 3 (obtain 𝑖 reduced problems). Set 𝑊
𝑖
= 𝑊/𝑓

𝑖
, 𝐹
𝑖
=

𝐹/𝑓
𝑖
, 𝑆, and𝐻

𝑖
= 𝑊
𝑖
− 𝐹
𝑖
.

Label 4 (obtain full lists of the partitions of 𝐹
𝑖
with 𝑆 being

their maximum element present). Call available routines.

Label 5 (construct 𝜂
𝑗
-string for each 𝐻

𝑖
-partition). 𝜂

𝑗
=

𝑛
0
𝑛
1
𝑛
2
⋅ ⋅ ⋅ 𝑛
𝑆
, where 𝑛

𝑘
(𝑘 = 0 : 𝑆) is the number of

occurrences of digit 𝑆 − 𝑘 in the partition.

Label 6 (construct 𝜂∗
𝑗
-string and compute its Lyndon words).

𝜂
∗

𝑗
= 𝑛
𝑙
𝑛
𝑚
⋅ ⋅ ⋅ 𝑛
𝑆
, where 𝑛

𝑘
(𝑘 = 𝑙 : 𝑆) are the nonzero elements

of corresponding string 𝜂
𝑗
and then 𝐿(𝜂

∗

𝑗
) the Lyndon words

are computed by calling (24).

Label 7 (compute the number of wire arrangements)
|𝐴(𝑊, 𝐹, 𝑆)| is computed by calling (26).

We demonstrate the applicability and, consequently, the
effectiveness of the derivedmodel using the following param-
eters that were chosen at random (relatively large numbers
have been picked to showboth the efficiency and the accuracy
of the derived model).

Let𝑊 = 20, let 𝐹 = 12, and let 𝑆 = 3. Hence,𝐻 = 8.
The wire arrangements will have the following periods

and corresponding frequencies (all common factors of𝑊 and
𝐹, such that 𝐹/𝑓 ≥ 𝑆):

(20 = 𝑊 = 𝑡
𝑖
𝑓
𝑖
): 𝑓
1
= 1, 𝑡

1
= 20; 𝑓

2
= 2, 𝑡

2
= 10;

𝑓
3
= 4, 𝑡
3
= 5.

Let us consider all three pairs of𝑓
𝑖
and 𝑡
𝑖
one after another.

(i) 𝐴(20/1, 12/1, 3) = 𝐴(20, 12, 3) with𝐻
1
= 20 − 12 = 8

(see Table 2).

10 Mathematical Problems in Engineering

Table 2

𝐻
1
-partitions of 𝐹

1
𝜂
1
-string 𝐿

1
(𝑛
∗

𝑖
)

3 + 3 + 3 + 3 + 0 + 0
+ 0 + 0

4004 (i.e., four 3s,
zero 2s, zero 1s, four

0s)
𝐿(4, 4) = 8

3 + 3 + 3 + 2 + 1 + 0
+ 0 + 0 3113 𝐿(3, 1, 1, 3) = 140

3 + 3 + 3 + 1 + 1 + 1 +
0 + 0 3032 𝐿(3, 3, 2) = 70

3 + 3 + 2 + 2 + 2 + 0
+ 0 + 0 2303 𝐿(2, 3, 3) = 70

3 + 3 + 2 + 2 + 1 + 1
+ 0 + 0 2222 𝐿(2, 2, 2, 2) = 312

3 + 3 + 2 + 1 + 1 + 1 +
1 + 0 2141 𝐿(2, 1, 4, 1) = 105

3 + 3 + 1 + 1 + 1 + 1 +
1 + 1 2060 𝐿(2, 6) = 3

3 + 2 + 2 + 2 + 2 + 1
+ 0 + 0 1412 𝐿(1, 4, 1, 2) = 105

3 + 2 + 2 + 2 + 1 + 1
+ 1 + 0 1331 𝐿(1, 3, 3, 1) = 140

3 + 2 + 2 + 1 + 1 + 1 +
1 + 1 1250 𝐿(1, 2, 5) = 21

∑
𝑗
𝐿
1𝑗
(𝑛
∗

1
) = 974

Pr
ob

ab
ili

ty
,P

1
6
(S
|F
)

1

0.8

0.6

0.4

0.2

0

Number of faulty wires, F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S = 16
S = 15
S = 14
S = 13
S = 12
S = 11
S = 10
S = 9
S = 8
S = 7
S = 6
S = 5
S = 4
S = 3
S = 2
S = 1

Figure 2: Probability distribution 𝑃
𝑊
(𝑆 | 𝐹) with a total of 𝑊 =

16 parallel wires including 𝐹 faulty wires, where 𝑆 is the size of the
largest fault-segment.

(ii) 𝐴(20/2, 12/2, 3) = 𝐴(10, 6, 3) with 𝐻
2
= 10 − 6 = 4

(see Table 3).
(iii) 𝐴(20/4, 12/4, 3) = 𝐴(5, 3, 3) with𝐻

3
= 5 − 3 = 2 (see

Table 4).

As a result, the total number of wire arrangements,
according to (26), is

|𝐴 (20, 12, 3)| = 20 (974) + 10 (8) + 5 (1) = 19565 (28)

and the desired probability (from (27)) is

𝑃
20

(3 | 12) =

|𝐴 (20, 12, 3)|

(
20

12
)

=

19565

125970

. (29)

Pr
ob

ab
ili

ty
,P

3
2
(S
|F

)

1

0.8

0.6

0.4

0.2

0

Number of faulty wires, F

0

0

4

4

8

8

12

12

16
1620 20

24

24

28

28

32

32

Segment size, S
r of fau

4
8
12

16
1620 20

24
28

S

Figure 3:Three-dimensional view of probability distribution𝑃
𝑊
(𝑆 |

𝐹) with a total of 𝑊 = 32 parallel wires including 𝐹 faulty wires,
where 𝑆 is the size of the largest fault-segment.

Table 3

𝐻
2
-partitions of 𝐹

2
𝜂
2
-string 𝐿

2
(𝑛
∗

2
)

3 + 3 + 0 + 0 2002 𝐿(2, 2) = 1

3 + 2 + 1 + 0 1111 𝐿(1, 1, 1, 1) = 6

3 + 1 + 1 + 1 1030 𝐿(1, 3) = 1

∑
𝑗
𝐿
2𝑗
(𝑛
∗

2
) = 8

Table 4

𝐻
3
-partitions of 𝐹

3
𝜂
3
-string 𝐿

3
(𝜂(𝑛
𝑖

̸= 0))

3 + 0 1001 𝐿(1, 1) = 1

∑
𝑗
𝐿
3𝑗
(𝑛
∗

3
) = 1

Figures 2 and 3 show the distribution of the correspond-
ing probabilities 𝑃

𝑊
(𝑆 | 𝐹) for various values of 𝑊 obtained

by (27). Note that since in these two figures we use different
link widths, with 16 wires in Figure 2 and 32 wires in Figure 3,
the calculated faulty wire distributions are quite different for
each other; even so, the applicability of our analyticalmodel is
effectively demonstrated here. Although a 2D simplified fig-
ure is in general desirable, Figure 3 is constructed in 3D so as
to provide better visual resolution in demonstrating the range
of results. All the demonstrated cases have been numerically
tested and verified by the results obtained from a brute-force
algorithm implemented in MATLAB (Section 5.1).

5.1. Verification of Mathematical Model for Correctness Using
a Brute-Force Algorithm. A brute-force algorithm, imple-
mented using the MATLAB computing environment, is uti-
lized to confirm and verify our presented mathematical
model for any possible NoC parallel link length encompass-
ing any number of erroneous (unhealthy) wires. This brute-
force algorithm generates all combinations of 𝐹 number of
faulty wires given a𝑊-length parallel link (composed of a𝑊
number of parallel wires), where 𝐹 ≤ 𝑊 is based on a simple

Mathematical Problems in Engineering 11

sequential lexicographical ascending order algorithm, which
is a convenient way to generate combinatorial combinations
[34].

Essentially, the algorithm generates the 𝐶(𝐹,𝑊) combi-
nations of 𝐹 objects, denoted by the set {𝑓

𝐹−1
, . . . , 𝑓

1
, 𝑓
0
},

chosen from the set of {𝑤
𝑊−1

, . . . , 𝑤
1
, 𝑤
0
} wire objects such

that {𝑤
𝐹−1

, . . . , 𝑤
1
, 𝑤
0
} ⊆ {𝑤

𝑊−1
, . . . , 𝑤

1
, 𝑤
0
}. Note that there

is noneed to follow an ascending order, as the𝐶 combinations
need not be ordered (since we are not interested in sorting
the 𝐶 number of combinations); the aim is to cover all
combinations, and the ascending order of the lexicographical
algorithm used in our brute-force approach ensures that all
combinations are accounted for and covered and also that no
combination cases are double-generated (due to symmetry)
or repeated. For every combination generated, the number
of consecutive objects that represent faulty wire elements is
then accounted for; with all sizes of faulty wire clustering
cases accumulated, the brute-force results are then compared
to the results calculated using our mathematical model to
determine its systematic accuracy, under any respective 𝑊

and 𝐹 values.
Each of the 𝐶(𝐹,𝑊) = 𝑊!/(𝐹!(𝑊 − 𝐹)!) combinations

requires 𝑂(𝐹) time to be produced as an output, and hence
the sequential algorithm runs in𝑂(∑

𝑖=𝑊

𝑖=1
(𝐹
𝑖
×𝐶(𝐹
𝑖
,𝑊))) time

to produce, and not just generate, all possible combinations.
When 𝐹 is half the size of 𝑊, the worst-case scenario of
producing all combinations of 𝐶(𝐹,𝑊) is met. Additionally,
as 𝑊 grows linearly, an exponentially increasing number
of iterations, and hence time, are required to output all
lexicographical combinations, as presented in Section 5.2.
Note, though, that there exist some optimized lexicographical
algorithms (beyond the scope of the current work), which can
generate these combinations using smaller data structures
and hence require reduced memory space in computing, to
hold combinations such as [37, 38].

To generate 𝐶(𝐹,𝑊) combinations, we use binary strings
with 𝐹 objects having a binary value of one to denote the
positions of the faultywires in the𝑊-lengthwire (while𝑊−𝐹

are zeros), while the remaining objects of the set 𝑊 have a
binary value of zero. These zero-value objects, denoted by
the set {ℎ

𝑊−𝐹−1
, . . . , ℎ

1
, ℎ
0
} represent the healthy objects (or

wires) in 𝑊, such that 𝑊 = 𝐹 + 𝐻 or {𝑤
𝑊−1

, . . . , 𝑤
1
, 𝑤
0
} =

{𝑓
𝐹−1

, . . . , 𝑓
1
, 𝑓
0
} ∪ {ℎ
𝑊−𝐹−1

, . . . , ℎ
1
, ℎ
0
}. As mentioned above,

the𝐹-combination brute-force approach is based on the well-
known lexicographical order algorithm presented in Knuth’s
seminal book [34], with the addition of inserting a subpro-
cedure which measures the number of faulty wires clustering
fault-segments, under each generated combination, required
to compare against our mathematical model. Without loss
of generality with regard to other options, the brute-force
algorithm is presented as follows.

Brute-Force Algorithm to Measure the Number of Clustering
Fault-Segments Based on a Sequential Lexicographical Ascend-
ing Order Algorithm Adopted from Knuth’s Seminal Book [34]
with Suitable and Relevant Alterations

Scope. Generate all 𝐹-combinations 𝑓
𝐹−1

, . . . , 𝑓
1
, 𝑓
0
of 𝑊

numbers {0, 1, . . . ,𝑊 − 1}, given that 𝑊 ≥ 𝐹 ≥ 0. Measure

the number of 𝑆 fault-segment sizes such as 0 < 𝑆 ≤ 𝑊

and 𝑆 ≤ 𝑊, where any 𝑓
𝐹
, . . . , 𝑓

2
, 𝑓
1
may have a consecutive

index with its neighbor objects(s). Additional 𝑓
𝐹+1

and 𝑓
𝐹+2

are used as sentinels.

Label 1 (initialize). Set 𝑓
𝑗
← 𝑗 − 1 for 1 ≤ 𝑗 ≤ 𝑊; also set

𝑓
𝐹+1

← 𝑊 and 𝑓
𝐹+2

← 0.

Label 2 (visit combination). Visit the combination
𝑓
𝐹
, . . . , 𝑓

2
, 𝑓
1
.

Label 3 (count fault-segments). Measure and bookkeep the
size and number of consecutive object members (i.e., faulty
wires).

Label 4 (find 𝑗). Set 𝑗 ← 1. Then while 𝑓
𝑗
+ 1 = 𝑓

𝑗+1
, set

𝑓
𝑗
← 𝑗−1 and 𝑗 ← 𝑗+1; eventually the condition𝑓

𝑗
+1 ̸= 𝑓

𝑗+1

will occur.

Label 5 (done?). Terminate the algorithm if 𝑗 > 𝑊.

Label 6 (increase 𝑓
𝑗
). Set 𝑓

𝑗
← 𝑓
𝑗
+ 1 and return to Label 2.

5.2. Brute-Force Algorithm versus Analytical Method Compute
Costs. To demonstrate the effectiveness of our proposed
analytical method, we have run a complete set of experiments
for NoC parallel links containing up to 128 links, which is
a typical wire bit-width in today’s chip multiprocessors [1,
2]. Both methodologies (analytical and brute-force) exhibit
an almost perfect exponential relationship of compute time
versus the number of parallel NoC wires; however, the
analytical model is several orders of magnitude faster and
hence more efficient as the number of wires in a link
increases, which makes it a desirable choice when designers
need to compute the distribution of faults for wider links.
In particular, the brute-force is about 𝑒0.5𝑊−8 slower than its
analytical counterpart. This means that for 𝑊 = 16 the two
algorithms spend comparable times, while, for example, for
𝑊 = 32, the brute force is three orders of magnitude slower
than the analytical algorithm, and for𝑊 = 48 it is eight orders
of magnitude slower, and so forth.

6. Applicability of the Combinatorial
Algorithm

Our combinatorial algorithm presented in this paper which
calculates the distribution of faults clustering is also relevant
to other studies or applications where fault clustering, that is,
consecutive faults thatmay lie in a circular or ring topological
arrangement, need to be estimated and calculated for in
order to asses risk and reliability and other parameters of
interest pertaining to system or object resilience. Related
applications of ourmathematicalmodel include the reliability
and wearout assessment of adjoining parallel high-strength
wires of suspension bridge cables [39, 40], where high
axial tensile stresses in tandem with the surrounding cor-
rosive environment accelerate corrosion and embrittlement
causing cables to deteriorate and eventually fail over time.
Another application of our model is to aid the assessment of

12 Mathematical Problems in Engineering

the psychological/death chance cost of Russian roulette, both
as a glorified game of ultimate risk, where a person spins
the cylinder of a revolver that contains a single bullet and
aims it at its head, and a tool for suicide [41]. Our model can
further be used to calculate the chance of drawing consecutive
numbers in a standard roulette game and to derive the
probability of having consecutive passenger cabins in a Ferris
wheel being occupied (or failing). Next, the model can be
used to calculate the recovery hardware cost of adjacent
channel/link/node failures in optical ring networks [42] and
to assess the structural reliability of consecutive gear teeth
due to their exposure to continuous stresses which reduce
their fatigue strength in a spur gear [27]. Finally, another
application of our combinatorial model is to estimate the
chance of consecutive spokes in a wheel, regarded as a disk
of uniform stiffness per length of circumference, failing due
to their exposure to relentless stresses caused by high radial
loads experienced in real-world conditions [43], among
numerous other applications.

7. Conclusions

Networks-on-chips (NoCs) are critical on-chip communica-
tion subsystems that transfer packetized messages among the
various computational tiles in today’s ultrahigh performance
general-purpose multicore chips such as chip multiproces-
sors (CMPs). These have been realized due to the continuous
miniaturization of CMOS transistors which have enabled the
massive integration of transistors on a single chip, exceeding
the billion-transistor mark in today’s CMOS process tech-
nologies.This progress, unfortunately, has also come at a cost
of increased susceptibility to wearout and permanent failures.
Parallel on-chip links are particularly prone to the effects
of electromigration which can cause eventual permanent
breakdown in links, manifesting to protocol-level deadlocks
and indefinite CMP stalls, rendering the chip inoperable.
Realizing the importance of link failure models in NoCs, this
paper derived and demonstrated a combinatorial algorithm
that can be used to calculate the spatial probability distribu-
tion of wire faults in a parallel NoC interconnect link given its
width and a given number of faulty wires, which can appear
in this link. Particular emphasis was paid upon the adjacency
of the faulty wires that form fault-segments separated by
at least one healthy wire, as the size of the largest segment
determines the additional delay required by partially faulty
link recovery mechanisms, such those of [23–25], to recover
corrupted flit data at the receiver router.The developed nearly
full analytical model constitutes an application of partitions
and necklaces through a systematic approach that derives
the correspondence between the presented problem and
necklaces, where periodicity plays a crucial role. The model
is completely verified by and is far superior with regard to
extensive brute-force numerical simulations.

Finally, it is worth mentioning that the resulting formula
of the presented algorithm can, mutatis mutandis, serve as
a prototype for applications in the various “isomorphic”
problems from other disciplines, areas, or frameworks, as
discussed in Section 6 [39–44].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Cyprus Research Promotion
Foundation’s Framework Programme for Research, Tech-
nological Development and Innovation 2009-10 (ΔΕΣMΗ

2009-10), cofunded by the Republic of Cyprus and the Euro-
pean Regional Development Fund, and specifically under
Grant no. ΔΙΕΘNΗΣ/ΣΤOΧOΣ/0311/06.

References

[1] S. R. Vangal, J. Howard, G. Ruhl et al., “An 80-tile sub-100-W
TeraFLOPS processor in 65-nm CMOS,” IEEE Journal of Solid-
State Circuits, vol. 43, no. 1, pp. 29–41, 2008.

[2] S. Bell, B. Edwards, J. Amann et al., “TILE64 processor: a
64-core SoC with mesh interconnect,” in Proceedings of the
IEEE International Solid State Circuits Conference, pp. 588–598,
February 2008.

[3] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,”ACMComputing Surveys, vol. 38,
no. 1, pp. 71–121, 2006.

[4] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y.
Hoskote, “Outstanding research problems in NoC design: sys-
tem, microarchitecture, and circuit perspectives,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 1, pp. 3–21, 2009.

[5] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayashima, S. W. Keckler,
and L.-S. Peh, “Research challenges for on-chip interconnection
networks,” IEEE Micro, vol. 27, no. 5, pp. 96–108, 2007.

[6] W. J. Dally and B. Towles, “Route packets not wires: on-chip
interconnection networks,” in Proceedings of the IEEE Design
Automation Conference, pp. 684–689, May 2001.

[7] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architec-
ture for gigascale systems-on-chip,” IEEE Circuits and Systems
Magazine, vol. 4, no. 2, pp. 18–31, 2004.

[8] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks:
An Engineering Approach, Morgan Kaufmann, Boston, Mass,
USA, 2002.

[9] W. J. Dally and B. Towles, Principles and Practices of Intercon-
nection Networks, Morgan Kaufmann, 2004.

[10] J. Lü, X. Yu, G. Chen, and D. Cheng, “Characterizing the
synchronizability of small-world dynamical networks,” IEEE
Transactions on Circuits and Systems. I. Regular Papers, vol. 51,
no. 4, pp. 787–796, 2004.

[11] J. Zhou, J.-A. Lu, and J. Lü, “Pinning adaptive synchronization
of a general complex dynamical network,” Automatica, vol. 44,
no. 4, pp. 996–1003, 2008.

[12] J. Lü andG. Chen, “A time-varying complex dynamical network
model and its controlled synchronization criteria,” IEEE Trans-
actions on Automatic Control, vol. 50, no. 6, pp. 841–846, 2005.

[13] ITRS International Technology Roadmap for Semiconductors,
Process Integration, Devices, and Structures (PIDS), 2009.

[14] A. Morgenshtein, I. Cidon, A. Kolodny, and R. Ginosar,
“Comparative analysis of serial vs parallel links in NOC,” in
Proceedings of the International Symposium on System-on-Chip,
pp. 185–188, November 2004.

Mathematical Problems in Engineering 13

[15] K. Constantinides, S. Plaza, J. Blome et al., “BulletProof: a
defect-tolerant CMP switch architecture,” in Proceedings of
the International Symposium on High-Performance Computer
Architecture, pp. 5–16, February 2006.

[16] S. Borkar, “Designing reliable systems from unreliable compo-
nents: the challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[17] G. deMicheli and L. Benini,Networks on Chips: Technology and
Tools (Systems on Silicon), Morgan Kaufmann, Boston, Mass,
USA, 2006.

[18] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu,
“Self-adaptive system for addressing permanent errors in on-
chip interconnects,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 18, no. 4, pp. 527–540, 2010.

[19] S. R. Nassif, N. Mehta, and C. Yu, “A resilience roadmap,”
in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE ’10), pp. 1011–1016, March
2010.

[20] J. Duato, “A theory of fault-tolerant routing in wormhole net-
works,” IEEE Transactions on Parallel and Distributed Systems,
vol. 8, no. 8, pp. 790–802, 1997.

[21] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for
fault tolerance in networks-on-chip,” ACM Computing Surveys,
vol. 46, no. 1, article 8, 2013.

[22] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,”ACMComputing Surveys, vol. 38,
no. 1, article 51, 2006.

[23] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos, “A fine-grained
link-level fault-tolerant mechanism for networks-on-chip,” in
Proceedings of the 28th IEEE International Conference on
Computer Design (ICCD ’10), pp. 447–454, Amsterdam, The
Netherlands, October 2010.

[24] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos, “A dynamically
adjusting gracefully degrading link-level fault-tolerant mecha-
nism for NoCs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 31, no. 8, pp. 1235–1248,
2012.

[25] M. Palesi, S. Kumar, and V. Catania, “Leveraging partially faulty
links usage for enhancing yield and performance in networks-
on-chip,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 29, no. 3, pp. 426–440, 2010.

[26] A. Vitkovskiy, P. Christodoulides, and V. Soteriou, “A combina-
torial application of necklaces: modeling individual link failures
in parallel network-on-chip interconnect links,” in Proceedings
of the World Congress on Engineering, London, UK, July 2012,
Lecture Notes in Engineering and Computer Science, pp. 125–
130, Cyprus University of Technology, 2012.

[27] R. C. Lyndon, “On Burnside’s problem,” Transactions of the
American Mathematical Society, vol. 77, pp. 202–215, 1954.

[28] L. Pebody, “Reconstructing odd necklaces,” Combinatorics,
Probability and Computing, vol. 16, no. 4, pp. 503–514, 2007.

[29] N. Alon, “Splitting necklaces,”Advances inMathematics, vol. 63,
no. 3, pp. 247–253, 1987.

[30] S. W. Golomb, “Combinatorial proof of Fermat’s ‘little’ theo-
rem,” The American Mathematical Monthly, vol. 63, no. 10, p.
718, 1956.

[31] P. Erdos and A. Renyi, “On random graphs,” Publicationes
Mathematicae Debrecen, vol. 6, pp. 290–297, 1959.

[32] M. E. J. Newman, “Random graphs as models of networks,”
in Handbook of Graphs and Networks, S. Bornholdt and H. G.
Schuster, Eds., pp. 35–68, Wiley-VCH, Berlin, Germany, 2003.

[33] E. W. Weisstein, “Necklace,” MathWorld—A Wolfram Web
Resource, http://mathworld.wolfram.com/Necklace.html.

[34] D. E. Knuth,The Art of Computer Programming: Vol. 4: A Com-
binatorial Algorithms, Part 1, Addison-Wesley, Upper Saddle
River, NJ, USA, 2011.

[35] The Object Server, “Necklaces, Unlabelled Necklaces, Lyndon
Words, De Bruijn Sequences,” http://www.theory.cs.uvic.ca/∼
cos/inf/neck/NecklaceInfo.html.

[36] E. W. Weisstein, “Totient function,” MathWorld—A Wolfram
Web Resource, http://mathworld.wolfram.com/TotientFunc-
tion.html.

[37] J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno Perez,
“Improved dynamic lexicographic ordering for multi-objective
optimisation,” inProceedings of the 11th International Conference
on Parallel Problem Solving from Nature, pp. 31–40, September
2010.

[38] J.-E. Mart́ınez-Legaz, “Lexicographical order, inequality sys-
tems and optimization,” in System Modelling and Optimization,
vol. 59 of Lecture Notes in Control and Information Sciences, pp.
203–212, Springer, Berlin, Germany, 1984.

[39] R. Betti, M. Asce, A. C. West, G. Vermaas, and Y. Cao, “Cor-
rosion and embrittlement in high-strength wires of suspension
bridge cables,” Journal of Bridge Engineering, vol. 10, no. 2, pp.
151–162, 2005.

[40] R. M. Mayrbaurl and S. Camo, “Cracking and fracture of
suspension bridge wire,” Journal of Bridge Engineering, vol. 6,
no. 6, pp. 645–650, 2001.

[41] D. A. Fishbain, J. R. Fletcher, T. E. Aldrich, and J. H. Davis,
“Relationship between Russian roulette deaths and risk-taking
behavior: a controlled study,” American Journal of Psychiatry,
vol. 144, no. 5, pp. 563–567, 1987.

[42] X. Q. Peng, L. Geng, W. Liyan, G. R. Liu, and K. Y. Lam, “A
stochastic finite element method for fatigue reliability analysis
of gear teeth subjected to bending,” Computational Mechanics,
vol. 21, no. 3, pp. 253–261, 1998.

[43] H. P. Gavin, “Bicycle-wheel spoke patterns and spoke fatigue,”
Journal of Engineering Mechanics, vol. 122, no. 8, pp. 736–742,
1996.

[44] O. Gerstel, R. Ramaswami, and G. H. Sasaki, “Fault tolerant
multiwavelength optical rings with limited wavelength conver-
sion,” IEEE Journal on Selected Areas in Communications, vol.
16, no. 7, pp. 1166–1178, 1998.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

