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In situ calibration is a proposed strategy for continuous as well as initial calibration of an impact 

disdrometer.  In previous work, a collocated tipping bucket had been utilized to provide a rainfall rate 

based ~11/3 moment reference to an impact disdrometer’s signal processing system for implementation 

of adaptive calibration. Using rainfall rate only, transformation of impulse amplitude to a drop volume 

based on a simple power law was used to define an error surface in the model’s parameter space.  By in-

corporating optical extinction second moment measurements with rainfall rate data, an improved in situ 

disdrometer calibration algorithm results due to utilization of multiple (two or more) independent mo-

ments of the drop size distribution in the error function definition.  The resulting improvement in calibra-

tion performance can be quantified by detailed examination of the parameter space error surface using 

simulation as well as real data.  
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1. INTRODUCTION 

Instruments that measure a property of rainfall, often measure a moment of the drop size distribution 

(DSD), expressed by N(D) [m
-3
m

-1
].  (Note that si units are used throughout this paper in order to avoid 

complications arising from integrating the DSD over quantities containing a mixed set of units.  This may 

lead to awkward numbers at times, but it is usually a simple matter to convert back to standard units for 

plotting purposes or comparison to familiar values). The DSD moment is defined as: 

                             



0

 )( dDDNDM n

n
    .                                                        (1) 

Weather radar measures the sixth moment of the DSD (n = 6).  A tipping bucket rain gauge measures ap-

proximately the 11/3 moment (n = 3 + 2/3), where D
3
 corresponds to equivalent spherical drop volume 

and D
2/3 

is the Atlas and Ulbrich (1977) drop size dependence of the terminal velocity approximation.  

Optical extinction of a laser measures the second moment (n = 2).  A disdrometer measures the DSD flux 

which is related to the DSD via the drop terminal velocity function.  Note that in this paper DSD, N(D), 

and drop spectrum all describe the same physical quantity, the number drops aloft per volume [m
-3

] per 

drop size [m
-1

].  Disdrometer drop spectrum flux is a related quantity represented by D(t) and is the quan-

tity measured by a calibrated disdrometer, displayed as a scatter plot of all individual drop sizes measured 

versus time of measurement. 

An impact disdrometer is typically calibrated by single drops of known size falling at terminal veloci-

ty.  Terminal velocity for large drops requires a substantial height of fall, at least 10 m or more.  A dis-

drometer calibrated this way may have a very different response to normal and high rainfall rate 

conditions, which may lead to large measurement errors, analogous to tipping bucket errors under high 
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rainfall rate conditions.  One way to solve this problem is to calibrate a disdrometer under real-time con-

ditions, or in situ calibration. 

Optical disdrometers based on processing signals generated by single drops passing through a laser 

are well-known and have been used effectively (Löffler et al. 2000). Measuring optical extinction of visi-

ble and near visible light has long been recognized as a means to qualitatively characterize rainfall along a 

path length of meters to kilometers (Atlas 1953, Uijlenhoet et al. 2011).  An in situ comparison of rain 

gauges to disdrometers has been used to address questions related to disdrometer measurement uncertain-

ties (Tokay et al. 2013). Spatial variability of the DSD has been carefully studied near Ciudad Real, Spain 

using 16 laser disdrometers (Tapiador et al. 2010).  The researchers concluded that additional disdrome-

ters were needed to adequately characterize the details of the DSD’s spatial variability and temporal evo-

lution.  

A goal of this paper is to describe a method using laser scattering as a DSD second moment observa-

ble to supplement rain gauge based rain rate DSD moment observable ~11/3 (or ~7/2 if using a Gunn and 

Kinzer (1949) terminal velocity approximation). The philosophy of this approach is that other observables 

may be included when possible.  Other observables might include the n = 6 moment from microwave 

backscatter such as weather radar or preferably, a small short range microwave backscatter system (Prodi 

et. al. 2011).   Since the spatial and temporal disparity of weather radar generally prohibits practical use 

as a means to calibrate a disdrometer, only two DSD moment sources are discussed in detail in the fol-

lowing sections.  The mathematical techniques presented can be expanded to include additional DSD 

moment sources.   

The temporal resolution of a disdrometer is limited only by the decay time of the sensor impulse sig-

nal, approximately 0.1 to 30 [ms], a function of drop size.  The temporal resolution of a tipping bucket is 

based on the catch bucket size and main opening diameter.  This typically leads to a minimum resolution 

of a few seconds (limited by the mechanical response of the tipping mechanism) for very high rainfall 

rates, to very long times for trace rainfall rate, which may then be corrupted by evaporation.  La-

ser/camera extinction is temporally limited by the frame rate of the camera, typically 30 fps.  Since the 

tipping bucket is the limit for the inter-comparison of these three instruments, the variable tip time inter-

val is a convenient parameter for synchronizing all measurements. 

The circumstances under investigation in this paper exclude the case of disdrometer to disdrometer 

comparison and single drop calibration.  The focus of this paper is on instruments such as the tipping 

bucket rain gauge that provide a comparison measurement for disdrometer performance verification 

and/or calibration under in situ conditions of naturally occurring rainfall.  Other instruments that provide 

collocated measurements are laser extinction devices (similar to a runway visual transmissometer) and 

microwave radar.  Radar will not be discussed in this paper since it is well understood and the problems 

with weather radar reflectivity as a disdrometer verification/calibration are due to the large differences in 

temporal and spatial sampling.  A short range microwave system (similar in principle to a police radar 

gun) should solve the spatial and temporal disparity problems.  

2. HAIL DISDROMETERS AND THE 3D-DSD 

Hail disdrometers developed at the Kennedy Space Center were operated at shuttle launch pads 39A and 

39B from 2006 through the end of the Space Shuttle program in 2011.  In situ calibration procedures and 

a 3D-DSD interpolation/extrapolation model were successfully applied to a number of hail events during 

the period of operation (Lane et al. 2008). Since three hail disdrometers were deployed in a triangle 

around the launch pad, interpolation and extrapolation using hydrometeor trajectory dynamics provided a 

means for the 3D-DSD model to approximate a hail size distribution (HSD) in a 0.5 km (height) and 1.0 

km
2
 (base) surrounding the launch vehicle.  By computing the sixth moment of the HSD, a direct compar-

ison was made to the Melbourne radar volume (see Figure 1). 
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Fig. 1. Damaging hail event during STS-117 processing at Pad 39-A: (top) Melbourne NEXRAD reflectivity; (bot-

tom) 3D-DSD model based spatial and temporal interpolation of hail size distribution based on hail disdrometer ar-

ray measurements. 

 

By treating the DSD as an unknown distribution function of hydrometeor size D, as well as x, y, z, and 

t, all data that measures some moment of the DSD, as well as disdrometer measurements at one or more 

locations, can provide input to an empirical model, resulting in an approximation of a complete DSD 

function.  This 3D-DSD model must also include an estimate of the vertical and horizontal wind compo-

nents as a function of  x, y, z, and t.  This is accomplished by using an empirical model of vertical and 

horizontal wind flow.  Estimates of evaporation are also provided to the 3D-DSD model if possible.   

Even though hail disdrometers and the 3D-DSD model are not the immediate subject of the paper, 

they are introduced to provide an example of why it would be useful to deploy a dense network of dis-

drometers for analysis of the spatial and temporal variability of hydrometeor size distributions. 

3. DHD FABRICATION 

During the 2009-2011 joint project between Cyprus University of Technology (CUT) and University of 

Central Florida (UCF), numerous iterations of potential low-cost disdrometer prototypes were fabricated 

and tested.  Design goals included use of COTS piezoelectric buzzer disks of various sizes and in various 

combinations with an electrically isolating moisture barrier encapsulating material.  In all iterations, the 

total sensing area was limited to a size range of 50 to 100 cm
2
.  For reference, the Joss–Waldvogel dis-

drometer (a meteorological standard) sensor area is 50 cm
2
.  The size options of COTS piezoelectric disks 
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are limited to a few standard diameters.  The largest diameter that was found as an available COTS com-

ponent was the muRata 7NB-41-1 piezoelectric diaphragm, with a ceramic diameter of 25 mm and 41 

mm diameter nickel alloy substrate.  

 

 

Fig. 2.  Left: Two CUT-DHDs using the muRata 7NB-41-1; Middle: SDOF model of disdrometer, where x(t) is the 

displacement generated by a drop of diameter D, and electrical signal s(t) proportional to x(t).; Right: drop impulse 

force F(t). 

The goal of the encapsulating material is to provide a moisture seal, but an equally important purpose 

is to provide mass loading and damping to the piezoelectric disk.  Various encapsulating materials were 

used from hard marine epoxy with a Shore D hardness of 72 to a soft Cytec Conathane EN-12 polyure-

thane with a Shore A hardness of 50.  Many of the configurations tested consisted of an additional thin 

plastic cover with a milled angled slope to encourage water roll off.  During fabrication, it appeared that 

fewer bubbles formed in the hard epoxy than in the soft urethane.  The best overall solution was to let the 

encapsulant cure slowly by fine tuning the ratio of part B (hardner) to part A (epoxy).  Figure 2 shows the 

final dual-head configuration, with a total area of 58 cm
2
. The final dual head configuration is a conse-

quence of utilizing the largest piezoelectric discs commercially available and achieving a practical sens-

ing area in the range of 50 to 100 cm
2
. 

4. SDOF MODEL OF IMPACT SENSOR 

An impact disdrometer can be approximately modelled as a single degree of freedom (SDOF) system. 

The goal of the model is to provide some insight into the sensor response, which then helps guide the sig-

nal processing design.  The SDOF model is diagrammed in Figure 2, where the impulse force is approxi-

mated as a square pulse of width . The electrical signal s(t) is proportional to the displacement x(t) 

caused by a drop impact on the sensor surface.  The differential equation describing this interaction is: 

                             MtFtxtxtx /)()( )( )(        ,                                                 (2) 

where   is a damping coefficient, β = 0
2
 (resonant frequency squared), F(t) is the drop force, and M is 

the effective mass of the transducer.  The solution to Equation (2), using roots of the characteristic equa-

tion:  42

2
1

2
1

1   ,  42

2
1

2
1

2  , is: 
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The unknowns in Equation (3) are determined by matching boundary conditions between regions: 
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where )/( 2

000 MFc   and 
03 cc  . The impulse shape depends on the drop size D: 

)1(
)( 

0 e
Dvm

dt

dP
F 


      ,                                                        (5) 

where 6/ 3Dm  ,  DDv  )(  , and )(/ DvD  . The coefficient of restitution e is a value between 0 

and 1, equal to the relative speed after collision divided by the relative speed before collision. The termi-

nal velocity relation is based on a power law where  = 380.7 m s
-1

 m
-2/3

 and  = 2/3 (Atlas and Ulbrich 

1977).
 
 The parameter   is an empirical adjustment used to match the sensor response data,

 
typically set 

to a constant between 0.5 and 1.  Figure 3 shows simulated response curves for several drop sizes using 

Equation (3). 

 

 

 

Fig. 3.  SDOF model Equation (3) with, f0 = 420 s
-1

,   = 1000 kg m
-3

,   = 1500 s
-1

, M = 0.01 kg, e = 1, and  = 0.65. 

5. DIGITAL SIGNAL PROCESSING SECTION 

The signal processing section consists of multiple processing blocks, some of which are optional (see left 

side of Figure 4). 
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Fig. 4.  Left: block diagram of signal processing electronics; Right: laser and camera with all electronics inside of 

the research vehicle, powered by 12V battery, with tipping buckets, rain gauge, and UCF-DHD shown through par-

tially opened window. 

5.1 Goertzel Algorithm 

As shown in the left side of Figure 4, the top left corner is the disdrometer sensor.  The analog signal is 

mixed with a tone pulse triggered by the tipping bucket (TB).  The tone pulse width is very short com-

pared to the time between tips and therefore does not degrade the drop spectrum measurement. The 

Goertzel decoder separates the tip tones from the sensor signal and creates a list of tip times.  The tip 

times list, {tk}, yields rainfall rate.  The band pass filter section consists of optional filtering stages im-

plemented as user selectable Nth order low pass and high pass filters.  Different processing strategies de-

termine the cut-off frequencies of these filters relative to the resonant frequency of the sensor.  The 

resonant frequency of the sensor is mostly determined by the encapsulant properties, primarily hardness. 

5.2 Peak Detector 

The peak detector creates a list of impulse maximums versus time, {xn, tn}, for all drops measured, where 

xn (not to be confused with x(t)) is proportional to the maximum amplitude of impulse s(t). The number of 

impulses per second can easily range from 1 to 30 depending on rainfall rate and type of rainfall for the 

sensors tested.  The total number of drops, or drop flux, is proportional to the area of the sensor.  The drop 

impulse width, as shown in Figure 3, is dependent on the sensor characteristics, and again is mostly de-

termined by the encapsulant material properties.  A typical impulse width is dependent on the drop size, 

and for the largest drops (5-6 mm), 30 ms might be required for the impulse to fall below a noise thresh-

old.  For extreme rainfall rates, the flux may exceed 30 drops per second and as one can see, the trade-off 

between sensor size and coincidence of drop impulses sets the size of the sensor area to something in the 

50 cm
2
 range.  The biggest challenge of the peak detector is to detect all impulses, while at the same time, 

avoid counting false impulses from the tail of a large drop (splashing from large drops can also lead to 

false counts). 

5.3 Laser Spot Processing 

The laser/camera system is triggered by the TB for convenience.  This is not a requirement, but results in 

a simpler processing methodology.  Each video camera image corresponding to tip time k, is converted to 

a spot region with an average greyscale value.  For the 5mW 532 nm laser used in this work, the green 

component of the image is most sensitive to the laser, whereas the red and blue components are good in-

dicators of background noise.   The following image processing algorithm is applied to each kth frame, 

pixel by pixel: 

   21
 

/

mnmnmnmnmn BGRGF  ,                                               (6) 
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where, Gmn is the 8-bit green value at pixel location (m, n), Bmn is the blue value, and Rmn is the red value. 

This algorithm converts the RGB color to a greyscale intensity Fmn.  The filtered value is averaged over 

the spot within a half maximum intensity diameter (Lane et al. 2013).  The diameter of the spot is also 

recorded, but only the intensity data is used in the final calibration. The intensity is then converted to ex-

tinction coefficient   LIIkk 2//ln 0  where 2L = 150 m is the round trip distance from laser to target, 

Ik is the average value of Fmn over the laser spot, and I0 is the value for no rain (see Figure 5).  The video 

sequence from the camera imaging the laser spot is processed by this image spot processing algorithm 

which is based on the green filter of Equation (6).  Figure 4 shows the output of the laser/camera system 

as a list of extinction coefficients k in units of [m
-1

].   

 

Fig. 5.  Left: laser spot before rain; Middle: spot during rain; Right: output of image processing.  Distance from la-

ser/camera to target, L = 75 m. 

6. DISDROMETER CALIBRATION ERROR SURFACE 

For any instrument that measures a physical quantity, verification and/or calibration is often based on 

comparison to data reported by a different instrument measuring the same quantity.  For example, one or 

more collocated tipping bucket rain gauges are routinely used to verify calibration of a disdrometer.  Sim-

ilarly, comparison to other collocated disdrometers would provide a means to determine the quality of 

performance of the drop distribution meter (disdrometer) under test.  The process of routinely verifying a 

disdrometer’s calibration can be compared to the process of calibrating a disdrometer for the first time.   

A central premise in this work is based on the understanding that a disdrometer’s calibration is rou-

tinely verified by comparison of its derived nth moment to a collocated instrument that measures the same 

moment.  Therefore it may be reasonable to calibrate a disdrometer by the reverse process, avoiding a fac-

tory single drop calibration procedure altogether.  To demonstrate this concept, it is useful to consider an 

ideal simulation experiment using an ideal DSD, the exponential distribution, N(D) = N0 exp(-D/D0).  The 

results are similar if the more general gamma distribution is substituted.   

6.1 Two-Parameter Error Function 

The first step is to define an error function, characterized by an error surface in multi-dimensional param-

eter space.  For the tipping bucker/laser extinction case, the calibration error function can be defined as 

(where  and  are new variables not associated with Section 4): 
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where    is a weighting factor (a real number between 0 and 1),  a and    are disdrometer calibration co-

efficients, and k corresponds to the kth rain bucket tip.    ),(ˆ aRk
 is the disdrometer derived rainfall rate 

at the kth tip time and ),( 00 DNRk
is the actual (measured or simulated) rainfall rate.  Likewise, 

),(ˆ  ak
is the disdrometer derived optical extinction coefficient, where ),( 00 DNk is the measured opti-
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cal extinction using a laser/camera system (or any other transmissometer system).  It is assumed (for this 

simulation experiment) that the disdrometer response can be characterized completely by a power-law 

calibration model: 


ikik xav  ˆ       [m

3
]      ,                                                            (8) 

where  x  is an N-bit digital value represented by a fractional number between 0 and 1-2
-N

, which is the 

raw disdrometer output due to the impact of a drop of diameter Dik , with an equivalent spherical volume, 
3

6 ikik Dv  .  The raw measured drop value xik may represent the maximum amplitude of the impulse, the 

absolute value of the area under the impulse curve, or something else, depending on the disdrometer’s 

processing details.  The subscripts are used to account for the ith drop impulse occurring during the kth tip 

time.  The dynamic range of the disdrometer is theoretically 2
N
, but in practice, digital systems are more 

often represented by a lower dynamic range, such as 2
N-2

.  For the 16-bit system described in this paper, a 

dynamic range of 10
4
 is achievable.  

For convenience, a power law form of drop terminal velocity will be assumed:  DDvD  )(  .  Now 

the terms in Equation (7) can be evaluated by integrating the appropriate quantities over the DSD: 
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The parameters a0 and 0 are a simulated drop to impulse transformation based on inverting Equation (8).  

The goal is to locate a and   by examining the error surface associated with Equation (7).  Thus when a 

 a0  and  0 , a successful (simulated) calibration can be declared.  Note that the primed variables de-

note a transformation from D to x: 

)(
)()(

xDDDD Dvxv


           ,                                                   (11) 

where 3/3/1

0
0) /6()(
 xaxD  .  The transformed DSD becomes: 

dx

dD
DNxN

xDD )(
)()(


          .                                                  (12) 

The remaining quantities in Equation (7) are computed as follows (using Qe = 2): 
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As a check, when a  a0 and   0 , Equation (10) reduces to Equation (9) and Equation (14) reduces to 

Equation (13), as they should. 

 

 
Fig. 6.  Drop terminal velocity, as given by the power law 3/2 381)( DDvD  [m s

-1
], with D expressed 

in [m]. 

It is helpful to plot terminal velocity vD(D) , as shown in Figure 6. The simulated disdrometer re-

sponse is plotted in Figure 7, using Equation (8) with a0 = 10
-6

 [m
3
] and 0 = 1.1, representing a realistic 

disdrometer output impulse to drop size transformation.  Note that the 10
4 

dynamic range shown in the 

plot corresponds to a drop size range of 0.3 mm to 8 mm. 

 

Fig. 7.  Simulated disdrometer transformation curve. 

The disdrometer calibration error surface can now be examined in detail using Equation (7).  Figure 8 

shows a case corresponding to a Marshall-Palmer (MP) like exponential DSD with N0 = 810
6
 [m

-3
 m

-1
] 

(Marshall et. al. 1948) and a rainfall rate from Equation (9) of R = 130 [mm h
-1

].  Three cases are shown.  

The left plot is the calibration error surface due to rainfall rate (tipping bucket rain gauge) only where  = 

1.  The middle plot is created with  = 0 and corresponds to the second moment measurement (laser ex-

tinction) only.  The case on the right includes both the 11/3 moment (rainfall rate) and second moment 

(optical extinction) using  = ½ .   
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Fig. 8.  Equation (7) with N0 = 810

6
 [m

-3
 m

-1
] and D0 = 6.710

-4
 [m], corresponding to R = 130 [mm h

-1
]. (left)  = 

1; (middle)  = 0; (right)  = ½. 

A second case shown in Figure 9 corresponds to a DSD with significantly fewer small drops than the 

MP DSD.  This type of DSD may be associated with impulsive rainfall (IR). Impulsive rainfall can be de-

fined as rapidly occurring and relatively short-lived precipitation events, associated with isolated convec-

tive thunderstorms common in Florida during the mid-summer months.  Though not a requirement, an IR 

DSD is often characterized by a drop spectra flatter than the typical MP DSD, with a D0 much larger than 

typical (Lane et. al. 2000).  In this paper, an IR DSD is defined as a drop spectra with a flatter than nor-

mal size dependence.  This shape may be the consequence a high degree of gravitational sorting, where 

smaller drops are stripped from the DSD aloft due to advection effects, high evaporation, significant up-

drafts, or a combination of these effects. 
 

 
Fig. 9.  Equation (7) with N0 = 510

4
 [m

-3
 m

-1
] and D0 = 1.810

-3
 [m], corresponding to R = 82 [mm h

-1
]. (left)  = 1; 

(middle)  = 0; (right)  = ½.  

The third case shown in Figure 10 is a combination of the previous MP DSD and IR DSD, each se-

quentially on for a simulated time interval of 60 s. 
 

 
Fig. 10.  Equation (7) with a mixture of 60 s at N0 = 510

4
 [m

-3
 m

-1
] and D0 = 2.010

-3
 [m], corresponding to R = 

137 [mm h
-1

], followed by 60s at N0 = 810
6
 [m

-3
 m

-1
] and D0 = 4.710

-3
 [m], corresponding to R = 25 [mm h

-1
]. 

(left)  = 1; (middle)  = 0; (right)  = ½.  
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In the first case of Figure 8, it can be seen that disdrometer calibration during MP like rainfall using 

the 11/3 moment alone (rainfall rate) is not possible since the error surface has no well-defined minimum, 

only a valley minimum indicative of an infinite number of calibration solutions.  The same is true of the 

optical extinction only error surface.  The sum of the two error contributions also yields a trench like min-

imum, but with a defined minimum point.  In this case the ability to find the true minimum is not ideal 

and is dependent on the “noise” in the measurement.  Two typical sources of noise in the disdrometer cal-

ibration measurement are:  

(1) Drops counted incorrectly -  small drops can be missed if they occur directly after a large drop.  A 

large drop may splash causing numerous erroneous small drop counts. 

(2) Electronic and/or acoustic noise – this could be due to thunder, wind, or bad filtering on a power 

supply. 

The second case shown in Figure 9 yields a more useable error surface for calibration, since location 

of the minimum (only in the  = ½ case) is straight forward, even in the presence of noise.  Unfortunately, 

the IR DSD associated with this case may only be found at particular locations and times of year.   The 

third case of Figure 10 is a combination of the MP and IR DSD, which is more representative of a real 

impulsive rain event.  In this ideal simulation case, a total of 0.11 [in] of rain is accumulated by the 120 s 

simulated rainfall event.  Rainfall rate only, extinction only, or combination can be used to calibrate the 

disdrometer since the error minimum is well defined for all values of , but noticeably better in the ex-

tinction case where  < 1. 

Rainfall described by the MP DSD is more common than that described by the IR DSD, where a use-

able in situ calibration strategy may be devised by discriminating and using only the appropriate error sur-

faces, such as that shown in Figure 10, however it is desirable and practical to adaptively calibrate during 

all rainfall types.  

6.2 Modified Error Function 

In order to demonstrate an approach to this end, a modified error surface from Equation (7) is used: 
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where a third calibration parameter has been introduced by defining independent drop calibration model 

coefficients from Equation (8), aA for the rainfall rate term and aB for the optical extinction term.  The so-

lution methodology is not to locate the error surface minimum in three parameter space, but to vary the 

exponent parameter   in two parameter space until aB  aA .   

 

 

Fig. 11.  DSD simulation example from Figure 8, using a modified error function given by Equation (15).  The right 

plot represents the final solution after multiple iterations of the type shown in the right and middle plots. 



 12 

A significant advantage of this approach is that an ill-formed error surface minimum, such as that 

shown in the right side of Figure 8, is transformed into a well-defined minimum as shown in Figure 11.  

A disadvantage of this strategy is that multiple error surfaces are computed during the iterative process of 

finding the final solution where aB  aA.  However, the increase in computational burden is a reasonable 

trade for the more significant benefit of utilizing ill-formed two-parameter error surfaces associated with 

most (and hopefully all) rainfall types. 

7. EXAMPLE DATA PROCESSING 

On August 3, 2013, between 21:00 and 22:30 UTC, data was collected at a site 17 km, 323.7 from the 

KLMB radar.  Tipping buckets, accumulation gauge, UCF-DHD, and laser target were deployed outside 

of a vehicle (shown in right side of Figure 4).  All electronics, including green laser, video camera, pro-

cessing electronics, and audio recorder (for disdrometer), were inside of the vehicle and powered by a 12 

V battery.  The laser and camera were positioned so that the partially opened window does not interfere 

with the laser light beam.  The vehicle and target were aligned to the approach of the oncoming storm so 

that the wind is generally opposite the partially opened window, thus minimizing the problem of rain 

damaging the electronics, laser, and camera.  

 

 

7.1 Extinction Coefficient 

The laser is turned on and off with a 50% duty cycle, 1 Hz square wave.  The video camera records at 30 

fps.  When the tipping bucket tips, the laser is held on for 3 s, and an audio tone is mixed with the dis-

drometer audio channel.  During image processing of the video stream, the first step is to decimate the 

sample rate to 10 fps.  A section near the center of the image is cropped as the region of interest (ROI).  

Each image ROI is processed by Equation (6), pixel by pixel.  This is essentially a green band pass filter 

which transforms the black and white laser target into a totally black image under normal solar illumina-

tion until the green laser spot appears.  Figure 12 shows the output of the image processing filter Equation 

(6), but only for the 3 s tip regions (the 1 Hz pulses have been removed).  During heavy rainfall, the out-

put of Equation (6) is greater than zero (not totally black) when the laser is in the off portion of the cycle.  

This portion of the signal is captured and is treated as a background back-scatter part to be removed from 

the high intensity part.  The fact that the signal appears as a back-scatter signal at the output of the green 

band pass filter can be explained empirically by assuming that rain backscatter is shifting the solar spec-

trum to the green.  This effect is clearly related to higher rainfall rate which creates higher backscatter be-

fore the laser reaches the target. 

 

 

Fig. 12.  Green lines represent the normalized laser intensity of the spot on the target viewed by the video camera, 

where the round trip distance 2L = 150 m, and each vertical line corresponds to a rain gauge bucket tip. The blue 

lines at the bottom are estimates of the back scatter from the rain, which increases with increased rainfall rate.  This 
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background is subtracted from the intensity (green lines), then converted to extinction coefficient, , shown by the 

solid black line where open circles, also corresponding to TB tip times. 

Referring again to Figure 12, the green lines represent the normalized laser intensity viewed by the 

video camera on the target, processed by Equation (6), where the round trip distance is 2L = 150 m, and 

each vertical line corresponds to a rain gauge bucket tip. The blue region at the bottom of Figure 12 is an 

estimate of the back scatter from rain, which increases with increased rainfall rate.  This background is 

subtracted from the transmitted intensity (green lines), then converted to extinction coefficient  as de-

scribed in Section 5.3, shown by the black line with open circles. 

7.2 Disdrometer Calibration 

The modified error function from Equation (15) and the procedural methodology described in Section 6.2 

leads to a disdrometer calibration algorithm (see Appendix A for additional details).  The left side of Fig-

ure 13 shows the error surface based on Equation (7), where the minimum is not well defined.  More will 

be said about this in the Summary Section, but what appears to be the primary indicator of a well-defined 

versus a poorly defined error surface minimum is the DSD flux distribution shape.  A broadband  drop 

spectra (spectrum which contains a more uniform mix of large and small drops) appears to generate a 

well-defined two parameter error surface from Equation (7).  The August 3, 2013 rainfall event of this ex-

ample appears to be characterized by down drafts with no sorting of drop sizes, leading do a more typical 

narrowband drop spectra (drop flux spectrum is peaked at one particular drop diameter, typical of most 

MP or gamma distributions).  

 

Fig. 13.  Disdrometer calibration using dataset of August 3, 2013. (left) the error surface based on the concepts of 

Equation (7), where the minimum is not well defined; (right) modified error function based on the concepts of Equa-

tion (15) with a well-defined minimum.   

The modified error function based on the conceptual approach of Equation (15), as shown in the right 

side of Figure 13, clearly shows a well-defined minimum and provides unambiguous calibration coeffi-

cients.  The error function used to generate the plots in Figure 13 is based on Equation (15), but the actual 

error function used is a modified version necessary to process disdrometer drop spectra data, based on 

definitions and notation described in Appendix A: 






























M

k k

kB
M

k

kA
BA

U

Ya/π

V

Xa
aaE

1

2
)1(3/)2(

1

2

0

)1( ) 6(
11),,(



 .                                  (16) 

Another way to illustrate the solution based on Figure 13 and Equation (16) is shown in the plot of 

Figure 14.  This plot shows the valley minimum of the left side of Figure 13, with aA versus   and aB ver-

sus  .  The algorithm described in Appendix A is a general numerical method for solving this equation 

where the disdrometer model can be defined as series of polynomial terms in x. Even though the Appen-
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dix A method is greatly simplified with the single term model definition by Equation (8), it is useful and 

convenient (since it was previously coded as a Fortran function) to use the full matrix implementation of 

Appendix A.  Using that approach, or any other equivalent method, Figures 14 shows multiple solutions 

for aA and aB for various values of  .  Since the goal is to find the   where aA  aB, plotting e = aA  aB  

0 clearly shows the desired value of  . That point is equivalent to the error minimum in the right side plot 

of Figure 13.  The method shown in Figure 14 is computationally more efficient since it does not involve 

creating a large number of error calculations for each iteration of .  But Figure 13 conveys the concept 

more clearly since it is a direct plot of the error surface described by Equation (16).  The calibration pro-

cedure described above results in 36006.9 . xD   [mm]. The quantities plotted in Figure 15 are generated 

from D(t), where D(t) is equivalent to all Dik (the calibrated version of xik) using standard calculations 

(Uijlenhoet et al. 2011, Atlas and Ulbrich 1977).  

Appendix A discusses one (of many) possible methods for processing the error function to locate the 

minimum and extract the disdrometer calibration parameters.  However, the only way to verify calibration 

is to compute the disdrometer derived nth moment values that can be compared with the equivalent collo-

cated instruments that measure the same quantities.  This is shown in Figure 15 where the thin lines repre-

sent the actual collocated measurement, and the thick lines represent the disdrometer (after calibration) 

computed equivalent nth moment values.  The green lines (bottom line set) show the optical extinction 

comparison.  The blues lines (middle line set) show the rainfall rate tipping bucket comparison.  The up-

per line set (black lines) show a comparison of radar reflectivity values.  Note that in this case the com-

parison reflectivity is not from KMLB radar, but is computed using an exponential DSD as described by 

Lane, et al. (2013).  The Melbourne NWS KMLB radar showed a very low reflectivity, not consistent 

with a typical Z-R relation.  For this reason, it was not plotted in Figure 15, and was one of the clues that 

this particular rainfall event was perhaps dominated by downdrafts (Ahammad, et. al. 2002) and charac-

terized by a typical MP-like drop spectra, i.e., narrowband drop spectrum. 

 

 

Fig. 14.  This plot shows the valley minimum of the left side of Figure 13 with aA versus  and aB versus  .  The 

convergence point and solution is emphasized by plotting e = aA  aB versus  . 
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Fig. 15.  DSD flux D(t) plotted as black dots; green lines are extinction coefficient, thin line is from the laser meas-

urement, thick line is derived from D(t); blue lines are rainfall rate, thin line is from the TB measurement, thick line 

is derived from D(t); black lines are computed radar reflectivity, thin line derived from the laser measurement and 

assumption of a pure exponential DSD model, thick line is derived from D(t). 

8. SUMMARY 

Previous research suggests that in situ calibration may be a useful strategy towards implementation and 

deployment of low-cost disdrometers (Kasparis et al. 2010, Jong and Hut 2011).  With this goal in mind, 

prototype disdrometers were developed, fabricated and tested, and are in operation at the University of 

Central Florida, Orlando, FL and the Cyprus University of Technology, Lemesos, Cyprus (see Figure 16).  

These disdrometers are constructed from off-the-shelf, low-cost parts and materials, and by eliminating 

the need for single drop calibration, the total system cost reduction may hopefully lead to the realization 

of dense disdrometer networks for the goal of studying spatial and temporal variability of hydrometeor 

size distributions. 

In Section 4, Equations (2) through (5) represent an idealized SDOF model of a generic impact 

disdrometer.  Equation (8) of Section 6 correspond to an empirical model constructed for the sole purpose 

of calibration.  The SDOF model results in x(D)  D
3.67

, whereas the calibration fit of Section 7 results in 

x(D)  D
2.8

.  This disdrometer response appears to be dependent on something slightly less than the mass 

of the drop, which is surprising since the usual expectation is that the an impact disdrometer response lies 

somewhere between momentum and drop kinetic energy dependence.  The SDOF model predicts a re-

sponse proportional to drop momentum. 

The question of how often to calibrate can be addressed.  On one extreme disdrometers could be cali-

brated at a factory facility during a few naturally occurring rain events, using tipping buckets and a laser 

combination.  The calibration coefficients are then loaded and locked into disdrometer processing 

memory and the disdrometers are used without further adaptive calibration from that point on, wherever 

they are deployed.  On the other extreme, tipping buckets and a laser can be used to continuously update 

calibration.  A disdrometer is almost always collocated with one or more tipping bucket rain gauges, so 

that rainfall rate data is most likely available without extra cost and available for calibration on a continu-

ous basis.  The laser is more costly than a tipping bucket, primarily because of the camera and associated 

image processing.  A laser generally has some inherent safety issues to consider, even though a class 3A 

laser was safely used in this work. 

Continuous tipping bucket only calibration is possible and has been discussed previously (Kasparis et 

al. 2010).  Simulations presented in Section 6 of this paper strongly suggest that extreme caution must be 

exercised in using a single moment calibration strategy.  A laser only calibration is also possible (with 

similar precautions) but may have some advantages over a tipping bucket only calibration: quantization of 

the tip is a problem in low rain rates; tipping bucket sloshing is a problem in high rain rates.  The second 

moment provides more detail for small drop sizes, while the larger drops ensure a better signal to noise 

performance, which should compensate for the shift of the second moment peak to the low end of the size 

distribution.  However, an autonomous laser/camera/processing arrangement is certainly more costly than 
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a tipping bucket calibration.  Also, the tipping bucket calibration has one distinct advantage over the laser 

(in addition to lower cost) , rainfall rate and disdrometer data are both DSD flux measurements and do not 

require an approximation of drop terminal velocities for comparison.  

 

 

Fig. 16. Top: Roof of UCF Engineering Building, showing three tipping bucket rain gauges (white cylinders) and 

three disdrometers: Joss disdrometer on left, and two UCF-DHD disdrometers in center and far right. Bottom: CUT-

DHD on the roof of the Cyprus University of Technology. 

Problems with tipping bucket resolution on the low end or sloshing errors on the high end of rainfall 

rate are similar to the question of ideal laser extinction distance or ideal disdrometer sensing area.  A tip-

ping bucket opening can be made larger than then the standard 8 [in] diameter, making it more sensitive 

to lower rainfall rates.  But then sloshing errors at high rainfall rates become more pronounced.  Similarly, 

if the disdrometer sensing head is made larger, it will do better at capturing the drop spectrum for larger 

drops, but smaller drop measurements will suffer due to increased drop coincidence, a condition that can-

not be processed correctly.  Disdrometer saturation can be avoided by proper analog gain design, ensuring 

that the response curve accommodates all physical drop sizes, as shown by the example plot of Figure 7.  

This example will not saturate for drop sizes up to D = 8 mm, well beyond those of physical rainfall drop 

diameters.  However, it would saturate for all but the very smallest hail stones.  An increased distance be-

tween the laser and target will increase the resolution of optical extinction measurements at lower rainfall 

rates, but higher rainfall rates may completely obscure the laser spot.  Tradeoffs must be made based on 

laser power and wavelength, target distance, and camera sensitivity.  For the consumer grade video cam-

era and 5 mW green laser used in this work, a laser to target distance of L = 75 m seemed to provide a  
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reasonable compromise for resolution on the low end and sensitivity on the high end of rainfall rate. 

The single moment calibration, i.e., tipping bucket only, optical extinction only, or radar reflectivity 

only, has been shown to be limited to only certain types of DSDs.  Based on the simulation analysis of 

Section 6, it appears that the single moment calibration can only be successful during rainfall consisting 

of a larger than normal population of large drops.   This type of DSD is characterized by a flatter drop 

spectrum than the typical MP or exponential DSD spectrum.  Since the disdrometer is unaware of drop 

terminal velocity and actual spatial DSDs, and since it is measuring only DSD flux, this would suggest 

that single moment calibration could be successful during events consisting of updrafts and/or pro-

nounced gravitational sorting.  Investigating this relationship further may be an area of future work.  

Nonetheless, the use of two or more moments, such as the tipping bucket rainfall rate and laser optical ex-

tinction, seems to circumvent the need for ideal rainfall events for useful disdrometer calibration. 

The methods described in this paper, with some modification, can also be applied to post processing 

disdrometer output from most commercial instruments, not limited to impact type disdrometers.  The 

concept of in situ calibration is linked to the concepts of adaptive filtering (Widrow et al. 1985) where 

numerous algorithms have been developed to utilize a few basic concepts.  One such approach common 

to adaptive filtering is to include weights in the error function summation terms to achieve specific goals.  

If a disdrometer for example was known to have saturation problems on the high end, thus underestimat-

ing the actual size of a large drop, weights could be included that were proportion to rainfall rate and/or 

optical extinction which would then bias the outcome to favor the calibration of larger drops. 

No matter what strategy is prescribed, it is important to recognize that in situ disdrometer calibration 

strategies only guarantee that the final disdrometer derived N(D) matches the calibration sources through 

the equivalent moments of the DSD,  dDDNDn )( .  Disdrometer calibration and estimation of the drop 

size distribution aloft are based on the assumption that measuring the moments of the distribution is suffi-

cient for estimating the distribution aloft (within a few meters above the disdrometer).  The more mo-

ments that can be measured, the better the disdrometer calibration and estimation of N(D) becomes. 

Quality control of the calibration setup, a necessary requirement for valid disdrometer calibration, 

may include verification that the tipping buckets are correctly calibrated.  This can generally be accom-

plished by comparing multiple tipping buckets collocated with multiple accumulation rain gauges.  It is 

more difficult to validate the laser measurement. Independently checking camera response to a calibrated 

light source and checking the laser output with a calibrated photometer are standard techniques of validat-

ing a laser/camera system. 

 

 

 

 

 

ACKNOWLEDGEMENTS: We gratefully acknowledge the ECE Division of the Electrical Engineer-

ing and Computer Science Department of the University of Central Florida, Orlando, Florida and the Cy-

prus University of Technology, Lemeso, Cyprus for use of their facilities.  We also gratefully 

acknowledge the Cyprus Research Promotion Foundation for their support during the 2009-2011 phase of 

this project.   

 



 18 

APPENDIX A:  Calibration Algorithm 

The fundamental calibration goal is to locate the minimum in the error function parameter space as de-

scribed in Section 6 and demonstrated in Section 7.  This can be done graphically.  However, in order to 

automate the process in an autonomous system, an efficient computational method is needed. The follow-

ing calibration processing method is a direct extension of that described in Kasparis et al. (2010), but is 

just one of many possible approaches. 

In the current method an additional laser extinction term is included in the Kasparis error minimiza-

tion, as shown by Equation (7) and (15).  Using the mathematical notation and computational approach of 

Metzger et al. (2010), the error function minimum can be easily found for a given .  The Metzger nota-

tion provides a convenient and compact form, easing evaluation complexity, where a simple matrix inver-

sion solves the problem directly.  Of course we assume that the matrix inversion comes without a real-

time computational price, which is not really true, but is a useful working assumption.    

The Ak vector in Equation (A-1) corresponds to the sum of the tipping bucket framed (by the kth tip) 

disdrometer impulse amplitudes xik, as described in Section 6.  The sum of the Xk
(j)

  components over in-

dex j is proportional to the the sum of all Mk single drop volumes that impact the disdrometer during the 

kth time interval.  V0 = h0 As is the total volume of water impacting the disdrometer during the kth tipping 

bucket time interval, and is equal to the tip depth (h0 = 0.01 in) multiplied by the area of the disdrometer, 

As = 58 cm
2
.  In the particular response model assumed in this paper, described by Equation (8), only the 

first component of Ak is non-zero.  Therefore, Xk
(1)

  is the sum of all drop volumes that impact the dis-

drometer during time interval k, and Ak essentially collapses to a scalar value, Ak.. The ratio of disdrometer 

water volume to tipping bucket volume described by Ak is proportional to the ratio of rainfall rates shown 

in the first term of the error function of Equations (7) and (15). 
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         .                               (A-1) 

Equation (A-2) describes the Bk vector due to the optical extinction data, also framed by the kth tip 

time interval.  As in the previous case, Bk also essentially collapses to a scalar value Bk for the case of the 

disdrometer response model specified by Equation (8). The quantity represented by Yk
(1)

  is proportional to 

the sum of the drop cross-sections, or in essence the second moment, corresponding to tip interval k.  The 

exponent   3/-2  AB     transforms the drop volume related quantity in Equation (A-1) to a second mo-

ment related quantity in Equation (A-2), where  = 2/3 is from the terminal velocity approximation used 

in Section 6 (Atlas et. al. 1977).  The scaling factor, analogous to V0 above, is 
k

MtAU kSk 2  , where 

 = 380.7 m s
-1

 m
-2/3

, (again from the terminal velocity approximation of Section 6), tk = time between k 

and k-1 TB tips, and M2k  is the second moment of the DSD at tip k.  M2k is calculated from the measured 

extinction coefficient, 4/ 2k
MQek   , where Qe is the scattering efficiency factor for extinction 

(Berg et al. 2011).  In this application Qe is assumed to be a constant equal to 2. The ratio of disdrometer 

drop second moment to measured optical extinction described by Bk is proportional to the ratio of optical 

extinction coefficients shown in the second term of the error function of Equations (7) and (15). 
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The relationships described above are based on the conceptual approach of Equation (15).  Equation (16) 

is the exact representation of the error function which the Appendix A approach is based upon.   

The calibration parameter vector P contains two sets of coefficients, a and b, as shown in Equation 

(A-3). The sub-vector a is equivalent to the calibration vector P in Kasparis et al. (2010). This approach 

results in a method where two sets of independent calibration curves are created: one from the TB data, 

and one from the optical extinction data.  The sub-vectors a and b are independent and are computed sim-

ultaneously.  This approach was driven by a desire to define a matrix that could always be inverted to 

provide the final calibration coefficients.  This splitting of calibration coefficients is equivalent to the 

modified error function described by Equation (15).  The model of Equation (8) results in a parameter P 

vector with only components a and b. Using the notation of Equation (15), a = aA and b = (6/ aB)
(2-)/3

. 
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Because of the way the error function is defined, as described in Section 6.2, two simultaneous cali-

brations result.  DA in Equation (A-6) corresponds to the tipping bucket calibration and DB in Equation 

(A-7) to the laser calibration, where x is the impulse amplitude of a drop: 
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where  NA = NB = 1 in the special case of the disdrometer response model specified by Equation (8).  

Forcing the two calibrations to converge (by choice of A) generates a combined calibration.  Even though 
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both solutions are forced to converge as demonstrated in Section 6.2 and 7, a real calibration utilizing 

Equations (A-6) and (A-7) will not yield exactly equivalent values due to imperfect convergence and nu-

merical noise.  Therefore it is useful to merge the two values using an arithmetic average 

  2/ 1000 BA DDD   or the geometric mean:   2/1 
 1000 BADDD   mm.          
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