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On the use of dispersion analysis
for model assessment in structural
identification

Vasileios K Dertimanis

Abstract

One of the most important issues faced in parametric time-domain identification and subsequent experimental/

operational modal analysis is the correct estimation of model order, which in turn determines the number of structural

vibration modes. The aim of this study is to provide a quantitative and physically meaningful framework for model order

assessment that is characterized by global applicability, in the sense of implementation in both state-space and transfer

function model representations. To this end and under the assumption of stationary wideband excitation, a novel

dispersion analysis scheme is proposed for the quantification of every mode’s relative importance to the total stochastic

response, which is based on a modal decomposition of the covariance matrix. Subsequently, after defining the modal

dispersion matrix, a corresponding metric is introduced and used either as a stand alone tool for model order assess-

ment, or as an extension of existing tools, such as stabilization diagrams. The method is validated through both simulated

(NASA Mini-Mast truss) and experimental (suspended steel subframe flexible structure) identification problems, for

which a subspace and a prediction-error estimation method are utilized and compared under the proposed quantitative

indices. Moreover, performance comparisons with other energy-based metrics are also reported. The results indicate

that the proposed method can be effectively used in parametric time-domain structural identification, for both order

assessment and comparison of diverse model-based estimation methods.
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1. Introduction

Modern engineering structures are amenable to a wide
and diverse variety of design objectives. These include
not only the standard low cost and maximum safety
demands, but also the compliance to environmentally
induced specifications emerging from systematic
approaches, such as life-cycle design and design for
environment. These requirements call for the establish-
ment of smart interactions with the structure through-
out its service life, for monitoring, state assessment, and
proactive management.

The process of identifying discrete-time models from
multichannel excitation and response (or response only)
measurements clearly falls within the aforementioned
framework. Indeed, time-series analysis (Lütkepohl,
2005; Box et al., 2008) and system identification
(Ljung, 1999) have shown to be effective and valuable

tools that retain crucial technological importance in the
fields of data-driven modeling (Papakos and Fassois,
2003; Andersen, 1997; Koulocheris et al., 2008;
Bayraktar et al., 2011), control (Landau and Zito,
2006; De Korte, 2009) and structural health monitoring
(Farrar and Worden, 2006; Farrar and Lieven, 2007;
Dertimanis and Koulocheris, 2008; Morassi and
Vestroni, 2008). This is why the implementation of
corresponding techniques to structural systems
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(airplanes, bridges, oil platforms, vehicles, buildings,
etc.), where the human and environmental safety fac-
tors are of primary concern, has gained increased atten-
tion and remains a very active engineering research area
(Ren and Zong, 2004; Antonacci et al., 2012;
Dertimanis et al., 2012; Loh et al., 2013).

One of the most important issues in parametric time-
domain structural identification is the choice of model
order, which controls the number of estimated vibra-
tion modes for subsequent experimental/operational
modal analysis (Larbi and Lardies, 2000; Reynders,
2012). This parameter corresponds to the size of the
state vector, when state-space models (internal descrip-
tions) are employed (Katayama, 2005; Verhaegen and
Verdult, 2007), or to the order of the (vector) autore-
gressive (AR) polynomial, when transfer function
models (external descriptions) are considered (Ljung,
1999, Chapter 4). Naturally, the interrelation between
the internal and the external descriptions (Hannan,
1976; Yang et al., 1994) implies a straightforward
dependence between the size of the state vector and
the order of the AR polynomial (Lardies, 2008;
Dertimanis and Koulocheris, 2009).

Regarding model order assessment and correspond-
ing estimation of structural vibration modes, a wide
majority of reported application studies (Bayraktar
et al., 2011; Caicedo, 2011; Antonacci et al., 2012)
rely heavily on the use of frequency stabilization dia-
grams. Apart from the fact that the latter have a clear
nonparametric setting, they are amenable to a number
of reported inconsistencies that include sensitivity to
noise, frequency slitting, and stabilization of spurious
modes. The use of clearing tools (Van Der Auweraer
and Peeters, 2004) for the better visual interpretation of
stabilization diagrams is a significant step forward,
especially in respect to automated operation modal
analysis (Reynders et al., 2012), yet the inherent non-
parametric nature and other fundamental discrepancies
(especially the stabilization of spurious modes) may still
be present. However, it must be pointed out that fre-
quency stabilization diagrams comprise one global
measure of model order assessment, in the sense that
they are applicable to all time-domain parametric iden-
tification methods and to all model representations.

In addition, there is a very limited number of tools
that distinguish structural from extraneous modes,
which, in general, are method-specific. Within the con-
text of the Eigensystem Realization Algorithm (ERA)
(Juang and Pappa, 1985), application of the modal
amplitude coherence has been reported to be problem-
atic in certain cases (Florakis et al., 2001). Dispersion
analysis (Lee and Fassois, 1993; Lee and Lee, 2001) has
provided significant indications of effectiveness
(Papakos and Fassois, 2003), yet, it has been developed
for use only in transfer function model representations,

while its residue-based calculation (Fassois, 2001) may
be prone to numerical issues. Recently introduced
schemes that are based on model reduction, as the
one developed by Goethals and De Moor (2002) and
extended by Reynders and De Roeck (2008) to the
modal transfer norm metric, provide a measure of
the error when an associated mode is removed from
the model. These latter schemes seem effective and
they can be attributed as global, since they can be
easily applied to both state-space and transfer function
model representations, through the transformation of
the latter to the former, which is a numerically efficient
process. They are however indirect and do not estimate
the actual amount of stochastic vibration energy con-
tributed by a specific mode.

This study develops a novel model order assessment
tool through the generalization of the notion of modal
dispersion, as the latter has been introduced by Lee and
Fassois (1993). Taking into account the effectiveness of
this metric to the order validation of transfer function
representations (Petsounis and Fassois, 2001), it is
extended to cover state-space models as well, obtaining
thus a global attribute. Using the spectral factorization
of the state matrix and the properties of the corres-
ponding spectral projectors, a modal decomposition
of the output covariance matrix is introduced and sub-
sequently applied to the definition of a modal disper-
sion matrix. It is then shown how this matrix can be
utilized towards the quantitative assessment of the con-
tribution that every vibration mode retains in the total
structural response, under the assumption of stochastic
wideband excitation. Moreover, in an inverse frame-
work, the same quantitative assessment is applied to
the estimation of structural degrees of freedom and to
the distinction of structural from spurious modes. The
proposed framework is validated through the structural
identification problem of a suspended steel subframe
flexible structure, in both output-only (operational
modal analysis) and input–output (experimental
modal analysis) identification.

The contributions of this study are (a) the introduc-
tion of a covariance modal decomposition in closed
form that can be used to indirectly validate a model
through comparisons with nonparametric covariance
estimates, (b) the introduction of a modal dispersion
matrix (MDM) and its associated modal dispersion
norm (MDN) that quantifies the contribution of each
structural mode to the total vibration energy, under
stochastic broadband excitation, (c) the implementa-
tion of MDN as a global model order assessment tool
in parametric time-domain identification, and (d) the
utilization of MDN in conjunction to frequency stabil-
ization diagrams for the detection of spurious modes.

The rest of the paper is organized as follows:
Section 2 covers the dispersion analysis and the
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definition of MDM. Its application to structural iden-
tification, including the definition of MDNs is treated
in Section 3. Section 4 contains the identification
experiments, and in Section 5 the conclusions are
drawn, along with some further remarks and sugges-
tions for future research.

2. Dispersion analysis of structural
systems

2.1. Preliminaries

The equation of motion for a linear, viscously damped
structural system with n degrees-of-freedom is

M � €qðtÞ þD � _qðtÞ þ K � qðtÞ ¼ P � fðtÞ ð1Þ

whereM, D and K are the real (and possibly symmetric)
½n� n� mass, viscous damping and stiffness matrices,
q(t) is the ½n� 1� vibration displacement vector, f(t) is
the ½ p� 1� vector of excitations and P is a ½n� p�
‘‘coordinates’’ matrix. By defining a ½2n� 1� state
vector as xðtÞ ¼ ½qT _qT�T, a corresponding state-space
realization of equation (1) is formulated as (M is
assumed full rank)

_xðtÞ ¼ Ac � xðtÞ þ Bc � fðtÞ ð2aÞ

yðtÞ ¼ Cc � xðtÞ þDc � fðtÞ ð2bÞ

with the matrices of the state equation (2a) being
defined as

Ac ¼
On In

�M�1 � K �M�1 �D

� �
½2n� 2n�,

Bc ¼
0

M�1 � P

� �
½2n� p� ð3Þ

and the matrices of the output equation (2b) being
dependent to the type of yðtÞ

yðtÞ ¼ qðtÞ ðdisplacementÞ :

Cc ¼ In On

� �
½n� 2n�, Dc ¼ 0 ð4aÞ

yðtÞ ¼ _qðtÞ ðvelocityÞ :

Cc ¼ On In
� �

½n� 2n�, Dc ¼ 0 ð4bÞ

yðtÞ ¼ €qðtÞ ðaccelerationÞ :

Cc ¼ �M
�1 �K �M�1 �D

� �
½n� 2n�, Dc ¼M�1 �P

ð4cÞ

Under the zero-order-hold (ZOH) principle, which
assumes constant intersample behavior of the excitation

vector signal (Fadali, 2009, Section 7.6), the discrete-
time equivalent of the system described by
equation (2) is

x½tþ 1� ¼ Ad � x½t� þ Bd � f½t� ð5aÞ

y½t� ¼ Cd � x½t� þDd � f½t� ð5bÞ

with Cd ¼ Cc, Dd ¼ Dc and

Ad ¼ eAc�Ts , Bd ¼ ½Ad � I� � A�1c � Bc ð6Þ

where Ts ðsÞ denotes the sampling period.

2.2. The displacement/velocity case

When Dd ¼ 0 the discrete-time state-space equation
takes the form

x½tþ 1� ¼ Ad � x½t� þ Bd � f½t� ð7aÞ

y½t� ¼ Cd � x½t� ð7bÞ

For the subsequent definition of modal dispersion, the
following result is fundamental.

Lemma 2.1: Consider the state-space model of
equation (7) and let the excitation be uncorrelated and
stationary. Then, a decomposition of the covariance
matrix of the output time-series y½t� is

!yy½h� � Efy½tþ h� � yT½t�g ¼
X2�n
k¼1

Qk � �
h
k ð8Þ

where h is the time lag, Qk is defined in the follow-
ing proof, and �k is the kth eigenvalue of the state
matrix Ad.

Proof: Let f½t� be a zero-mean stationary process with
covariance matrix

!ff½h� ¼ Dff � �½h� ð9Þ

where �½h� denotes Kronecker’s delta. Let also the spec-
tral decomposition of the state matrix be given by
(Meyer, 2000, pp. 520, 526)

f ðAd Þ ¼
X2�n
k¼1

Gk � f ð�kÞ ð10Þ

with f denoting a function that is defined for every �k
and Gk the spectral projectors (for which G2

k ¼ Gk,
Gi �Gj ¼ O, for i 6¼ j and

P
k Gk ¼ I). The state
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equation can be written as an infinite moving average
process of the form

x½t� ¼
X1
k¼0

Ak
d � Bd � f½t� k� 1� ð11Þ

The covariance matrix of the process described by
equation (11) is (Brockwell and Davis, 2002, p. 244)

!xx½h� � Efx½tþ h� � xT½t�g ¼
X1
j¼0

A
jþh
d � D � ½A

j
d �

T
ð12Þ

for h ¼ 0,�1,�2, . . . , where D ¼ Bd � Dff � B
T
d .

Substitution of equation (10) with equation (12) implies

!xx½h� ¼
X1
j¼0

X2�n
k¼1

Gk � �
jþh
k � D �

X2�n
m¼1

GT
m � �

j
m

( )
ð13Þ

The last expression can be manipulated as follows

!xx½h� ¼
X
k

X
m

Gk � D �G
T
m � �

h
k �
X1
j¼0

�jk � �
j
m

¼
X
k

X
m

Gk � D �G
T
m � �

h
k �

1

1� �k � �m

¼
X2�n
k¼1

Gk � D
X2�n
m¼1

GT
m

1� �k � �m
� �hk ð14Þ

Setting,

Pk ¼ Gk � D �
X2�n
m¼1

GT
m

1� �k � �m
ð15Þ

leads to

!xx½h� ¼
X2�n
k¼1

Pk � �
h
k ð16Þ

Then, since, from equation (7b), !yy½h� ¼ Cd �

!xx½h� � C
T
d , the result of equation (8) follows immedi-

ately, with Qk ¼ Cd � Pk � C
T
d . �

Remark 1: Towards the proof of Lemma 2.1 the dis-
crete-time Lyapunov equation can be applied instead
(Kailath et al., 2000, p. 267). The aforementioned
proof is, however, more closely related to a times-
series analysis framework.

Remark 2: Clearly, equation (8) is a modal decompos-
ition. If the eigenvalues of the state matrix appear

in complex conjugate pairs (refer to Dertimanis
and Koulocheris (2011) when real modes are also pre-
sent), then

!yy½h� ¼
Xn
k¼1

Qk � �
h
k þQ�k � ð�

�
kÞ

h
ð17Þ

where the asterisk denotes a complex conjugate (in the
case of matrices the operator applies to every entry).
Equation (17) is henceforth referred to as the output
covariance matrix modal decomposition (CMMD). In
the same way, the expansion of equation (16) into n
terms, just as in equation (17), reveals the state
CMMD. A similar modal decomposition has been
reported by (Reynders, 2012, p. 74). See also
Dertimanis and Koulocheris (2011) and Dertimanis
and Koulocheris (2009).

Remark 3: The zero-lag output CMMD is given by

!yy½0� ¼
Xn
k¼1

Qk þQ�k ð18Þ

and it can be used to the evaluation of the total
vibration energy associated with the output of
the state-space realization, under stochastic wideband
excitation. To this end, the following definitions are
given.

Definition 2.2: The kth modal dispersion matrix is
defined as

Ek ¼ Qk þQ�k ð19Þ

and it can be used to assess the contribution of the kth
mode to the total stochastic vibration energy.

Definition 2.3: The kth normalized modal dispersion
matrix is defined as the matrix with elements

½�k�ij ¼
½Ek�ij

½
Pn

m¼1 Em�ij
� 100% ¼

½Ek�ij

½!yy½0��ij
� 100% ð20Þ

and it can be used to assess the relative contribu-
tion of the kth mode to the total stochastic vibration
energy.

From equation (18) it follows that every modal dis-
persion matrix includes both autocovariance and cross-
covariance terms. Regarding the latter, in certain cases
the off-diagonal elements may appear negative, which
implies that the corresponding modal impulse response
acts in a way that opposes the total vibration response,
reducing thus its magnitude (Lee and Fassois, 1993; Lee
and Lee, 2001).
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2.3. The acceleration case

For acceleration output the direct transmission term is
added to the output equation of the state-space model:

x½tþ 1� ¼ Ad � x½t� þ Bd � f½t� ð21aÞ

y½t� ¼ Cd � x½t� þDd � f½t� ð21bÞ

The covariance matrix associated with equation (21b) is

!yy½h� ¼ Cd � !xx½h� � C
T
d þ Cd � !xf½h� �D

T
d

þDd � !fx½h� � C
T
d þDd � !ff½h� �D

T
d ð22Þ

where the cross-covariance matrices are defined in a
similar way to that shown in the first part of equation
(12). The existence of the three trailing terms in the
right–hand side prevents equation (22) from obtaining
the modal decomposition form of equation (8) for all
lags. Instead, corresponding expressions may be
derived by employing the discrete-time Lyapunov equa-
tion (Kailath et al., 2000, p. 267). Alternatively, it is
easy to show that

!xf½h� � Efx½tþ h� � fT½t�g

¼
Ah�1

d � Bd � Dff h ¼ 1, 2, 3, . . .

O otherwise

(
ð23Þ

by utilizing equation (11). Indeed

!xf½h� ¼
X1
k¼0

Ak
d � Bd � Eff½tþ h� k� 1� � fT½t�g

¼
X1
k¼0

Ak
d � Bd � Dff � �½h� k� 1�

¼ Bd � Dff � �½h� 1� þ Ad � Bd � Dff � �½h� 2�

þ A2
d � Bd � Dff � �½h� 3� þ � � �

from which equation (23) follows naturally. Similarly,

!fx½h� � Eff½tþ h� � xT½t�g

¼
Dff � B

T
d � ½A

hþ1
d �

T h ¼ �1,�2,�3, . . .

O otherwise

(

ð24Þ

In this respect, equation (22) becomes

!yy½h� ¼Cd �!xx½h� �C
T
d

þ

Cd �A
h�1
d �Bd �Dff �D

T
d h¼ 1,2,3, . . .

Dd �Dff �D
T
d h¼ 0

Dd �Dff �B
T
d � ½A

hþ1
d �

T
�CT

d h¼�1,�2,�3, . . .

8><
>:

ð25Þ

so corresponding modal decompositions can be
extracted. For example, that for positive-lag is derived
by observing that

Cd � A
h�1
d � Bd � Dff �D

T
d ¼

X2�n
k¼1

Cd �Gk � Bd � Dff �D
T
d

�k
� �hk

ð26Þ

where the spectral theorem of the state matrix
(equation (10)) was again employed. Then the posi-
tive-lag !yy½h� is also described by equation (8), with
Qk replaced by Qþk and

Qþk ¼ Cd �Gk � Bd � Dff �
X2�n
k¼1

ðCd �Gm � Bd Þ
T

1� �k � �m
þ
DT

d

�k

" #

ð27Þ

In order to derive !yy½0� and the associated modal dis-
persion expressions for the acceleration case, a decom-
position of the direct transmission term is required.
It can be found in (Reynders, 2012, p. 73) that
Dd ¼ Cd � ðAd � IÞ�1 � Bd (under the ZOH assumption).
Since

ðAd � IÞ�1 ¼ �
X2�n
k¼1

Gk

1� �k
ð28Þ

it follows that

Dd � Dff �D
T
d

¼ Cd �
X2�n
k¼1

Gk

1� �k
� Bd � Dff � B

T
d �
X2�n
m¼1

GT
m

1� �m
� CT

d

¼ Cd �
X2�n
k¼1

GkD �
X2�n
m¼1

GT
m

ð1� �kÞ � ð1� �mÞ
� CT

d ð29Þ

Combining equations (16), (25) and (29), the zero-
lag covariance matrix for the acceleration case
complies with equation (8) as well, with Qk replaced
by Q0

k and

Q0
k ¼ Cd �Gk � D �

X2�n
m¼1

ð1� �kÞ þ ð1� �mÞ

ð1� �k � �mÞ � ð1� �kÞ � ð1� �mÞ

� ðCd �GmÞ
T

ð30Þ

Obviously, the remarks and the definitions of the pre-
vious section apply to the acceleration case with no
modifications, except the expressions of equations
(27), (30).
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3. Application to system identification

The basic results of the previous section can be inte-
grated into the structural identification problem, if they
are considered in an inverse setting. More specifically,
given an estimated model in state-space form, disper-
sion analysis can be used to assess its order and to
detect the presence of spurious modes. In this respect,
the following metrics can be employed.

Definition 3.1: The L2 and L1 modal dispersion metrics
are defined as the corresponding matrix norms of the
associated modal dispersion matrix

�E,k,2 ¼ kEkk2 or ��,k,2 ¼ k�kk2 ð31aÞ

�E,k,1 ¼ kEkk1 or ��,k,1 ¼ k�kk1 ð31bÞ

where k ¼ 1, 2, . . . , n. Moreover, a normalized dispersion
metric is a number between 0 and 1 defined as

��\,k,# ¼
�\,k,#

max
k
ð�\,k,#Þ

ð32Þ

for \ ¼ E,� and # ¼ 2,1. Each one of the quantities
defined above can be attributed to a specific mode. The
latter can be thus characterized by one additional quan-
tity that accompanies the natural frequency, the damping
ratio, and the mode shape. This can be proved extremely
conveniently during the validation of a parametric model.
For example, a dispersion metric can be used to find out
whether a spurious mode (characterized by negligible
contribution to the total vibration energy) appears as
structural in a stabilization diagram (see Section 4).

Apart from the dispersion metrics, the covariance
expression of equation (8) and the CMMDs of equation
(17) can be implemented in the validation of candidate
models, either by visualizing the contribution of an
individual mode, or through comparisons to sample
covariance matrix estimates.

3.1. Transfer function model representations

The result of a parametric identification process is a
description of the monitored system in state-space or
transfer function format. In its general form, the latter
usually arrives as (Ljung, 1999),

y½t� ¼ KðqÞ � f½t� þ LðqÞ � e½t� ð33Þ

with KðqÞ and LðqÞ denoting multivariate transfer func-
tions that describe the output-to-input and the output-
to-noise dynamics, respectively, q as backshift operator,
q�k � y½t� ¼ y½t� k�, and e½t� as a multivariate zero mean

white noise process. Equation (33) shows that the
output can be expressed as y½t� ¼ ys½t� þ yn½t�, where
ys½t� and yn½t� are obviously defined and refer to the
system and noise dynamics, respectively. Focusing on
the former and since KðqÞ can be factorized as a product
of two matrix polynomials of order np, ys½t� can be
written in a recursive way as (Box et al., 2008)

ys½t� þ
Xnp
i¼1

Vi � y½t� i� ¼W0 � f½t� þ
Xnp
j¼1

Wj � f½t� j �

ð34Þ

where the Vi’s and Wj’s are matrices of appropriate
sizes. Then, a straightforward state-space realization
in the form of equation (21) can be achieved by select-
ing the following states (Juang and Pappa, 1985; Yang
et al., 1994)

xi½t� ¼ xiþ1½t� 1� þ bi � f½t� 1�, i ¼ 1, 2, . . . , np� 1

ð35aÞ

xp½t� ¼ �
Xnp�1
j¼1

xj½t� 1� þ bp � f½t� 1� ð35bÞ

with bi ¼Wi þ
Pi�1

j¼0 Vi�j � bj and b0 ¼W0, after which
the associated matrices become

Ad ¼

O I � � � O

O O � � � O

..

. ..
. . .

. ..
.

O O � � � I

�Vnp �Vnp�1 � � � �V1

2
666666664

3
777777775
,

Bd ¼

b1

b2

..

.

bnp�1

bnp

2
6666666664

3
7777777775
, Cd ¼ ½I O � � � O�, Dd ¼W0 ð36Þ

In the above setting only the bi’s need to be calculated
in order to formulate the state-space model. Note also
that the utilized realization is also applicable to the
output-only case, where KðqÞ ¼ O and the factorization
applies to LðqÞ.

In this way, the dispersion analysis framework devel-
oped in Section 2 can be extended also to transfer func-
tion model representations, through their state-space
realization. Thus, during a structural identification pro-
cess, different models and different methods can be

Dertimanis 2275



assessed under the same criterion (dispersion metric).
This indeed attributes a global character to the pro-
posed scheme.

4. The identification experiments

4.1. Simulated structure

The proposed methodology is now applied and assessed
to the parametric identification problem of the NASA
Mini-Mast space truss illustrated in Figure 1. A two-
input, two-output, 10th order reduced model of the
structure is provided by Lew et al. (1993) and

discretized using ZOH at Ts ¼ 0:03 s (Abdelghani
et al., 1998). Table 1 illustrates the vibration modes,
from where it is observed that the reduced structural
system is characterized by two pairs of very closely
spaced bending modes and an additional torsional
one. Following the analysis of Section 2, the second
mode is detected as the heaviest contributor to the sto-
chastic vibration energy of the system, and this is fur-
ther confirmed by the corresponding normalized modal
error norm (Goethals and De Moor, 2002, normaliza-
tion as in equation (32)), �ln,1.

In order to examine its effectiveness, the dispersion
analysis framework is applied to (a) the PO-MOESP

Figure 1. The NASA Mini-Mast truss structure used for the identification experiments.

Table 1. Vibration modes, modal dispersions, and modal error norms of the reduced Mini-Mast model (discrete-time, �ff ¼ I2).

Damping corresponds to the real part of the continuous-time eigenvalues.

Mode Type fnðHzÞ Damping �n ��,n,1
���,n,1

�ln,1

1 bending 0.8008 0.09059
10:1275 �41:0437

�42:9991 �42:8697

� �
86.0240 0.373 0.607

2 bending 0.8014 0.09066
89:4563 140:9371

142:8910 56:4842

� �
230.2774 1.000 1.000

3 torsional 4.3640 0.32907
0:1198 �0:2438

�0:2430 0:1235

� �
0.3665 0.002 0.021

4 bending 6.1038 0.38352
0:0480 �0:2168

�0:1897 �0:2141

� �
0.4038 0.002 0.020

5 bending 6.1565 0.38683
0:2484 0:5671

0:5407 0:3085

� �
0.8492 0.004 0.030
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subspace identification method (Verhaegen and
Verdult, 2007; Verhaegen, 1994) and (b) the two-
stages least squares (2SLS) method for the estimation
of VARMAX models (Ljung, 1999, Chapter 10). The
estimation is based on simulation data that consists of
zero-mean Gaussian excitation with covariance matrix

Dff ¼
97:9079 �0:5314

�0:5314 97:7487

� �

and corresponding noise-corrupted vibration responses
at 10% noise-to-signal (N/S) ratio (white measurement
noise). The input–output data set is N¼ 5000 samples
(150 s) long.

4.1.1. PO-MOESP identification. The number of block
rows that correspond to the size of the associated
Hankel matrix is chosen equal to 50 and model
orders that vary from 10 to 30 are estimated. Both
the frequency stabilization diagram (Figure 2) and the
variance accounted for (VAF) values (Verhaegen and
Verdult, 2007, Chapter 10) (Figure 3) suggest models of
order n¼ 13 or higher. Accordingly, a state-space
model order n¼ 14 is selected. Table 2 displays the dis-
persion metrics of the selected model, along with the

modal error norms. The dispersion metrics indicate the
presence of five structural modes and of two spurious
modes, one of which is stabilized at low orders, with
negligible dispersions and modal error norms.

4.1.2. 2SLS identification. According to Fassois (2001) a
fifth order, two dimensional VARMAXmodel would be
sufficient for the description of structural dynamics.
Yet, it is well-known that under noise-corrupted data
a certain degree of overdetermination to the estimated
transfer functions is unavoidable, so VARMAX
(k, kþ 1, k, 0) models were estimated for k ¼ 5� 25.
The estimation results are displayed in Figures 4
and 5, where the stabilization diagram and the BIC cri-
terion are shown, respectively. Although the BIC qua-
lifies VARMAX(7,8,7,0) as the best candidate,
structural frequencies are stabilized at a considerably
higher order, leading to the final selection of
VARMAX(19,20,19,0) as the most appropriate model.
It should be noted that the stabilization diagram in this
case is more ambiguous than the previous one
(Figure 2). The dispersion metrics shown in Table 3
have correctly identified five modes as structural and
the rest of the modes of the VARMAX models as
spurious.
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Figure 2. Frequency stabilization diagram (Mini-Mast structure; PO-MOESP; 10% added white measurement noise).
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Figure 3. VAF values. (Mini-Mast structure; PO-MOESP; 10% added white measurement noise).
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4.1.3. Remarks. In comparison to Table 2, the dispersion
metrics for the first mode of the VARMAXmodel result
somehow amplified while for the rest of the structural
modes suppressed. While the problem of estimating the
vibration modes of the Mini-Mast structure is indeed
very challenging, since the three trailing modes are
inherently characterized by very small contribution
(see the dispersion metrics in Table 1), PO-MOESP
results in better performance than 2SLS, as the

estimated dispersion metrics of the first two dominant
modes are more close to the true ones.

4.2. Experimental structure

In this section the proposed dispersion analysis frame-
work is applied to the structural identification problem
of a suspended steel subframe flexible structure, which
is described in Abdelghani et al. (1997). The data set

0 2 4 6 8 10 12 14 16

10

15

20

25

Frequency (Hz)

S
ta

te
 O

rd
er

Figure 4. Frequency stabilization diagram (Mini-Mast structure; 2SLS; 10% added white measurement noise).

Table 2. Estimated vibration modes, modal dispersions and modal error norms (Mini-Mast structure; PO-MOESP; 10% added white

measurement noise). Damping corresponds to the real part of the continuous-time eigenvalues. Structural modes are in boldface.

Mode fn ðHzÞ Damping ��,n,2 ��,n,1
���,n,2

���,n,1
�ln,1

1 0.8008 0.08873 84.6840 97.3838 0.372 0.388 0.618

2 0.8016 0.09061 227.5447 250.8549 1.000 1.000 1.000

3 2.2657 0.83189 0.0753 0.0868 0.000 0.000 0.001

4 4.3641 0.32235 0.3461 0.3655 0.002 0.001 0.021

5 6.1002 0.40026 0.6935 0.7428 0.003 0.003 0.019

6 6.1525 0.37787 1.8096 1.9646 0.008 0.008 0.029

7 11.9081 0.76971 0.0322 0.0408 0.000 0.000 0.001
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Figure 5. BIC criterion. (Mini-Mast structure; 2SLS; 10% added white measurement noise).
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(8523 samples per channel, sampling frequency
Fs ¼ 1024Hz) is available thanks to the SISTA
Identification Database (De Moor, n.d.) and it consists
of 2 force input signals and 28 vibration acceleration
responses around the structure. The input–output data
set used for the identification tasks consists of the first
4000 samples of both the input channels and of six
output channels (node numbers 1, 2, 12, 13, 16, and
26). The same methods as before are utilized to the
estimation of the structure. It is noted that in order to
be consistent to previously published results for the

same structure (Abdelghani et al., 1997), the analysis
concentrated to modes within the ½25 512�Hz frequency
band and for damping between 0.0001% and 50%.

4.2.1. PO-MOESP identification. As nonparametric ana-
lysis shows the existence of at least 10 to 12 modes
(Abdelghani et al., 1997), the number of block rows
that correspond to the size of the associated Hankel
matrix is chosen to be equal to 70 and model orders
that vary from 20 to 40 are estimated. The results are
displayed in Figures 6 and 7, again in the form of

Table 3. Estimated vibration modes, modal dispersions and modal error norms (Mini-Mast structure; 2SLS; 10% added white

measurement noise). Damping corresponds to the real part of the continuous-time eigenvalues. Structural modes are in boldface.

Mode fn ðHzÞ Damping ��,n,2 ��,n,1
���,n,2

���,n,1
�ln,1

1 0.8012 0.08905 196.2879 211.0292 0.607 0.516 0.737

2 0.8015 0.09067 323.6243 408.8576 1.000 1.000 1.000

3 2.2675 3.29703 0.2058 0.2851 0.000 0.000 0.000

4 2.8817 2.09023 0.1732 0.1888 0.000 0.000 0.000

5 4.3644 0.54041 0.4839 0.5073 0.001 0.001 0.010

6 4.4403 2.50566 0.1056 0.1322 0.000 0.000 0.000

7 6.1136 0.56398 0.8794 1.0762 0.003 0.003 0.012

8 6.1476 0.43014 2.0536 2.4349 0.006 0.006 0.022

9 7.9768 2.64781 0.0828 0.1057 0.000 0.000 0.001

10 8.3173 3.12301 0.1556 0.2062 0.000 0.001 0.001

11 9.7927 2.27132 0.0297 0.0371 0.000 0.000 0.000

12 9.9316 4.19184 0.0761 0.0613 0.000 0.000 0.001

13 11.6239 2.60061 0.1178 0.1453 0.000 0.000 0.001

14 11.6302 3.66401 0.1361 0.1121 0.000 0.000 0.001

15 12.8610 4.64306 0.0898 0.0926 0.000 0.000 0.001

16 13.4140 2.98142 0.0758 0.0952 0.000 0.000 0.000

17 14.8540 2.94889 0.0396 0.0398 0.000 0.000 0.001

18 15.3772 4.38050 0.0778 0.1089 0.000 0.000 0.000

19 16.6239 5.36768 0.0959 0.1024 0.000 0.000 0.001
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Figure 6. Frequency stabilization diagram (Steel subframe structure; PO-MOESP).
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frequency stabilization and VAF diagrams, respect-
ively. From the latter figure a model of order n¼ 30 is
suggested but, as can be seen in Figure 6, some modes
are stabilized in higher orders. This leads to the selec-
tion of n¼ 37 as the appropriate state order.

Table 4 displays the dispersion metrics and the
modal error norms of the selected model. It is evident
that the stochastic vibration energy is dispersed among
many modes and that most of the energy is concen-
trated at the ½200 350�Hz band, while an additional
mode (the 14th one, at 417:465Hz) also retains high
energy content. Two modes, the 4th and the 16th, are
suspicious due to their very low dispersion metrics.
Moreover, a clear disagreement between the modal dis-
persion metrics and the modal error norms is observed,
as the latter indicate that most of the energy is

concentrated at the ½400 470�Hz band. This result is,
however, contradictory to the indications from the non-
parametric estimates, which comply to the dispersion
analysis ones.

4.2.2. 2SLS identification. The results of the estimation of
VARMAX(k, kþ 1, k, 0) models for k ¼ 4� 15
are depicted in Figures 8 and 9. Although the BIC cri-
terion attains its minimum for k¼ 8, the
VARMAX(10,11,10,0) mode was finally selected, since
it seems that above this order the frequencies start to
stabilize (Figure 8). Thus, again overdetermination
proves unavoidable. As illustrated in Table 5, 15 vibra-
tion modes were identified here as well, while dispersion
analysis discarded 8 more as spurious. Again, disagree-
ment with the modal error norm is obvious.

Table 4. Estimated vibration modes, modal dispersions, and modal error norms (Steel subframe structure; PO-MOESP). Only

modes within the ½25 512�Hz frequency band and for damping between 0.0001% and 50% are shown. Modes identified as structural

are in boldface.

Mode fn ðHzÞ Damping ��,n,2 ��,n,1
���,n,2

���,n,1
�ln,1

1 62.261 0.656 64.7930 106.7569 0.1850 0.1603 0.0163

2 119.002 0.166 31.1569 49.4391 0.0890 0.0743 0.0371

3 154.668 0.085 16.3832 30.3043 0.0468 0.0455 0.0063

4 156.534 0.198 0.8083 1.3510 0.0023 0.0020 0.0007

5 192.486 0.260 26.1539 43.2756 0.0747 0.0065 0.0087

6 214.975 0.118 57.1020 83.6428 0.1630 0.1256 0.0005

7 229.442 0.158 350.2189 665.8102 1.0000 1.0000 0.0142

8 239.335 0.264 135.4418 228.1775 0.3867 0.3427 0.0176

9 286.755 0.183 112.1656 222.7348 0.3203 0.3345 0.0157

10 321.134 0.151 43.3165 67.6552 0.1237 0.1016 0.0072

11 333.946 0.160 165.3042 261.0006 0.4721 0.3920 0.0154

12 352.204 0.248 82.5539 136.9826 0.2357 0.2057 0.0196

13 398.072 0.153 11.1431 20.0276 0.0318 0.0301 0.2510

14 417.465 0.105 143.6546 241.0659 0.4102 0.3621 1.0000

15 467.308 0.206 10.1207 16.7363 0.0289 0.0251 0.2000

16 491.142 0.271 0.6115 0.9594 0.0017 0.0014 0.0097

20 22 24 26 28 30 32 34 36 38 40
60

70

80

90

State Order

V
A

F
 (

%
)

Figure 7. BIC criterion. (Steel subframe structure; PO-MOESP.)
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Table 5. Estimated vibration modes, modal dispersions and modal error norms (Steel subframe structure; 2SLS). Only modes within

the ½25 512�Hz frequency band and for damping between 0.0001% and 50% are shown. Modes identified as structural are in boldface.

Mode fn ðHzÞ Damping ��,n,2 ��,n,1
���,n,2

���,n,1
�ln,1

1 62.250 0.655 39.4391 60.5168 0.0239 0.0315 0.4439

2 96.373 43.300 0.5276 0.5420 0.0003 0.0003 0.0018

3 119.006 0.170 318.0198 347.2865 0.1925 0.1806 0.4320

4 154.655 0.089 25.8525 28.9100 0.0157 0.0150 0.4843

5 156.309 0.444 2.9007 3.3818 0.0018 0.0018 0.0182

6 192.480 0.257 46.2405 53.2194 0.0280 0.0277 0.0005

7 204.435 20.427 2.2038 2.3542 0.0013 0.0012 1.0000

8 214.976 0.128 246.2037 275.4982 0.1490 0.1433 0.0002

9 229.445 0.155 1651.8599 1922.6608 1.0000 1.0000 0.1869

10 239.328 0.259 130.6726 229.2881 0.0791 0.1193 0.5156

11 286.749 0.185 109.3640 200.7942 0.0662 0.1044 0.7421

12 307.205 15.356 0.8830 1.7051 0.0005 0.0009 0.6274

13 319.253 10.115 1.1054 1.2147 0.0007 0.0006 0.4440

14 321.128 0.159 23.5248 34.5900 0.0142 0.0180 0.0002

15 333.951 0.156 223.2171 252.8298 0.1351 0.1315 0.8450

16 352.215 0.248 39.2654 75.0049 0.0238 0.0390 0.3062

17 362.852 10.066 4.3039 4.6083 0.0026 0.0024 0.1511

(continued)
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Figure 8. Frequency stabilization diagram (Steel subframe structure; 2SLS).
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Figure 9. BIC criterion (Steel subframe structure; 2SLS).
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4.2.3. Remarks. Just as in the Mini-Mast space truss, the
PO-MOESP method is characterized by greater accur-
acy and modest overdetermination, while the 2SLS
expectedly requires higher orders, in order to capture
the structural dynamics. Regarding the dispersion met-
rics, their performance is similar in both cases, qualify-
ing the same natural frequency (at about 229Hz) as the
dominant one. However, both the ln,2 and ln,1 metrics
of the 2SLS result considerably higher than the corres-
ponding values of the PO-MOESP.

5. Conclusions

The aim of this study was to present a novel framework
for model assessment in structural identification,
emphasizing the crucial issue of order estimation. To
this end, the state-space model representation was used
and a dispersion analysis framework was formulated on
the basis of a modal decomposition of the output’s
covariance matrix. Correspondingly, dispersion metrics
were defined in order to quantitatively assess the con-
tribution of a specific structural mode to the total sto-
chastic vibration energy under wideband excitation. It
was then shown how these metrics can be implemented
in an inverse framework for the validation of the state
order. Consequently, the method was generalized to
cover transfer function model representations as well.
Thus, a global characterization was attributed, in the
sense that the proposed method can be be used to val-
idate any model-based identification process, or com-
pare diverse methods under a common tool.

The application of the method to well-known simu-
lated and experimental structural identification prob-
lems produced encouraging results and revealed the
usability of the dispersion metrics to both the extrac-
tion of structural modes and the determination of
spurious ones, which in many cases are stabilized in
the relative diagrams. However, further research is
required and some critical issues, like the thresholds
under which a mode is characterized as spurious, are
under ongoing investigation. Moreover, the application
of the method to operational modal analysis and
output-only identification is of immediate concern.

In this respect, it would be very interesting to explore
the possibility of integrating the proposed method to
operations such as the clearing of frequency stabiliza-
tion diagrams and the automated modal analysis.

Note

1. Throughout the text, parentheses refer to continuous

quantities, and brackets refer to discrete quantities. Bold

symbols designate matrices and vectors. Hats notate esti-

mators/estimates, and E{�} denotes expectation.
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