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Abstract
This paper aims to introduce an index which is able to assist the recognition of Olive Oil 
Mill Wastes (OOMW) disposal areas using multispectral satellite images. For this purpose 
several ground spectroradiometric measurements in the range of 450 - 900 nm have been 
collected at a variety of targets. The samples were initially resampled to the GeoEye-1 
sensor using the appropriate Relative Spectral Response Filter (RSR) and then scatter plots 
and spectral signatures were projected. Then an evaluation of nine widely used vegetation 
indices was performed. This analysis indicated that, Perpendicular Vegetation Index (PVI), 
Transformed Soil Adjusted Vegetation Index (TSAVI) and Soil and Atmospherically 
Resistant Vegetation Index (SARVI) are the most efficient indices to enhance the detection 
of Olive Mill Waste disposal areas. Moreover, correlation as well as separability analysis 
have shown than blue and near infrared (NIR) spectral bands are the most suitable for 
interpretation purposes. The Olive Mill Waste index was applied also to GeoEye-1 in 
different cases studies in the island of Crete.
Keywords: Olive Oil Mill Waste Index, spectroradiometer, separability analysis, GeoEye, 
Crete.

Introduction
Management of olive mill waste water (OMWW) remains a critical and unsolved problem, 
especially in regions where huge quantities of wastes are produced. Indeed the olive 
mill wastes (OMW) generated from olive oil extraction is a major environmental issue, 
particularly in Mediterranean areas [Dermeche et al., 2013]. It is estimated that almost 750 
million productive olive trees exists worldwide, while a majority of them (≈98%) being 
located in the Mediterranean region, where the three major olive oil producers (Spain, 
Italy, and Greece) worldwide are located [Roig et al., 2006; Asfi et al., 2012]. Therefore 
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olive oil industry is very important in Mediterranean countries, both in terms of wealth and 
tradition and it is considered to be as one of the driving sectors of the agricultural economy 
of the Mediterranean basin. OMWW is mainly composed of water (80-83%), organic (15-
18%) and inorganic compounds (2%). Although OMWW can be used as natural, low-cost 
fertilizer, it is non-biodegradable and therefore unsuitable for further use as fertilizer or as 
irrigation water [Niaounakis and Halvadakis, 2006].
In the last years efforts have been made for efficient and ecological management of OOMW 
disposal areas as well as for their long term monitoring [Kavadias et al., 2014]. In order to 
avoid environmental impacts, which include soil and air pollution, olive mills were forced 
to treat or eliminate this OMWW using a variety of techniques and technologies. To this 
direction current research efforts have been oriented towards the development of efficient 
treatment technologies, namely physical, chemical and biological processes as well as 
various combinations of them [Asfi et al., 2012]. In some Mediterranean countries, untreated 
OMWW are often discharged directly into sewer systems and water streams or disposed in 
evaporation ponds/lagoons and soils despite the fact that such management practices are 
not allowed in most Mediterranean countries [Hanifi and El Hadrami, 2009]. Moreover, no 
specific European Commission legislation exists today for OMWW management and each 
country issues different guidelines [Komnitsas et al., 2011].
OMWW disposal areas are generally scattered in different places with diverse local 
topographical and geological settings, while their identification might be difficult and time 
consuming if it is based purely on in-situ observations. Alternative, satellite remote sensing 
employing multispectral images seems to be ideal for the detection and systematic monitoring 
of OMWW disposal areas. As Agapiou et al. [2015] have recently shown, medium and 
high resolution images can be used to detect OMWW. However difficulties might exist 
in classification processing as well as detection algorithms due to the spectral variance of 
OMWW. This problem becomes more difficult in some cases due to the phenomenon of the 
mixed pixels in the satellite images.
This paper aims to investigate further this spectral variance as well to identify spectral 
windows where satellite images can be used so as to enhance the final results and help the 
recognition of OOMWs. For this purpose spectroradiometric measurements were taken 
from a variety of samples. The spectral signatures were then post-processed through a 
variety of remote sensing analyses including discriminate analysis, vegetation indices and 
correlation analysis.

Methodology
During the disposal of oil wastes as well as temporal changes of OOMW disposal areas, 
different spectral signatures may be recorded in these sites. Indeed, fresh olive oil mill waste 
may sometimes mixed with soil, water or even dry olive oil mill wastes etc. Therefore, in 
order to accomplish the scientific objectives of this study, laboratory spectroradiometric 
measurements were taken over the following samples: (a) fresh olive wastes (same day 
production); (b) dry olive wastes; (c) olive wastes mixed with water (25%); (d) olive wastes 
mixed with water (50%); (e) olive wastes mixed with soil (25%); (f) olive wastes mixed 
with water (50%) and soil (50%) and (g) bare soil. The soil type of the samples was skeletic-
calcaric- and calcaric-lithic with a smooth texture and brown colour.
The samples were recently taken from field campaigns conducted this year (2015) by the 
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authors. For each one of these samples, 50 spectroradiometric measurements were taken 
using a GER1500 spectroradiometer. The instrument was set up to collect an average 
of 5 measurements per sample. GER 1500 spectroradiometer has the ability to record 
electromagnetic radiation from visible to NIR spectrum (350-1050 nm) using 512 different 
channels, with a range of ~1.5 nm. Moreover, a lambertian spectralon panel was also used 
in order to measure the incoming solar radiation and calibrate all the measurements taken 
over the samples. The field of view (FOV) of the instrument was set to 4 degrees (≈0.02 
m2 taken from a height of 1.2 m). At first the incoming radiance was calculated based on 
the reference measurement at the spectralon panel, while the following measurements were 
taken over the sample.
Then these narrowband measurements were simulated with the high resolution sensor 
GeoEye-1 using the appropriate Relative Spectral Response (RSR) filter which was obtained 
from the operator’s website. The spectral band response ρ was simulated by integrating the 
measured radiances for each target, with the spectral response curve applied as a weighting 
function, i.e:
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where R is the measured reflected radiation at the top of the canopy as a function of 
wavelength λ, w is the relative response of the broadband sensor and I is the corresponding 
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Based on these broadbnd reflectance values several vegetation indices as shown in 
Table 1 were calculated. In detail the Normalized Difference Vegetation Index (NDVI); 
Simple Ratio (SR); Perpendicular Vegetation Index (PVI); Ratio Vegetation Index (RVI); 
Transformed Soil Adjusted Vegetation Index (TSAVI); Modified Soil Adjusted Vegetation 
Index (MSAVI); Soil and Atmospherically Resistant Vegetation Index (SARVI); DVI 
(Difference Vegetation Index) and Green Normalized Difference Vegetation Index (Green 
NDVI) were examined. Later, the relative differences between all samples and vegetation 
indices were calculated.
In parallel, the spectral similarity of the samples in the range of 450-900 nm was at first 
examined through the determination coefficient (R2) of all samples in this spectral range. 
In addition, two main separability indices were evaluated: (a) Euclidean distance and 
(b) Cosine similarity. Separability among indices was performed in order to identify the 
spectral regions which can be used for the enhancement of the OOMW identification in 
satellite images.
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Table 1 - Vegetation indices used for the aims of the study.

No Vegetation Index Equation Reference

1 NDVI (pNIR - pR)/(pNIR + pR) [Rouse et al., 1974] 

2 SR pNIR/pR [Jordan, 1969]

3 PVI
(ppNIR -α pR - b)/(1+α2)
pNIR,soil = α pR,soil+b
a = 1.253 and b = 0.030

[Richardson and Wiegand, 
1977]

4 RVI PR/pNIR [Pearson and Miller, 1972]

5 TSAVI 
[α(pNIR-α pNIR - b)]/[ (pR +α pNIR -
αb+0.08(1+α2))]
pNIR,soil = α pR,soil+b

[Baret and Guyot, 1991]

6 MSAVI [2 pNIR+1-[(2 pNIR+1)2-8(pNIR - pR)]1/2]/ 2 [Qi et al., 1994]

7 SARVI 
(1+0.5) (pNIR - pRB)/( pNIR + pRB +0.5)
PRB = pR - γ (pB - pR)
γ = 1

[Kaufman and Tanré, 1992]

8 DVI pNIR - pR [Tucker, 1979]

9 Green NDVI (pNIR - pG)/( pNIR + pG) [Gitelson, 1996]

Results
Spectral Profiles
Raw spectral signatures collected from all samples are shown in Figure 1. Fresh olive 
wastes (same day production) (Fig. 1a) tends to give very low reflectance values in the blue 
part of the region while reflectance is gradually increased in the NIR part of the spectrum 
up to 30%. Similar results regarding the dry olive wastes targets (Fig. 1b) are observed, 
but with lower reflectance values in the NIR part of the spectrum. Analogous profile can 
be seen for olive wastes mixed with water (50%) and soil (50%) (Fig. 1f) but with lower 
reflectance values. A small increase of the reflectance is recorded for targets olive wastes 
mixed with water (25%) (Fig. 1c) as well as for targets of olive wastes mixed with water 
(50%) (Fig. 1d). Olive wastes mixed with soil (25%) (Fig. 1e) give lower reflectance values 
in the NIR part of the spectrum compare to the fresh olive wastes (same day production), 
but higher values in the blue and green parts of the spectrum. Finally Figure 1g indicates 
the reflectance profile over bare soil target.
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Figure 1 - Spectral signatures in the range of 450-900 nm for (a) fresh olive wastes (same day 
production); (b) dry olive wastes; (c) olive wastes mixed with water (25%); (d) olive wastes mixed 
with water (50%); (e) olive wastes mixed with soil (25%); (f) olive wastes mixed with water (50%) 
and soil (50%) and (g) bare soil.

Scatter plots based on the reflectance values for the GeoEye-1 sensor are shown in Figure 
2. As it is observed at the Blue - Green scatter plot, all samples (except soil) tend to give 
similar reflectance values. Some differences can be recorded in the other three scatter plots 
(Blue-NIR; Red-NIR and Green-NIR) where the different samples seem to be grouped 



Agapiou et al.  Discriminant analysis of olive oil mill wastes using spectroradiometers

798

with a small distance in the 4-D spectral space. However since this spectral distance is 
quite small (i.e. <5% difference at reflectance values), errors in classification processing 
are expected due to the spatial resolution and mixed pixels. It should be also noted that soil 
and the different targets of OOMW examined here tend to give dissimilar reflectance values 
in all scatter plots. This allows distinguishing these two major group targets (i.e. soil and 
OOMW) in multispectral images such as the GeoEye-1. The small variations and changes of 
the “Fresh olive waste (same day production)” are also noticeable. Small reflectance values 
are observed for these targets in the blue and green part of the spectrum while the reflectance 
is increasing in the red and NIR spectrum. This also indicates that the spectral profile of the 
OOMW is changing in time in the presence of sun (i.e. dry olive waste), rain (i.e. OOMW 
with water) or due to the disposal of the environment (i.e. OOMW mixed with soil).

Figure 2 - Scatter graph of the Blue-Green band; Blue-NIR band; Red-NIR and Blue-Green 
bands of the samples.

Simulated spectral signatures to the GeoEye-1 sensor from all samples (fresh olive wastes 
(same day production); dry olive wastes; olive wastes mixed with water (25%); olive wastes 
mixed with water (50%); olive wastes mixed with soil (25%); olive wastes mixed with 
water (50%) and soil (50%) and bare soil) are shown in Figure 3 along with their standard 
deviations. The dataset was resampled to the GeoEye-1 sensor using Equations 1 and 2. As 
demonstrated in Figure 3, close similarities between the samples do exist, which was also 
observed from the scatter plots (see Fig. 2). Such spectral similarities may influence post-
processing analysis of satellite data such as classification techniques or detection analysis. 
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In general in all samples the lowest reflectance is recorded in the blue band (450-520nm) 
while higher reflectance values are observed in the NIR part of the spectrum.

Figure 3 - Average spectral signatures as simulated to the GeoEye-1 sensor with their standard 
deviations

Vegetation Indices
Well established equations were applied (Tab. 1) in order to analyse the data collected and 
to investigate the potential use of the vegetation indices. All spectral signatures were re-
calculated to the nine different vegetation indices (based on the GeoEye-1 RSR filter) and 
their statistics (i.e. mean values) were used for comparison analysis. Relative differences 
between all samples and all vegetation indices are catalogued in Table 2. Higher relative 
differences for each sample are also highlighted in the table. As shown some vegetation 
indices tend to give higher relative difference between the samples. These indices are the 
PVI, TSAVI and SARVI. Indeed these three vegetation indices tend to give more than 
95% of the total higher relative differences compared to the rest of the indices. Although 
vegetation indices were not designed to distinguish OOMW areas their application in 
remote sensing images can be useful as demonstrated in this example. SARVI index seems 
to be quite efficient for the detection of OOMW areas since it minimizes the atmospheric 
effects as well as the soil background noise in the image.
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Table 2 - Relative difference (%) of the vegetation indices for the seven different groups of targets 
examined in this study ((a) fresh olive wastes (same day production); (b) dry olive wastes; (c) olive 
wastes mixed with water (25%); (d) olive wastes mixed with water (50%); (e) olive wastes mixed 
with soil (25%); (f) olive wastes mixed with water (50%) and soil (50%) and (g) bare soil.). Bold 
and grey number indicates the higher relative difference observed in each group of targets.

Targetss NDVI SR PVI RVI TSAVI MSAVI SARVI DVI Green NDVI
a-bb 26 24 35 24 35 19 8 25 16
a-cc 33 28 43 28 46 25 14 28 22
a-dd 25 24 44 23 34 19 7 35 18
a-ee 40 32 60 32 58 31 39 41 25
a-ff 28 26 61 26 39 22 62 52 18
a-gg 67 43 112 42 108 58 6 55 44
b-aa 26 24 35 24 35 19 8 25 16
b-cc 8 5 9 5 13 6 6 4 6
b-dd 1 0 10 0 1 0 1 11 2
b-ee 16 9 31 9 28 13 46 18 9
b-ff 3 2 33 2 5 3 57 31 2
b-gg 50 20 127 20 117 44 14 35 30
c-aa 33 28 43 28 46 25 14 28 22
c-bb 8 5 9 5 13 6 6 4 6
c-dd 8 5 2 5 14 6 7 7 4
c-ee 8 4 23 4 16 7 50 15 3
c-ff 5 3 25 3 8 3 53 28 4
c-gg 44 16 134 16 122 39 20 31 24
d-aa 25 24 44 23 34 19 7 35 18
d-bb 1 0 10 0 1 0 1 11 2
d-cc 8 5 2 5 14 6 7 7 4
d-ee 17 9 21 9 29 13 45 8 7
d-ff 4 2 24 2 6 3 58 21 0
d-gg 50 21 135 21 117 44 13 25 28
e-aa 40 32 60 32 58 31 39 41 25
e-bb 16 9 31 9 28 13 46 18 9
e-cc 8 4 23 4 16 7 50 15 3
e-dd 17 9 21 9 29 13 45 8 7
e-ff 13 7 3 7 23 10 82 14 7
e-gg 37 12 159 12 133 32 34 17 21
f-aa 28 26 61 26 39 22 62 52 18
f-bb 3 2 33 2 5 3 57 31 2
f-cc 5 3 25 3 8 3 53 28 4
f-dd 4 2 24 2 6 3 58 21 0
f-ee 13 7 3 7 23 10 82 14 7
f-gg 48 18 163 18 119 41 66 3 28
g-aa 67 43 112 42 108 58 6 55 44
g-bb 50 20 127 20 117 44 14 35 30
g-cc 44 16 134 16 122 39 20 31 24
g-dd 50 21 135 21 117 44 13 25 28
g-ee 37 12 159 12 133 32 34 17 21
g-ff 48 18 163 18 119 41 66 3 28
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Correlation analysis
The correlation analysis was based on the narrowband reflectance values of the samples. 
The Pearson correlation coefficient (R), is used to measure the strength of the linear 
relationship between two variables (in this case the association between the reflectance in 
different wavelengths).
Pearson correlation coefficient will allow identifying which of the GeoEye-1 spectral bands 
best discriminate the OOMW targets. Figure 4 indicates the one minus the determintion 
coefficient (1-R2) which shows that higher values (indicated with red colour) are observed 
in the two edges of the spectrum examined in this study (450 nm and 900 nm). These 
wavelengths correspond to the blue and NIR bands of the GeoEye-1 sensor. For the rest 
of wavelengths a strong correlation is visible (< 0.3 in Fig. 4). This conclusion is also in 
line with the results of Figures 2 and 3 where visible bands tend to give similar reflectance 
values while the NIR band seems to be more appropriate for detection of OOMW areas in 
satellite imagery.

Figure 4 - Correlation coefficient results in the range of 450 nm - 900 
nm. The figure indicates the one minus the sample correlation.

Separability analysis
Two main separability indices were used to identify spectral regions which are capable 
to distinguish better the spectral diversity of the different targets examined in this study. 
The purpose of these indices is to identify whether a group of observations X is separable 
from another group of observations Y. In this case the Euclidean distance and the Cosine 
similarity indices were examined. These indices are widely used in classification techniques 
of satellite images. The Euclidean distance is used in classifications where the minimum 
distance algorithm is applied, while the Cosine similarity index is exploited to Spectral 
Angle Mapper (SAM) classification techniques [Campbell and Wynne, 2011].
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Euclidean distance
This index simply calculates the Euclidean distance between a pair of observations. The 
final results from the Euclidean distance index are shown in Table 3. Grey values indicate 
the highest separability recorded from all dataset.

Table 3 - Euclidean distance between all reflectance (%) samples in the range of 450 nm-900 nm.
450 nm 500 nm 550 nm 600 nm 650 nm 700 nm 750 nm 800 nm 850 nm 900 nm

450 nm 0

500 nm 18 0

550 nm 50 31 0

600 nm 85 67 35 0

650 nm 117 99 68 34 0

700 nm 160 143 113 80 46 0

750 nm 212 195 167 135 102 56 0

800 nm 259 243 216 185 153 108 52 0

850 nm 301 286 260 230 199 154 99 48 0

900 nm 338 323 298 269 239 194 140 89 41 0

Cosine similarity
The cosine similarity index refers to the similarity between two vectors by calculating the 
cosine of the angle formed by these vectors. The cosine similarity is given by Equation 
3. The final results from the Cosine similarity index are shown in Table 4. Grey values 
indicate the highest separablity recorded from all dataset.

cosine similarity cos 1 p  q p  p q  qx x x x x x= ( ) = − ( ) ( )( )( )ϕ . / . .Τ ΤΤ
0..5

3[ ]

Table 4 - Cosine similarity distance from all samples in the range of 450 nm-900 nm.
450 nm 500 nm 550 nm 600 nm 650 nm 700 nm 750 nm 800 nm 850 nm 900 nm

450 nm 0.000

500 nm 0.001 0.000

550 nm 0.007 0.002 0.000

600 nm 0.011 0.005 0.001 0.000

650 nm 0.014 0.008 0.003 0.001 0.000

700 nm 0.022 0.016 0.012 0.009 0.003 0.000

750 nm 0.038 0.033 0.029 0.025 0.015 0.004 0.000

800 nm 0.057 0.053 0.049 0.045 0.031 0.014 0.003 0.000

850 nm 0.079 0.075 0.072 0.068 0.051 0.028 0.011 0.003 0.000

900 nm 0.100 0.096 0.094 0.088 0.069 0.043 0.021 0.008 0.002 0.000
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The final results from both separability indices indicate that 450nm (blue band) and 900 
nm (NIR band) are the best GeoEye-1bands for the detection of OOMW targets. Therefore 
using these spectral regions (i.e. Blue and NIR in the GeoEye-1 image) OOMW areas 
should be enhanced better than any other spectral combination.

Discussion
Separability analysis identified that the blue and NIR part of the spectrum are the optimum 
two wavelength regions for the detection of OOMW. This has been indicated and confirmed 
by the correlation analysis (see Fig. 4). Indeed correlation analysis shows that these two 
spectral regions at around 450 nm and 900 nm tend to be the most un-correlated. In a 
similar way the results from the scatter plots and the spectral signatures of the target (see 
Fig. 2 and Fig. 3, respectively) indicate that the maximum spectral distance is observed in 
the Blue and NIR bands of the GoeEye-1 sensor.
These observations are also in agreement with the outcomes from the vegetation indices 
analysis. As it was found, the most promising indices were the PVI, TSAVI and SARVI. 
The calculation for the last two indices is based on the blue band. Although the blue band 
is mainly used as a “correction” coefficient to these indices (i.e. removal of atmospheric 
effects in the satellite images), its use gives the highest relative difference among all the 
broadband vegetation indices examined here.
In order to evaluate the outcomes from the ground data analysis two GeoEye-1 images were 
used. The first image was taken over the island of Crete on June 16th 2013 while the second 
one on May 17th 2014. Both images were radiometrically, i.e. at top of the atmosphere 
reflectance, and geometric corrected using a 2nd order polynomial transformation and 
known Ground Control Points (GCPs). The images were also topographic corrected using 
the ASTER GDEM data. In addition, atmospheric correction was also applied based on 
the Darkest Pixel (DP) equation [Hadjimitsis et al., 2004]. It has been shown by other 
researchers [Song et al., 2003; Chrysoulakis et al., 2010] that the DP is an effective 
atmospheric correction, using solely image based data (i.e. dark targets).
Based on the outcomes found from the discriminant analysis, an index is proposed which 
aims to help the recognition of OOMWs by interpretation from the users. This index, shown 
in equation 4, is calculated as the normalized ratio of the reflectance difference between the 
NIR and the blue bands. The range of the index is from -1 up to 1 where negative values 
indicate targets with higher reflectance in the blue band compared to the NIR where positive 
values the opposite Based on the previous analysis and studying the spectral behaviour of 
the OOMW disposal areas, such targets are expected to give positive results within the 
range of 0.20 -0.50 (Fig. 3).

Normalized IndexOOMW NIR Blue NIR Blue= − + [ ]( ) / ( )ρ ρ ρ ρ 4

The proposed formula is also known as Normalized Difference NIR/Blue Blue-normalized 
difference vegetation index (BNDVI index) as this is discussed by other researchers [Yang 
et al., 2004; Hancock and Dougherty, 2007; Wang et al., 2007]. The above index was applied 
in two cases studies using the two GeoEye-1 images. Figure 5 presents the results after the 
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application of the OOMW index for the image taken on June 16th 2013. As demonstrated 
in this figure, variance (i.e. range 0.30 from 0.20 - 0.50) within the OOMW disposal areas 
can be observed due to different treatment, composition as well the period of processing of 
the olive wastes. Vegetated areas can be easily recognized since they tend to give positive 
values with a range 0.80. In general shadows give also negative values as demonstrated in 
Figure 5.
Figure 6 (top), presents the results after the application of the OOMW index for the second 
case study using the image taken on May 17th 2014. Range values between 0.20 - 0.50 
of the index are marked with green colour. As it is observed spectral similarities can be 
found between OOMW disposal areas and while soil, asphalt roads or building. In the 
absence of these targets (i.e. white soil, asphalt roads or buildings) the results are found 
very promising since OOMW disposal areas can be easily detected (Fig. 6, bottom). Indeed 
using simple masking techniques as those presented in Figure 6 (bottom) (threshold values 
of the reflectance at the blue band, ignore pixels with more than 5% in the blue band) false 
true results can be removed and therefore improve the detection of OOMW disposal areas.

Figure 5 - Example from OOMW disposal areas in Crete as seen from GeoEye-1 image taken 
in June 16th 2013 after the application of the OOMW index. OOMW disposal areas are circled. 
Other targets are also mentioned with their range values of the OOMW index.
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Figure 6 - Example from OOMW disposal areas in Crete as seen from GeoEye-1 image taken in 
17th May 2014 after the application of the OOMW index (top). Green areas, within the range 
of 0.20 - 0.50 are likely OOMW targets. Truth OOMW disposal area is circled. Masked areas, 
indicated with grey colour using as threshold of 5% reflectance in the blue band can be used to 
remove false true results (bottom).
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OOMW index is very sensitive to the atmospheric conditions of the area, so atmospheric 
correction of the satellite images is essential prior to the calculation of the index. Rayleigh 
scattering can change the reflectance values significantly especially in the blue part of the 
spectrum giving out of range values than those presented in this paper. From examples 
carried out from the authors (not shown here) it was found that without atmospheric 
correction, OOMW index can give even negative values in pixels with OOMW disposal 
areas. Image-based atmospheric corrections algorithms, as those of the DP method, can be 
easily applied by users and solved this problem [Agapiou et al., 2011].

Conclusions
This paper aims to highlight the contribution of satellite remote sensing as a tool for 
systematic and effective way for monitoring OMWW disposal areas. Previous studies have 
shown [Agapiou et al., 2015] that remote sensing can be used as an alternative and effective 
tool for the detection of OMWW areas.
This paper has investigated several samples related with OOMW using ground 
spectroradiometers and was able to report the performance of some indices and the employed 
satellite bands. Discriminant analysis was carried out in the samples collected and the final 
results have shown that the NR and Blue spectral bands of the GeoEye-1 can be used to 
enhance the results in the satellite images. This conclusion was observed in a variety of 
remote sensing analysis: from simple scatter plots and spectral signatures, to vegetation 
indices as well to separability indices.
An index that can help the recognition of OOMWs disposal areas was applied to GeoEye-
1 multispectral images successfully, improving the interpretation of the image. Although 
OOMW index (i.e. same as BNDVI index) can help the detection of OOMW disposal areas, 
other targets such as soil and roads can be seen within the same range value, and therefore 
interpretation from users is essential so as to recognize the real OOMW areas. Empirical 
values indicate that the range between 0.20-0.50 of the OOMW index is appropriate to 
distinguish OOMW disposal areas from the surrounding areas. However, radiometric 
corrections including the application of atmospheric techniques to the images are essential 
prior to the interpretation and extraction of OOMW disposal areas. In this range of the 
index (i.e. 0.20-0.50) other targets can be also included. However, the application of the 
proposed index can minimize the area of interest at a satellite image, and improve therefore 
automatic extraction of OOMW areas. Indeed, techniques for the automatic detection of 
OOMW disposal areas have been proposed by the authors [Agapiou et al., 2015] taking 
into consideration also spatial characteristics (e.g. size and shape) so as to detect OOMW 
disposal areas.
It should be noticed however that the spectral reflectance of olive waste (given the olive 
waste level of purity) has to be “spectrally different” enough from surrounding targets 
in order to be distinguished from them. In addition, suitable remote sensing images have 
to be available to this aim including further the spectral resolution (NIR and blue bands) 
also radiometric, spatial and spectral, temporal resolution. Other high resolution satellite 
data can be used as well so as to detect OOMW disposal areas. Other studies perform 
by the authors (see forthcoming publications) have recently shown, IKONOS sensor has 
the potential for the detection of OOMW areas. The overall results suggest that satellite 
remote sensing images can be used sufficiently for detecting and monitoring OOMW 
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disposal areas in the whole life cycle (from fresh olive waste to mixed olive waste with 
soil). Future work of the authors will concentrate in the evaluation of other high resolution 
satellite sensors such as WorldView-2, QuickBird and Pleiades, while the potential use 
of Unmanned Aerial Vehicles (UAVs) attached with remote sensing sensors over OOMW 
areas will be attempted. Also linear and no-linear spectral unmixing techniques can be 
investigated based on ground truth data as those obtained in this paper so as to improve the 
detection of OOMW disposal areas.
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