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Global navigation satellite systems have tremendous impact and potential 
in the development of intelligent transportation systems and mobility ser-
vices and are expected to deliver significant benefits, including increased 
capacity, improved safety, and decreased pollution. However, there are 
situations in which there might not be direct location information about 
vehicles, for example, in tunnels and in indoor facilities such as parking 
garages and commercial vehicle depots. Various technologies can be used 
for vehicle localization in these cases, and other sensors that are currently 
available in most modern smartphones, such as accelerometers and gyro-
scopes, can be used to obtain information directly about the driving pat-
terns of individual drivers. The objective of this research is to present a 
framework for vehicle localization and modeling of driving behavior in 
indoor facilities or, more generally, facilities in which global navigation 
satellite system information is not available. Localization technologies 
and needs are surveyed and the adopted methodology is described. The 
case studies, which use data from multiple types of sensors (including 
accelerometers and gyroscopes from two smartphone platforms as well as 
two reference platforms), provide evidence that the opportunistic smart-
phone sensors can be useful in identifying obstacles (e.g., speed humps) 
and maneuvers (e.g., U-turns and sharp turns). These data, when cross-
referenced with a digital map of the facility, can be useful in position-
ing the vehicles in indoor environments. At a more macroscopic level, a 
methodology is presented and applied to determine the optimal number 
of clusters for the drivers’ behavior with a mix of suitable indexes.

Intelligent transportation systems (ITS) such as advanced traveler 
information systems and advanced traffic management systems 
have matured over the past few decades and are now at a point where 

they can be easily applied to many different operational scenarios. 
One of the main technologies that have supported this development 
is localization technologies, such as global navigation satellite sys-
tems (GNSS) (1, 2). GNSS have tremendous impact and potential in 
the development of ITS and mobility services; they are expected to 
deliver significant benefits including increased capacity, improved 
safety, and decreased pollution (1). Therefore, it is now possible to 
start looking at more challenging scenarios, like situations in which 
there might not be direct location information about the vehicles, for 
example, based on GNSS. Such scenarios occur not only in special 
structures, such as tunnels, but also in indoor facilities, such as park-
ing garages and commercial vehicle depots; they might even occur 
in dense urban areas (the so-called urban canyon phenomenon).

Most of these advanced systems rely on a simulation environment, 
which is initially calibrated on the basis of available data (3). How-
ever, depending on the application, it may be necessary to dynamically 
steer and adjust the operation of the model (4). Such functionality is 
supported by additional surveillance information, which becomes 
available from a multitude of sources. Depending on the nature of the 
tool (e.g., if it is aimed at planning–offline or operational–real-time 
applications), the simulation model component may be microscopic, 
macroscopic, or mesoscopic (or a combination of the two) (5). The 
data requirements of these models escalate along with the level of 
detail of the model from macroscopic-mesoscopic toward micro-
scopic models. In any case, in order to be able to monitor and adjust 
the performance of the model, the following observations are needed:

•	 Location and kinematics of vehicles and
•	 Traffic dynamics and driving patterns of drivers.

Ideally, this information would be of high accuracy and available 
for all drivers and vehicles in the modeled environment. In reality, 
compromises need to be made. For example, there are technologies, 
such as point sensors (e.g., conventional loop detectors), that offer 
information that is very limited but for the entire vehicle population 
(assuming that an adequate number of sensors is positioned strate-
gically in the network). Other technologies, such as IEEE 802.11 
fingerprinting and Bluetooth localization, offer finer information; 
they can track the vehicle location but with an accuracy of a few 
meters (Table 1). Other sensors that are currently available in most 
modern smartphones, such as accelerometers and gyroscopes, can 
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be used to obtain information directly about the driving patterns of 
the individual driver. This information can then be used to develop 
insight into the driving behavior of the driving population. For exam-
ple, driving patterns along different terrains and network features 
could be developed; these patterns would allow the operator to identify 
abnormal driving behavior for specific conditions. Furthermore, under 
certain conditions, this information could be used to infer the location 
of the vehicle (e.g., by using signals to detect special features of the 
route such as speed humps).

Although GNSS are self-contained navigation systems capable 
of providing absolute positions around the earth and in all weather 
conditions, in areas prone to difficult satellite signal reception, they 
can fail. Such areas are usually found in the urban road environment 
in tunnels and in large-scale, multistory parking facilities and depots, 
which are of particular interest in this study. In cases of limited satel-
lite availability, various augmentation schemes are used to integrate 
additional information to provide viable location information. Such 
integration schemes rely on differential GNSS (2), external sensor 
systems (7), networked-assisted GNSS techniques (8), terrain-aided 
approaches (9), or even on a combination of them. Nevertheless, 
despite the fact that GNSS-assisted systems can address the position-
ing problem successfully in many cases, the derived solution is highly 
influenced by the environment and operational scenario. Moreover, in 
the indoor environment, in which GNSS signals are entirely missing, 
other navigation solutions are deemed necessary. The use of mul-
tiple, diverse technologies for localization in the context of indoor 
and harsh environments has been of much interest in the literature 
recently (10–13) and is considered a critical source of accurate and 
reliable data for the applications considered in this research.

The objective of this research is to present a framework for vehi-
cle localization and monitoring and modeling of driving behavior in 
indoor facilities or—more generally—facilities where GNSS infor-
mation is not available. In the absence of GNSS traces, it becomes 
important to be able to locate the vehicles through other means. 
Several broad sources of information can be considered:

•	 Point measurements of vehicle crossings (e.g., through con-
ventional traffic counters);

•	 Point-to-point measurements, such as information collected 
from Bluetooth sensors;

•	 Localization of vehicles equipped with some other type of sensor 
interacting with an access point or other type of infrastructure; and

•	 Sensors (such as accelerometers and gyroscopes) available 
onboard the vehicle or on nomadic devices (such as smartphones), 
providing information about the vehicle movement and dynamics 
but not directly about its location.

These types of information can be considered complementary, since 
none provides a complete picture of the location and dynamics of all 
the vehicles at any given time. Each provides a subset of informa-
tion that when fused properly can improve the ability of an informa-
tion system to reconstruct the traffic state; this reconstruction in turn 
could be used to develop and evaluate scenarios (e.g., in the case of 
emergency conditions). In this research, the focus is on sensors from 
smartphones.

LocaLization technoLogies, needs,  
and MethodoLogy adopted

three-dimensional positioning and  
navigation of Vehicles for its

In indoor parking garages, depending on the operational scenario, 
the navigation solution may involve GNSS to get initial location 
information near the entrance (or other spot of adequate satellite 
signal reception); this information is then propagated in time by using 
other navigation sources. Such positioning systems can be classified 
according to sensor technology (radio frequency, inertial, optical 
systems, etc.), the position-fixing technique (time of arrival, round trip 
time, Doppler ranging, etc.), or their performance metrics (accuracy, 
availability, integrity, etc.). Table 1 gives an overview of the most 
commonly used positioning sensor technologies and their typical 
accuracy metrics (6, 14). To ensure high accuracy and continuity in 
the positioning solution, multisensory approaches were developed 
in which the integration strategy relies primarily on the Kalman filter 
algorithm (15). This approach has recently been extended to the 
collaborative navigation concept, in which the vehicles represent 
the nodes of a network that can exchange information to obtain an 
improved navigation solution (16, 17).

In addition to an improvement in the position performance met-
rics, the need for low-cost solutions has led to new data collection 
and processing approaches that use vehicle built-in sensor systems 
(18) and external user portable devices such as smart mobile phones 
and tablets (19). These devices are equipped with a wide range of 
sensors, from GNSS receivers through inertial sensors and magne-
tometers, and offer the possibility of collecting a massive amount 
of information at low cost. Currently, extensive research is being 
undertaken worldwide to study their performance characteristics 
and their potential for various ITS applications (20–22).

TABLE 1  Commonly Used Sensor Types for Navigation Support  
in ITS Applications (6)

Sensor or Technique
Navigation 
Information Typical Accuracy

Radio frequency (RF)
  GPS position X, Y, Z ∼10 m (DGPS 1–3 m)
  GPS velocity vx, vy, vz ∼0.05 m/s, ∼0.05 m/s,  

 ∼0.2 m/s
  Pseudolites X, Y, Z Comparable to GNSS

vx, vy, vz

  UWB X, Y, Z dm level
  IEEE 802.11  
  fingerprinting

X, Y 3–5 m 

  Bluetooth (e.g., BLE) X, Y 1–2 m
  RFID cell-based X, Y Depends on cell size
  RFID fingerprinting X, Y 1–3 m

INS
  Accelerometer atan, arad, az <0.03 m/s2

  Gyroscope Heading φ 0.5°–3°
Optical systems
  Image based X, Y, Z Few meters
  Optical sensor network X, Y, (Z optional) Few meters
  Laser X, Y, Z cm to dm

Others
  Digital compass/ 
  magnetometer

Heading φ	 0.5°–3°	

  Barometric pressure  
  sensor

Z 1–3 m 

  Temperature sensor T 0.2°C–0.5°C

Note: X, Y, and Z = geocentric Cartesian coordinates; DGPS = differential 
global positioning system; UWB = ultrawide-band; BLE = Bluetooth low energy; 
RFID = radio frequency identification; INS = inertial navigation system.
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indoor positioning aided by Wireless  
sensor networks

Indoor positioning systems usually employ wireless sensor network 
infrastructure in order to obtain vehicle location information at a 
predefined coordinate system. The most important and common 
observation metrics used for the development of positioning sys-
tems are the received signal strength, the time of arrival, the time 
difference of arrival, the angle of arrival, the Doppler ranging, 
and the phase of arrival (23). A general description of the opera-
tion of indoor positioning systems using wireless sensor networks 
is given in this section. Technical challenges and research issues 
on the implementation of indoor parking positioning systems 
aided by wireless sensor networks are discussed in the concluding 
section.

Indoor positioning algorithms are usually designed for specific 
sensor network wireless technologies. In the fingerprinting algo-
rithms, the location of the mobile terminal is found by comparing 
a radiowave signal (usually affected by propagation phenomena) 
received by an access point with a database of power values of the 
location under investigation. Fingerprinting algorithms include the 
well-known matching algorithms, k–nearest neighbors, Kalman filter, 
and neural networks. These algorithms have very good behavior if 
a stable radio propagation environment is considered. The dynamic 
nature of the radio environment makes the employment of finger-
printing algorithms infeasible, and therefore triangulation algorithms 
are recommended.

Range-based positioning algorithms are categorized into deter-
ministic and probabilistic models. The deterministic models try to 
minimize a simple sum of differences of the real measurements and 
the values in the databases. In the probabilistic models, the maxi-
mum likelihood estimator is employed, and in the cases when the 
network has some knowledge of the mobile terminal’s position, the 
optimal estimator is the minimum square error. All these algorithms 
may use

•	 Mobile terminal–based indoor positioning systems,
•	 Mobile terminal–assisted indoor positioning system designs,
•	 Indoor positioning with beacons, and
•	 Indoor positioning with moving beacons (24).

positioning Requirements in parking Facilities 
and Monitoring approach adopted

The choice of positioning technology used to monitor vehicle kine-
matics depends on the operating environment, the type of motion, 
and traffic modeling requirements. Vehicle motion in large-scale 
parking facilities and depots involves driving under geometric 
constraints realized usually by a grid corridor system, ramps, and 
access to interactions. Also, vehicles normally operate at very low 
speeds, undertake parking maneuvers, and in multistory facilities 
move between floors. Besides, modeling drivers’ behavior under 
emergency (stressful) conditions implies vehicle motion with abrupt 
changes in vehicle kinematics.

These driving conditions are closely associated with certain 
vehicle kinematic patterns, which by extension define sensor posi-
tioning characteristics. For instance, positions derived from accel-
erometer measurements cannot be very reliable at slow speeds as 
such, whereas their distributions in a macroscopic view can be very 
useful indeed. Similarly, rapid changes in the vertical datum (such 
as those encountered when moving between floors or driving over 

speed humps) can be detected by using magnetometers. The same 
parameters can be detected from gyroscope (angular rate change) 
measurements, in which case the parameters can serve for validation 
purposes.

This study concentrates on testing the capabilities and potential 
of sensors found in common smart mobile phones. In particular, an 
initial sensor capability characterization and driving behavior clas-
sification are attempted through studying patterns in the raw data 
distributions. Testing focuses on acceleration and gyroscope obser-
vations. To evaluate smartphone performance, a system with a high 
and tactical-grade accuracy GNSS and inertial measurement units 
(IMUs) is collocated with test smartphones to allow comparisons 
between individual sensors.

case study setups and data acquisition

Two experiments were carried out at the campus of the National 
Technical University of Athens (NTUA) in which two driving sce-
narios were implemented in mixed (outdoor–indoor) environments. 
At the data preanalysis stage, the main objectives were to (a) assess 
the quality of the raw data recorded by all sensors, both indoors and 
outdoors, and (b) evaluate the ability of smartphones to detect spe-
cific driving events typically encountered in operations within park-
ing facilities. Although the core objective of this research relates to 
indoor spaces, these experiments were operated in a mixed indoor–
outdoor environment. The main reason for this operation is that 
GNSS coverage was exploited to visualize the data (e.g., trajectories) 
and verify the accuracy of the opportunistic sensors (e.g., smart-
phone sensors) against the higher-accuracy equipment. Another 
reason is that the environments of interest sometimes offer partial 
GNSS coverage (e.g., access to parking facilities or depots, or open 
areas in a predominantly covered facility). In any case, specific care 
was given to ensure that no information that would otherwise not 
be available in an indoor environment was used in the core parts of 
the procedure.

Moreover, the navigation data obtained from all sensors were 
grouped separately for the along-track, lateral, and vertical direc-
tions to study individual phenomena pertaining to certain types of 
motion such as stressful driving (associated with sudden changes 
in x-, y-acceleration) and the detection of traffic humps (associated 
with changes in z-acceleration). Finally, in an attempt to detect and 
identify driver profile characteristics (e.g., aggressiveness) each 
experiment was conducted with different drivers. Because of space 
restrictions, the setup of the two experiments is presented in parallel 
next, and some aspects are not fully described.

experiment ntua-1

The objective of the first, preliminary experiment (NTUA-1) was 
to assess the quality of raw acceleration data obtained by smart-
phones and their potential for use in traffic simulation models. Data 
collection was carried out on March 27, 2014; a total distance of 
about 2.5 km for a time span of 12 min was driven. The traveled 
path included a small indoor parking facility and segments with open 
spaces (Figure 1a). Data acquisition was performed by using two 
contemporary smartphone units: an Apple iPhone 5 and an HTC 
One S. Also, a NovAtel SPAN system consisting of a geodetic-grade 
GNSS receiver (NovAtel ProPak-V3) and a tactical-grade inertial 
measurement unit (IMU) (iMAR IMU-FSAS) was employed to 
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provide the vehicle’s reference trajectory. The latter offers a nominal 
RMS acceleration accuracy of ±0.03 m/s2.

The driving speed range was constrained to normal city driv-
ing speeds, whereas higher acceleration and deceleration values 
were pursued in straight segments. All sensors were collocated, 
aligned to the vehicle body frame, and fixed onboard on a purpose-
built platform on the vehicle roof. Sensor location is illustrated in 
Figure 1c; the XSENS system (situated in the top left of Figure 1c)  
was not present in this experiment. Sensor relative positions with 
respect to the reference IMU were accurately determined by means 
of a dimensional survey. In the case of smartphones, data acqui-
sition was performed with third-party software (mobile applica-
tions); namely, SensorLog and IMU+GPS-Stream apps enabled 
the iPhone 5 (iOS7) and the HTC One S (Android 4.4.1) to record 
acceleration readings at 10 Hz and 65 Hz, respectively. The events 
and scenarios simulated along the traveled path are documented 
in Table 2.

experiment ntua-2

The second experiment, NTUA-2 (Figure 1b), took place on June 
12, 2014. This experiment aimed both at collecting a relatively larger 

TABLE 2  Event Documentation for Field Tests: Events of Interest 
During Experiment NTUA-1

Event Type (NTUA-1)
Start Time 
(h:min:s)

End Time 
(h:min:s)

Duration 
(h:min:s)

Speed Hump 1 15:07:47 15:07:48 0:00:01

Speed Hump 2 15:07:59 15:08:00 0:00:01

Speed Hump 3 15:08:15 15:08:16 0:00:01

Speed Hump 4 15:08:28 15:08:29 0:00:01

Abrupt acceleration and  
deceleration

15:08:41 15:09:29 0:00:48 

Maneuvers 15:10:33 15:11:00 0:00:27

Indoor ramp (upward direction) 15:12:32 15:12:43 0:00:11

Uphill (upward direction) 15:13:04 15:13:25 0:00:21

(c)

(a)

(b)

FIGURE 1  Field test trajectories from NovAtel SPAN: (a) NTUA-1, (b) NTUA-2, and (c) sensor colocation diagram (XSENS sensor, top left, 
used only in NTUA-2).

data set and at processing additional observable types, namely, vehi-
cle angular velocities (gyro measurements). The traveled trajectory 
included discrete scenarios, such as performing a limited number of 
parking maneuvers outdoors and indoors, simulation of aggressive 
and stressful conditions, and driving a ramp inside a parking garage 
upward and downward. Furthermore, the test vehicle traveled for 
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relatively long periods in closed spaces to realize the indoor environ-
ment. Data were acquired by driving a total distance of approximately 
4.4 km spanning a time period of 20 min.

In addition to the NovAtel SPAN system, a high-quality GPS–
IMU system (XSENS MTi-G-700) was used to provide a combined 
output of acceleration, angular velocity, attitude, and heading read-
ings at a sampling rate of 400 Hz. The MTi-G-700 was positioned 
onboard the same platform used in the preliminary experiment, as 
seen in the top left of Figure 1c. In terms of smartphone data col-
lection, both the iPhone 5 and the HTC One S logged acceleration, 
gyro, attitude, and heading readings by using the SensorLog soft-
ware operating at 10 Hz. The events of specific interest were logged 
manually and are outlined in Table 3.

assessMent oF naVigation soLution

Raw data acquisition from smartphone navigation sensors of vari-
ant characteristics is not a trivial task because data sets include raw 
observables of a multitude of sensors collected at different time 
spans and different sampling rates. Furthermore, the performance 
of data collection apps depends heavily on smartphone hardware 
(e.g., processor, random-access memory, storage) and operating sys-
tem specifications. Also, system or user services that run concurrently 
in the background may cause extra performance penalties and raise 
latency issues that may result in temporary lack of app responsive-
ness. Latency in data time-stamping will cause time drifts, which in 
turn may severely affect the microscopic analysis of sensor readings 
and potentially influence their distribution characteristics at a more 
macroscopic scale. Therefore, data resampling and synchronization 
were addressed before data analysis. Initially, all sensor records were 
resampled to 10 Hz, the lowest sampling rate among the sensors used. 
To achieve sensor synchronization and mitigate potential drifts, all 
data sets were cross-compared with the reference data set obtained 
by using the NovAtel SPAN system.

navigation data assessment

For the NTUA-1 experiment, the standardized data set comprises 
7,311 records per sensor corresponding to a time span of 12 min 
(15:01:30 to 15:13:41). Table 4 shows the acceleration statistics 
computed for all recording devices. Clearly, there is relatively 
good agreement among all units. However, a significant difference 
(132%) was observed in the standard deviation obtained for the 
HTC One S (±1.35 m/s2) and the SPAN system (±0.58 m/s2) in the 
vertical axis. Time-series analysis of HTC One S acceleration values 
revealed spikes at irregularly spaced times in all three components. 
This phenomenon is more evident in the z-acc (acceleration across  
the z-axis) component and contributed to a higher standard deviation 
value. In effect, it appears that z-acc takes a near-zero value instantly 
that immediately afterward drops to its normal level. This bias is 
unique to the HTC One S smartphone and is attributed to data collec-
tion software issues; the finding suggests that data acquisition software 
can be critical for further analysis. This issue was resolved for the 
subsequent experiments, including NTUA-2.

For NTUA-2, a total of 11,951 epochs of data per sensor were 
processed, spanning a time period of 20 min (18:16:50 to 18:36:45). 
Table 5 shows the acceleration statistics obtained for all sensors. 
As in the NTUA-1 experiment, the test smartphone devices gener-
ally agree with the SPAN system. Besides, the HTC One S shows 
a more consistent logging behavior compared with the previous 
experiment; this behavior is attributed to the change of data acqui-
sition software (i.e., SensorLog from IMU+GPS-Stream). Of note 

TABLE 3  Event Documentation for Field Tests: Events of Interest 
During Experiment NTUA-2

Event Type (NTUA-2)
Start Time 
(h:min:s)

End Time 
(h:min:s)

Duration 
(h:min:s)

Parking in open space 15:21:41 15:21:59 0:00:18

Maneuvers 15:21:59 15:22:42 0:00:43

Speed Hump 1 15:22:43 15:22:44 0:00:01

Speed Hump 2 15:22:57 15:22:58 0:00:01

Speed Hump 3 15:23:17 15:23:18 0:00:01

Speed Hump 4 15:23:33 15:23:35 0:00:02

Closed space (entrance/exit) 15:24:10 15:24:26 0:00:16

Parking in open space  
(administration)

15:24:32 15:24:58 0:00:26 

Closed parking space (entrance) 15:25:03 naa naa

Parking in closed space 15:25:11 15:25:35 0:00:24

Closed ramp (driving upwards) 15:25:57 15:26:04 0:00:07

Closed space (exit) 15:26:04 naa naa

Alignment (acceleration and 
deceleration)

15:27:14 15:28:38 0:01:24 

Closed turn 15:28:38 15:28:41 0:00:03

Closed parking space (entrance) 15:29:09 naa naa

Parking in closed space 15:29:30 15:29:49 0:00:19

Closed ramp (driving upwards) 15:30:30 15:30:38 0:00:08

Maneuver in closed space 15:31:12 15:31:24 0:00:12

Closed ramp (driving upwards) 15:31:24 15:31:29 0:00:05

Speed Hump 5 15:32:22 15:32:23 0:00:01

Speed Hump 6 15:32:37 15:32:38 0:00:01

Speed Hump 7 15:33:32 15:33:33 0:00:01

Speed Hump 8 15:33:44 15:33:45 0:00:01

Note: na = not applicable.
aInstantaneous event for which end time and duration do not make sense. 

TABLE 4  Statistics of Collected Data: Accelerations for NTUA-1

x-acc (m/s2) y-acc (m/s2) z-acc (m/s2)

Device Min. Max. Mean σ Min. Max. Mean σ Min. Max. Mean σ

Apple iPhone 5 −6.66 4.45 0.63 0.98 −6.31 8.48 0.14 1.18 −26.50 −4.71 −9.81 0.57

HTC One S −6.91 4.62 0.57 1.01 −5.89 5.90 −0.23 0.96 −15.24 0.00 −9.51 1.35

NovAtel SPAN −6.87 8.21 0.61 1.05 −6.58 7.24 −0.16 1.01 −16.80 −0.33 −9.77 0.58

Note: Acc = acceleration; min. = minimum; max. = maximum.
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is the difference (118%) found between the standard deviation of 
the XSENS z-acc (±0.83 m/s2) and its corresponding value for the 
reference sample (±0.38 m/s2). This finding is potentially due to 
the ability of XSENS to log readings for a wider acceleration range 
(±15 g) compared with other sensors (up to ±5 g). A noticeable  
difference (26%) can also be seen for x-acc.

Table 6 includes the statistics obtained for the angular velocity 
measurements for all sensors. In a similar manner to accelerations, 
smartphone-derived gyro measurements generally agree with the 
higher-quality XSENS and SPAN observables. However, iPhone 
readings deviate from those of other units and result in a significant 
difference from SPAN in the mean x- and z-gyro values. Interest-
ingly, no significant differences are observed in the corresponding 
standard deviations and maximum or minimum values; this find-
ing suggests a bias in the iPhone measurements the source of which 
remains undetected.

Microscopic analysis

In brief, all devices involved in the test successfully detected all 
events. For instance, in order to assess the ability of smartphones 
to detect speed humps, their locations were marked (red frames) 
on the z-acc plots as shown in Figure 2a based on their time logs 
(Table 2). Visible changes of acceleration values of an abrupt char-
acter are noted for all recording devices and for all four speed hump 
locations. Notably, the excessive noise in the SPAN data is due to 
unsmoothed observables.

Regarding analysis of driving scenarios of particular interest, 
a case with steep-turn and U-turn maneuvers is considered in this 
study (Figure 2b). The selected section includes two U-turn maneu-
vers (Areas 1 and 2) and a steep left turn (Area 3). The two U-turn 
maneuvers were deliberately driven at different speeds; the first one 
(Area 1) at a faster pace compared with the second one (Area 2). 
From Figure 2b it is apparent that all devices detected these events 
clearly. The considerably shorter time length of the first maneuver 

compared with the second one indicates a faster change in the heading 
component. During a U-turn maneuver the vehicle’s heading changes 
by 180 degrees. This fact is also recognized in the data since the 
angular velocity sign changes from positive to negative (Area 1) and 
vice versa (Area 2).

dRiVeR BehaVioR cLassiFication anaLysis

For a more macroscopic analysis of the driver behavior through 
clustering of the data, the k-means algorithm (25, 26) was used; how-
ever, this algorithm does not provide a way to determine the optimal 
number of clusters. In order to determine the optimal clustering, a 
number of indexes were considered with the help of the recently 
developed package, CLUSTERCRIT (27), within the R software 
for statistical computing (28). The CLUSTERCRIT package pro-
vides the calculation of several so-called internal and external indexes. 
Internal indexes provide insight supporting the choice of the optimal 
number of clusters. In contrast, external indexes measure the similar-
ity between two partitions, mainly two clustering alternatives, taking 
into account only the distribution of the data in the different clusters. 
Therefore, the larger the value of the index, the more similar the two 
clustering results are.

Figure 3a presents the number of clusters determined as opti-
mal by each internal index (27). The Calinski_Harabasz is the least 
sensitive of the indexes considered. Although the process does not 
converge to a single optimal number of clusters, it is very likely that 
the range of clusters for this application and these data sets is in the 
range between 3 and 5. The sensitivity of the results to the number 
of clusters is shown in Figure 3c. Different decision rules apply to 
each index. The decision rule “max” corresponds to the greatest index 
value, whereas the decision rule “max diff” corresponds to the great-
est difference between two successive slopes, that is, to the elbow in 
the curve.

External indexes were then applied to the data series in order 
to compare the clustering results between three and five clusters 

TABLE 5  Statistics of Collected Data: Accelerations for NTUA-2

x-acc (m/s2) y-acc (m/s2) z-acc (m/s2)

Sensor Min. Max. Mean σ Min. Max. Mean σ Min. Max. Mean σ

Apple iPhone 5 −3.91 5.12 −0.28 0.72 −4.03 6.84 0.28 0.93 −13.12 −7.41 −9.88 0.32

HTC One S −4.90 6.97 0.13 0.77 −4.08 7.25 0.39 0.96 −14.46 −4.85 −9.73 0.39

XSENS −6.26 7.26 −0.13 0.95 −4.68 7.46 0.21 1.00 −21.00 −3.12 −9.81 0.83

NovAtel SPAN −4.70 5.52 0.04 0.75 −4.08 7.05 0.24 0.94 −14.17 −3.73 −9.79 0.38

TABLE 6  Statistics of Collected Data: Angular Velocity Data for NTUA-2 Test

x-Gyro (°/s) y-Gyro (°/s) z-Gyro (°/s)

Device Min. Max. Mean σ Min. Max. Mean σ Min. Max. Mean σ

Apple iPhone 5 −14.61 19.89 1.91 1.69 −10.24 15.32 −0.10 1.15 −38.27 41.31 −1.20 8.97

HTC One S −20.02 15.83 0.04 1.87 −15.40 14.18 0.03 1.32 −37.13 42.76 −0.15 9.05

XSENS −24.73 21.38 −0.10 2.16 −20.36 18.83 0.01 2.07 −37.93 43.87 −0.13 9.17

NovAtel SPAN −20.89 16.27 0.00 2.03 −15.98 16.75 0.02 1.60 −36.36 41.79 −0.15 8.90
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FIGURE 2  Interpretation of sensor data: (a) NTUA-1, speed hump detection example 
based on z-acc measurements (spikes for HTC One S due to logging issue and resolved for 
NTUA-2), and (b) NTUA-2, smartphone z-gyro sensor readings for subset of NTUA-2 test 
(UTC 5 coordinated universal time).
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Internal Index Optimal Number of Clusters
NTUA-

1 
NTUA-2

(no gyros)
NTUA-2

Ratkowsky_Lance 
(rule: max.) 

3 3 3 

Dunn 
(rule: max.) 

5 5 3 

Calinski_Harabasz 
(rule: max.) 

5* 2* 5 / 3 

Log_det_ratio
(rule: max. diff.) 

4 5 3 

 

External Index 

Comparison of Partitions

NTUA-1
NTUA-2
(no gyros) NTUA-2

czekanowski_dice 0.48 0.59 0.85

fowlkes_mallows 0.49 0.60 0.86

jaccard 0.32 0.42 0.74
kulczynski 0.52 0.60 0.87
precision 0.64 0.69 0.98
rand 0.67 0.75 0.83
recall 0.39 0.52 0.75
rogers_tanimoto 0.41 0.53 0.57
russel_rao 0.15 0.18 0.49
sokal_sneath1 0.14 0.21 0.43
sokal_sneath2 0.74 0.82 0.84

(a)

*not sensitive

(b)

(c)

Ratkowsky_Lance Dunn

Calinski_Harabasz (first two data series on first
y-axis, third data series on secondary y-axis)
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FIGURE 3  Internal and external indexes for determination of optimal number of clusters: (a) choice of optimal 
number of clusters according to internal indexes (* 5 not sensitive), (b) comparison of partitions (three and five 
clusters), and (c) visual presentation of sensitivity of internal indexes to number of clusters.

(Table 5). The general concept is that the indexes measure the 
degree to which points move across clusters as the number of clus-
ters increases. For instance, the Fowlkes–Mallows index could be 
evaluated on the basis of the number of points that are common or 
uncommon in the two hierarchical clustering options. It may be con-
cluded that for NTUA-2, and especially for the richer information 

case including gyros, the clustering between three and five clusters 
seems to be more similar. This finding could be explained by the 
fact that more data may allow a more accurate clustering, even with 
three clusters.

In order to develop deeper insight into the clustering results, clus-
tering results for three and five clusters are presented in Figure 4. 
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FIGURE 4  Clustering results for three and five clusters.
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The z-axis accelerations are not presented since there was no distinct 
differentiation in them. Several observations can be made:

•	 Clusters that overlap in terms of x-acc are differentiated by 
y-acc (and vice versa),

•	 Gyros help distinguish the clusters in terms of x-acc but lead to 
more overlap in y-acc,

•	 Clustering with five clusters is crisper than with three clusters, 
and

•	 NTUA-2 results in a better clustering in y-acc because NTUA-1 
includes essentially only left turns.

discussion and FutuRe WoRk

ITS applications are taking an increasing role in traffic management. 
Traffic simulation, a mature field with several decades of develop-
ment, is playing a key role in these developments. Although some 
aspects can be assumed to be at a level in which most challenges 
have been overcome, there are still aspects that remain unsolved. For 
example, traffic simulation of mixed networks at conditions close to or 
exceeding capacity is still a challenging endeavor. Similarly, modeling 
low-speed traffic is also a challenging task (often leading to underesti-
mation of the capacity), whereas parking maneuvers and their impact 
on the following and opposing vehicles are aspects in which modeling 
can be improved [see, e.g., work by Kladeftiras and Antoniou (29)].

Simulation of indoor environments, such as those considered in this 
research, requires challenging aspects of modeling vehicle operations 
at a microscopic scale in parking facilities; this modeling combines a  
number of restrictions along the state of the art of traffic modeling 
and simulation: complex geometry, congested conditions, and very 
low speeds. It is possible that models of gap acceptance and merg-
ing that are formulated or estimated for general traffic will perform 
poorly when applied to modeling traffic facilities. Flexible, data-
driven models are not bound by rigid functional forms and limits in 
the data that they can exploit and therefore may be more suitable to 
the application of such situations (30, 31).

Behavioral aspects and the impact of stressful driving conditions 
are also of interest in this context. Other aspects, such as privacy 
and the willingness of travelers to partly relinquish it in exchange 
for better services, are also relevant; often the technical solutions 
are available, but acceptance is limited (32, 33).

The absence of direct GNSS coverage in these applications means 
that innovative approaches may be employed to the localization of 
vehicles. Furthermore, specific patterns on the z-axis acceleration 
could also be used to relate vehicle maneuvers to ramps between 
floors. Combinations of such events can increase the confidence in 
localization of vehicles; furthermore, low speeds within the facilities 
of interest in this research reduce the complexity of the problem.

Finally, in this research the focus is on smartphone sensors; exploi-
tation of radio sensors is another interesting direction for localization 
under these conditions. It is, however, important to recognize that 
the indoor parking radio environment is very different from other 
indoor environments and a prerequisite for the design of a successful 
positioning application is the identification of an optimal trade-off 
between reliability and complexity. Many practical challenges need 
to be addressed by industry and academia in this field. Some of them 
are as follows:

•	 Mobile terminal–related measurements. There is heterogeneity 
of the wireless cards of mobile terminals and consequently there are 

differences in the estimated values of the received signal strength 
and biases in the whole procedure of indoor positioning.

•	 Wireless link–related measurements. The time-varying nature 
of the wireless channel is introduced as a result of the motion of the 
vehicles, the humans, the fact that the mobile terminal is inside the 
vehicle, and other aspects. Another problem is the channel dispersion 
of the signal caused by various effects of propagation, especially in the 
time and frequency domains.

•	 Different frequency bands of the wireless technologies. The 
various technologies operate in many frequency bands (2.4 GHz, 
5.2 GHz, 5.8 GHz, 28 GHz, 60 GHz, etc.) that confront different 
propagation phenomena.

•	 Optimum placement of the access points. Optimum placement 
strongly depends on the indoor environment, the building materi-
als, the number of vehicles, the walls, the floors, and other factors. 
It is important to optimize the coverage and the connectivity of the 
access points.

•	 Usage of multiple antennas and multinode technologies. Large-
scale multiple-input and multiple-output techniques would increase the 
accuracy of the indoor positioning system. However, their deployment  
in the current systems would also increase the complexity.
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