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ABSTRACT 

Isotropic turbulence is an ideal state where the motion properties, in the statistical 

sense, do not show any directional dependence. More strictly, they satisfy rotational and 

translational invariance. Isotropic turbulence is the simplest form of turbulent flow still 

maintaining all its fundamental characteristics. It has been the playground for theoretical 

work through the last century. Isotropy as a statistical notion is not manifest at the level of the 

velocity field dynamics but at the level of the correlation functions, where the averaging has 

removed all the irrelevant direction dependencies. Isotropic turbulence lives strictly in an 

infinite physical space. Via this energy cascade, turbulent flow can be realized as a 

superposition of a spectrum of flow velocity fluctuations and eddies upon a mean flow. The 

eddies are loosely defined as coherent patterns of flow velocity, vorticity and pressure. 

However, the isotropic flow, requiring first of all an infinite physical space to live in, is an 

idealization that cannot be strictly realized even in the clinical environment of numerical 

simulations. In the direct numerical simulations (DNS) of isotropic turbulence one usually 

solves the Navier-Stokes equation imposing periodicity. The idea is to introduce finiteness in 

space in a smooth manner. Isotropic flows are replaced by another kind of ideal flows that 

can be handled numerically.  

 In the infinite space the infinite sequence of equations has to be closed at some finite 

order, this is being done semi-empirically. In other words, we must truncate this set of 

equations by a model, each reasonable model is called a closure model.  The Eddy Damped 

Quasi-Normal Markovian (EDQNM) is a subfilter closure model applied in spectral 

wavenumber space rather than physical space which considers interactions between resolved 

and subfilter wavenumbers by considering the statistics of their possible interactions. The 

EDQNM achieves closure by modeling the 4th spectral moments.  

An EDQNM code for resolving forced isotropic turbulence was created in this work. 

The work may be considered as continuation of previous work done by Michalis Pieris 

(2016) who wrote an EDQNM code for equally distant wave-numbers, however permitting 

the possibility of resolving large Reynolds numbers. The new code was applied in the case of 

for forced turbulence at Reynolds number around 1000, resembling high Reynolds DNS from 

the past. The comparison shows significant similarities in the macroscopic characteristics of 

the stationary state, however, it reveals a different behavior at the dissipative range with 

sharper tails and lower palinstrophy values at the EDQNM spectra.   

https://en.wikipedia.org/wiki/Energy_cascade
https://en.wikipedia.org/wiki/Mean_flow
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1. Introduction 

From our kitchen top to the skies  turbulence is everywhere! A complex and beautiful 

type of flow characterized by chaotic property changes. Humans are a pattern-seeking 

species. We like to seek order in apparent chaos, and this, perhaps, is what makes 

turbulence such a captivating subject. Leonardo da Vinci described turbulence (Fig. 1) 

in a very motivated way through his words: Observe the motion of the surface of the 

water, which resembles that of hair, which has two motions, of which one is caused by 

the weight of the hair, the other by the direction of the curls; thus the water has 

eddying motions, one part of which is due to the principal current, the other to 

random and reverse motion. (Trans. Piomelli in Lumley, J.L., 1997. Some comments 

on turbulence, Phys. Fluids A 4, 203-211) 

 

Figure 1. The formation of turbulence under a water flow, as it was sketched by Leonardo da Vinci. 

 

In the present work we give a rough description of the present theory about isotropic 

turbulence. We present the principal equations Navier-Stokes and the Direct 

Numerical Simulations in order to solve them numerically. Finally we present and 

analyze in detail an EDQNM code for isotropic turbulence and we solve numerically 

a forced stationary case.   
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1.1 Turbulence and its characteristics 

In fluid dynamics, turbulence or turbulent flow is a flow regime characterized 

by chaotic property changes (Figures 2-3). This includes (Pope, ) low momentum 

diffusion, high momentum convection, and rapid 

variation of pressure and flow velocity in space 

and time. Flow in which the kinetic energy dies 

out due to the action of fluid molecular viscosity is 

called laminar flow. The different regimes that can 

take place (laminar, turbulent, ...) are controlled by 

the dimensionless number (now called the 

Reynolds number)  

 

                           Re = LV/ν,                      (1.1) 

 

where L and V are a typical length scale and a 

typical velocity scale of the flow, and ν is the viscosity. While there is no theorem 

relating the non-dimensional Reynolds number to turbulence, flows at Reynolds 

numbers larger than 5000 are typically (but not 

necessarily) turbulent, while those at low 

Reynolds numbers usually remain laminar. 

In Poiseuille flow, for example, turbulence can 

first be sustained if the Reynolds number is 

larger than a critical value of about 

2040; moreover, the turbulence is generally 

interspersed with laminar flow until a larger 

Reynolds number of about 4000. In turbulent flow, unsteady vortices appear on many 

scales and interact with each other. Drag due to boundary layer skin friction increases. 

The structure and location of boundary layer separation often changes, sometimes 

resulting in a reduction of overall drag. Although laminar-turbulent transition is not 

governed by Reynolds number, the same transition occurs if the size of the object is 

gradually increased, or the viscosity of the fluid is decreased, or if the density of the 

Figure 2. Turbulence formation at the 

smoke of a cigarete. 

Figure 3. Turbulence in a cup of coffee. 

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Momentum_diffusion
https://en.wikipedia.org/wiki/Momentum_diffusion
https://en.wikipedia.org/wiki/Convection
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Flow_velocity
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Laminar_flow
https://en.wikipedia.org/wiki/Reynolds_number
https://en.wikipedia.org/wiki/Hagen-Poiseuille_equation
https://en.wikipedia.org/wiki/Drag_(physics)
https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Laminar-turbulent_transition
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Density
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fluid is increased. Turbulence is characterized by the following features (Davidson, 

2004).  

• Turbulence is chaotic with intrinsic spatio-temporal irregularity 

• Loss of predictability, but stable statistical properties 

• Extremely wide range of strongly and nonlocally interacting degrees of freedom 

('scales' in time and space) 

• Highly dissipative, statistically irreversible 

• Turbulent flows are three-dimensional and rotational with continuous self-

production of vorticity  

• Strongly diffusive with enhanced transport of momentum, energy, and passive 

scalars 

• Strongly nonlinear, non-integrable, nonlocal and non-Gaussian. 

More specifically, turbulence is characterized mainly by  

 

Irregularity: Turbulent flows are always highly irregular. For this reason, turbulence 

problems are normally treated statistically rather than deterministically. Turbulent 

flow is chaotic. However, not all chaotic flows are turbulent. 

 

Diffusivity: The readily available supply of energy in turbulent flows tends to 

accelerate the homogenization (mixing) of fluid mixtures. The characteristic which is 

responsible for the enhanced mixing and increased rates of mass, momentum and 

energy transports in a flow is called "diffusivity". Turbulent diffusion is usually 

described by a turbulent diffusion coefficient. This turbulent diffusion coefficient is 

defined in a phenomenological sense, by analogy with the molecular diffusivities, but 

it does not have a true physical meaning, being dependent on the flow conditions, and 

not a property of the fluid itself. In addition, the turbulent diffusivity concept assumes 

a constitutive relation between a turbulent flux and the gradient of a mean variable 

similar to the relation between flux and gradient that exists for molecular transport. In 

the best case, this assumption is only an approximation. Nevertheless, the turbulent 

diffusivity is the simplest approach for quantitative analysis of turbulent flows, and 

many models have been postulated to calculate it.  

 

Rotationality: Turbulent flows have non-zero vorticity and are characterized by a 

strong three-dimensional vortex generation mechanism known as vortex stretching. In 

https://en.wikipedia.org/wiki/Diffusion_coefficient
https://en.wikipedia.org/wiki/Flux
https://en.wikipedia.org/wiki/Rotationality
https://en.wikipedia.org/wiki/Vortex_stretching
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fluid dynamics, they are essentially vortices subjected to stretching associated with a 

corresponding increase of the component 

of vorticity in the stretching direction, due 

to the conservation of angular momentum. 

On the other hand, vortex stretching is the 

core mechanism on which the turbulence 

energy cascade relies to establish the 

structure function. In general, the 

stretching mechanism implies thinning of 

the vortices in the direction perpendicular 

to the stretching direction due to volume conservation of fluid elements. As a result, 

the radial length scale of the vortices decreases and the larger flow structures break 

down into smaller structures. The process continues until the small scale structures are 

small enough that their kinetic energy can be transformed by the fluid's molecular 

viscosity into heat. This is why turbulence is always rotational and three dimensional. 

For example, atmospheric cyclones are rotational but their substantially two-

dimensional shapes do not allow vortex generation and so are not turbulent. On the 

other hand, oceanic flows are dispersive but essentially non rotational and therefore 

are not turbulent. 

 

Dissipation: To sustain turbulent flow, a persistent source of energy supply is 

required because turbulence dissipates rapidly as the kinetic energy is converted into 

internal energy by viscous shear stress. Turbulence causes the formation of eddies of 

many different length scales. Most of the kinetic energy of the turbulent motion is 

contained in the large-scale structures. The energy "cascades" from these large-scale 

structures to smaller scale structures by an inertial and 

essentially inviscid mechanism. This process continues, creating smaller and smaller 

structures which produces a hierarchy of eddies. Eventually this process creates 

structures that are small enough that molecular diffusion becomes important and 

viscous dissipation of energy finally takes place. The scale at which this happens is 

the Kolmogorov length scale which is analyzed below. 

 

Figure 4. The night sky (Van Gong) 

https://en.wikipedia.org/wiki/Dissipation
https://en.wikipedia.org/wiki/Eddy_(fluid_dynamics)
https://en.wikipedia.org/wiki/Inviscid_flow
https://en.wikipedia.org/wiki/Kolmogorov_microscales
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1.2 The scales of isotropic turbulence and the formation of 

the energy spectrum 

Isotropic turbulence is an ideal state where the motion properties, in the statistical 

sense, do not show any directional dependence (Figure 5). More strictly, they satisfy 

rotational and translational 

invariance. Isotropic turbulence is the 

simplest form of turbulent flow still 

maintaining all its fundamental 

characteristics. It has been the 

playground for theoretical work 

through the last century (Richardson, 

1922; Taylor, ;Karman, ;Kolmogorov, 

1941; Kraichnan,). Isotropy as a 

statistical notion is not manifest at the 

level of the velocity field dynamics 

but at the level of the correlation 

functions, where the averaging has removed all the irrelevant direction dependencies. 

Isotropic turbulence lives strictly in an infinite physical space. Via this energy 

cascade, turbulent flow can be realized as a superposition of a spectrum of flow 

velocity fluctuations and eddies upon a mean flow. The eddies are loosely defined as 

coherent patterns of flow velocity, vorticity and pressure.  

Turbulent flows may be viewed as made of an entire hierarchy of eddies over 

a wide range of length scales and the hierarchy can be described by the energy 

spectrum (Figure 6) that measures the energy in flow velocity fluctuations for each 

length scale -wavenumber (Akylas, 2015). There is a continuous energy flux from 

larger vortexes towards the smaller, which dissipates the energy up to the molecular 

thermodynamic level (Figure 7). This is the energy cascade procedure, which 

according to Richardson (1922) was presented as: “Big whirls have little whorls that 

feed on their velocity, and little whorls have lesser whorls and so on to viscosity”. 

This is a complex, non-linear procedure, resulting to scales that are generally 

uncontrollable and highly non-symmetric. Nevertheless, based on the macroscopic 

characteristics of turbulence (Akylas, 2015), kinetic energy, K, dissipation (rate of  

 

Figure 5. Isotropic turbulence structures resolved by DNS 

https://en.wikipedia.org/wiki/Energy_cascade
https://en.wikipedia.org/wiki/Energy_cascade
https://en.wikipedia.org/wiki/Mean_flow
https://en.wikipedia.org/wiki/Wavenumber
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Figure 6. The spectrum of isotropic turbulence with its characteristic scales 

 

energy loss), ε, and viscosity (internal characteristic of the fluid), ν, three well 

separated scales can be formed  

 

          (1.2) 

 

 

Figure 7. The cascade process schematized by Richardson, 1922. 

 
1/41/23/2 3
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Integral length scales, L: Largest scales in the energy spectrum. These eddies obtain 

energy from the mean flow and also from each other. Thus, these are the energy 

production eddies which contain most of the energy. They have the large flow 

velocity fluctuation and are low in frequency. Integral scales are 

highly anisotropic and are defined in terms of the normalized two-point flow velocity 

correlations. The maximum length of these scales is constrained by the characteristic 

length of the apparatus. For example, the largest integral length scale of pipe flow is 

equal to the pipe diameter. In the case of atmospheric turbulence, this length can reach 

up to the order of several hundred kilometers. 

 

Kolmogorov length scale, η: Smallest scales in the spectrum that form the viscous 

sub-layer range. In this range, the energy input from nonlinear interactions and the 

energy drain from viscous dissipation are in exact balance. The small scales have high 

frequency, causing turbulence to be locally isotropic and homogeneous. 

 

Taylor microscales, λ: The intermediate scales between the largest and the smallest 

scales which make the inertial subrange. Taylor microscales are not dissipative scale 

but pass down the energy from the largest to the smallest without dissipation. Some 

literatures do not consider Taylor microscales as a characteristic length scale and 

consider the energy cascade to contain only the largest and smallest scales; while the 

latter accommodate both the inertial subrange and the viscous sublayer. Nevertheless, 

Taylor microscales are often used in describing the term “turbulence” more 

conveniently as these Taylor microscales play a dominant role in energy and 

momentum transfer in the wavenumber space. 

 

 

1.3 Structure of the work 

In the present work we givve a rough description of the present theory about isotropic 

turbulence. In chapter 2, we present the principal equations Navier-Stokes and discuss 

the Direct Numerical Simulations in order to solve them numerically. Finally we 

present and analyze in detail an EDQNM code for isotropic turbulence and we resolve 

numerically a forced stationary case that resembles similar DNS data. 

  

https://en.wikipedia.org/w/index.php?title=Integral_length_scales&action=edit&redlink=1
https://en.wikipedia.org/wiki/Anisotropic
https://en.wikipedia.org/wiki/Kolmogorov_microscales
https://en.wikipedia.org/wiki/Isotropic
https://en.wikipedia.org/wiki/Taylor_microscale
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2. The Navier- Stokes equations  

The Navier-Stokes equations (Davidson, 2004) govern the motion of fluids and can 

be seen as Newton's second law of motion for fluids. In the case of an 

incompressible Newtonian fluid, this yields 

 

                                    
2

1
,i i i

k

k i k k

u u up
u

t x x x x




  
   

    
                                          (2.1) 

 

where u is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and ν is 

the fluid viscosity. The Navier-Stokes equations were derived by Navier, Poisson, 

Saint-Venant, and Stokes between 1827 and 1845. These equations are always 

solved together with the continuity equation: 

 

                                                         0i

i

u

x





                                                               (2.2) 

 

The Navier-Stokes equations represent the conservation of momentum, while the 

continuity equation represents the conservation of mass. Due to the complexity of 

the system the physically relevant information about the flow is of statistical nature 

(Gravanis and Akylas, 216). Denoting a suitable statistical ensemble average by angle 

brackets, the tensor field 
1 21 2( ) ( ) ( )

ni i i nu x u x u x  is the same-time, order n correlation 

function. Some of the points x may coincide, so that there are only m<n different x’s 

involved and these fields may be designated as m-point, order n correlation functions. 

We consider flows with zero mean velocity, ( ) 0iu x  . The simplest non trivial 

single-point correlation functions of the velocity field are the total kinetic energy 

1
2 i iK u u  and the dissipation k i k iu u    . Consider ideal homogeneous turbulent 

flows. Then the single-point correlation functions do not depend on the position in 

space. Therefore correlation functions which are total derivatives vanish identically. 

This allows us to show that K and ε are related by the exact energy balance equation 

 

dK

dt
                                                                 (2.3) 
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Although it is possible to find some particular solutions of the Navier-Stokes 

equations governing fluid motion, all such solutions are unstable to finite 

perturbations at large Reynolds numbers (Falcovich, 2006). Sensitive dependence on 

the initial and boundary conditions makes fluid flow irregular both in time and in 

space so that a statistical description is needed. The Russian mathematician Andrey 

Kolmogorov (Frisch, 1995) proposed the first statistical theory of turbulence, based 

on the aforementioned notion of the energy cascade (an idea originally introduced 

by Richardson) and the concept of self-similarity. As a result, the Kolmogorov 

microscales were named after him. It is now known that the self-similarity is broken 

so the statistical description is presently modified. Still, a complete description of 

turbulence remains one of the unsolved problems in physics.  

 

2.1 Direct Numerical Simulations 

A direct numerical simulation (DNS) is a simulation in computational fluid 

dynamics in which the Navier–Stokes equations are numerically solved without 

any turbulence model (Orszaq, 1970). This means that the whole range 

of spatial and temporal scales of the turbulence must be resolved. However, the 

isotropic flow, requiring first of all an infinite physical space to live in, is an 

idealization that cannot be strictly realized even in the clinical environment of 

numerical simulations. In the direct numerical simulations (DNS) of isotropic 

turbulence one usually solves the Navier-Stokes equation imposing periodicity. The 

idea is to introduce finiteness in space in a smooth manner. Isotropic flows are 

replaced by another kind of ideal flows that can be handled numerically (Gravanis and 

Akylas, 2016). Explicitly, the DNS turbulent flows are governed by the velocity field 

equations (2.1-2) satisfying the conditions 

 

( , , ) ( , , ) ( , , ) ( , , )i i i iu x y z u x l y z u x y l z u x y z l                                  (2.4) 

 

for the axes x, y, z where we explicitly write down (2.1) in components.  

Condition (2.4) introduces a tiling, or tessellation, of the infinite physical space 

(Gravanis and Akylas, 2016). The tiling is made up of an infinite number of cubic 

domains of side l. Each such cubic domain is a unit cell of the tessellation repeated 

https://en.wikipedia.org/wiki/Navier-Stokes_equations
https://en.wikipedia.org/wiki/Navier-Stokes_equations
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Lewis_Fry_Richardson
https://en.wikipedia.org/wiki/Kolmogorov_microscales
https://en.wikipedia.org/wiki/Kolmogorov_microscales
https://en.wikipedia.org/wiki/Unsolved_problems_in_physics
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Three-dimensional_space
https://en.wikipedia.org/wiki/Time
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infinitely many times. In practice, one usually thinks in terms of a single such unit cell 

speaking of ‘periodic boundary conditions’. This is slightly misleading. Each unit cell 

of the tessellation is a notional subset of the infinite space that does not bound the flow 

in its interior. The condition (2.4) does not change if we pick another origin for the axis 

x, y and z as long as we do not rotated those axes. The condition (2.4) does not 

distinguish between tessellations whose unit cells are parallel. The boundary of the unit 

cell of a given tessellation contains points that lie in the interior of a unit cell of another 

equally good tessellation.  

       We may adopt a more abstract view. The condition (2.4) says that the field 

configuration looks the same at all points in space whose coordinates differ by integer 

multiples of l. This is why we can restrict ourselves into a unit cell. We lose no bit of 

information about the field if we identify all points in space whose coordinates differ by 

integer multiples of l. That means that all unit cells are mapped on a single one whose 

boundary points have been identified. The result is a compact space without boundary. 

The condition (8) is reduced merely to the single-valued-ness of the field on the 

compact space. Clearly this treatment can be applied to any cubically tessellated space. 

Compactification is the term we shall use for this procedure, implying both the 

operation on the space itself as well as on the field theory that lives in it. If a field 

theory lives in an infinite line then the unit cell is an interval whose end-points are 

identified. The result is a field theory that lives in a circle. If a theory lives on a plane 

then the unit cell is a square whose opposite sides are identified resulting in a theory 

that lives in a compact space which topologically is a torus. DNS flows are described by 

the compactification of the Navier-Stokes (2.1) in a space which topologically is a 

three-torus (Figure 8).  

       The more abstract view just described lies in the difference between the local and 

the global properties of a space. The tori are intrinsically flat spaces. Locally they are 

not different than the original infinite spaces. Globally, they are clearly non-trivial. The 

field theories of interest are written in terms of local equations, such as the Navier-

Stokes equation. Therefore compactification does not affect the form of the equations 

but rather determines the boundary conditions and other global specifications. 
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Figure 8. The compactification of infinite space by the DNS (Akylas, 2015). 

  

As Gravanis and Akylas (2016) state, DNS turbulence can be regarded as statistically 

homogeneous turbulence. From the point of view of compactification it is easy to see 

that there is no a priori difficulty with homogeneity: The compact space is perfectly 

homogeneous and the flow encounters no special points. Regarding isotropy things are 

different. The compact space does have special directions; to assist imagination one 

may use the two-torus as a model of that space. The space is perfectly isotropic locally, 

allowing the flow to evolve and adjust itself accordingly. Globally it is not, affecting the 

overall state of isotropy in the flow as scales are coupled to each other through cascade. 

One may note that the solely global breaking of isotropy is no surprise since 

compactification is a strictly global operation on a perfectly homogeneous and isotropic 

space. In all, DNS turbulent flows are certainly not ideally isotropic but due to the 

compromise between the local and global properties of the compact space these flows 

acquire a considerable degree of isotropy. 

       Now the DNS flows are supposed to simulate ideal isotropic flows in the first 

place, and we want to use the formulas valid in the latter with all their irreplaceable 

simplicity, and have at our disposal the suitable framework for studying fundamental 

conjectures such as Kolmogorov’s theory or deviations from it. In practice, one 

proceeds by eliminating the direction-dependence of the numerical results by averaging 
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over the directions; specifically this is done in the Fourier space in quantities such as the 

energy spectrum. The resulting scalar quantities are then regarded as adequate 

approximations of the analogous quantities in ideal isotropic flows for scales adequately 

smaller than l (Figure 9). Indeed, in practice, standard measures of isotropy show small, 

fluctuating deviations around their ideal values.  

 

Figure 9. Local isotropy in DNS. 

 

All the spatial scales of the turbulence must be resolved in the computational mesh, 

from the smallest dissipative scales (Kolmogorov microscales), up to the integral 

scale L, associated with the motions containing most of the kinetic energy. On the 

other hand, the integral scale depends usually on the spatial scale of the boundary 

conditions. To satisfy these resolution requirements, the number N of points along a 

given mesh direction with increments h, must be 𝑁ℎ > 𝐿, so that the integral scale is 

contained within the computational domain, and also ℎ ≤ 𝜂, so that the Kolmogorov 

scale can be resolved. Since the dissipation, 𝜀 ≈ 𝑢′
3
𝐿⁄ , where u' is the root mean 

square (RMS) of the velocity, the previous relations imply that a three-dimensional 

DNS requires a number of mesh points N
3
 satisfying N

3 
≥ Re

9/4
, where Re is the  

turbulent Reynolds number, Re = u΄L/ν. Hence, the memory storage requirement in a 

DNS grows very fast with the Reynolds number. In addition, given the very large 

memory necessary, the integration of the solution in time must be done by an explicit 

method. This means that in order to be accurate, the integration, for most 

discretization methods, must be done with a time step, Δt, small enough such that a 

https://en.wikipedia.org/wiki/Kolmogorov_microscales
https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Reynolds_number
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fluid particle moves only a fraction of the mesh spacing h in each step. One can 

estimate that the number of floating-point operations required to complete the 

simulation is proportional to the number of mesh points and the number of time steps, 

and in conclusion, the number of operations grows as Re
3
. Therefore, the 

computational cost of DNS is very high, even at low Reynolds numbers. For the 

Reynolds numbers encountered in most industrial applications, the computational 

resources required by a DNS would exceed the capacity of the most powerful 

computers currently available. However, direct numerical simulation is a useful tool 

in fundamental research in turbulence. Using DNS it is possible to perform 

"numerical experiments", and extract from them information difficult or impossible to 

obtain in the laboratory, allowing a better understanding of the physics of turbulence. 

Also, direct numerical simulations are useful in the development of turbulence models 

for practical applications. This is done by means of "a priori" tests, in which the input 

data for the model is taken from a DNS simulation, or by "a posteriori" tests, in which 

the results produced by the model are compared with those obtained by DNS. 

 

2.2 K41 Theory 

A successful phenomenological theory for turbulence is the K41 Theory. Kolmogorov 

studied the energy spectrum of the homogeneous isotropic turbulence in 1941, he 

found that dissipation only occurs in small scale, and there is an inertial range in k 

space for turbulence (see Fig. 10), in which range the energy is neither injected nor 

dissipated, energy is only transferred from large scale to small scale (Stroh, 2013). He 

obtained the famous −5/3 exponent of the turbulence energy spectrum in its inertial 

range: E(k) = C ε
2/3

 k 
−5/3

, where E(k) is the energy spectrum, ε is a constant energy 

dissipation rate, k is the wave number, and C is a universal constant which value can 

not be derived from K41 theory itself. K41 Theory is a big success, because it fits the 

experiments very well and the results are universal and robust. However there are two 

major concerns: 1. it doesn’t consider a phenomenon called intermittency at all, since 

this is not related to the topic, it won’t be discussed here; 2. K41 theory is too simple, 

it is a phenomenological theory about energy spectrum of turbulence, mainly derived 

by dimensional analysis, and is only able to give us limited information, it does not 

give us insight into the dynamics or transport properties of turbulences. Besides, some 

people believe we should be able to develop a theory to calculate the universal 

https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Supercomputer
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constant C in K41 Theory from first principle without any free parameter. So more 

theoretical studies about the dynamics and transport of turbulences are done beyond 

the K41 Theory. The two most successful methods are Renormalization Group (RNG) 

Theory and Closure Theory. In this work we will focus on the latter.  

 

Figure 10. K41 Theory and inertial range (Stroh, 2013). 

 

We will first do a brief introduction to Closure Theory and finally presentreview the 

currently most accepted Damped Quasi-Normal Markovian (EDQNM) model. 

 

2.3 Closure problem and EDQNM 

Consider ideal isotropic turbulent flows. There is no intrinsic direction in the flow, 

locally or globally. These flows are automatically homogeneous. Ideally homogeneous 

and therefore isotropic flows exist necessarily in an infinite space. The correlation 

function tensor fields can be reduced purely geometrically to a set of scalar fields that 

depend only on rotation-invariant quantities, distances and angles. In the place of scalar 

fields one usually uses pseudo-scalar fields with specific parity properties. For 

simplicity we may refer also to them as ‘scalar fields’. 

       Any m-point correlation function 
1 20 1( ) ( )i iu x u x  depends on the separations 

0a ar x x  , where a = 1,..,m–1. This function can be reduced to the associated 

longitudinal correlation scalar fields 
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1 2 1 20 1( ) ( ) ( ) ( )a i b i i ie e u x u x                                              (2.5) 

 

where 
ae  is a unit vector parallel to 

ar . Transverse fields are obtained by replacing some 

of the e’s with vectors perpendicular to them. The scalar fields depend only on the 

lengths of the 
ar  and the angles between them. It is not hard to see that the natural 

domain of an m-point correlation function is an (m – 1)-dimensional hyperplane.  

       The correlation functions obey a set of infinite, strongly coupled equations of 

motion. The equations of motion of the m-point, order n function involve the             

(m + 1)-point and order (n + 1) function restricted on the (m – 1)-dimensional domain 

of the order n function. This applies for all n≥2. This is the infinite hierarchy of 

correlation function equations. The coupling follows from the quadratic term of the 

Navier-Stokes equation. In order to get some knowledge of the system, we can’t solve 

the infinite set of equations, just as we are not able to solve the original Navier-Stokes 

Equation. This gives rise to the ‘closure problem’. Closing off the infinite sequence of 

equations at some finite order has to be done semi-empirically. In other words, we 

must truncate this set of equations by a model, each reasonable model is called a 

closure model.    

The Eddy Damped Quasi-Normal Markovian (EDQNM) is a subfilter closure 

model applied in spectral wavenumber space rather than physical space which 

considers interactions between resolved and subfilter wavenumbers by considering 

the statistics of their possible interactions. The EDQNM achieves closure by modeling 

the 4th spectral moments. EDQNM (Orszaq, 1970) is based on theoretical work of 

Kraichnan who developed his turbulence theories over many decades and was one of 

the prominent American theorists in this area. Following earlier work of Andrei 

Kolmogorov (1941), Lars Onsager (1945), Werner Heisenberg (1948), Carl Friedrich 

von Weizsäcker and others on the statistical theory of turbulence, Kraichnan 

developed a field-theoretic approach to fluid flow in 1957 -1965 derived from 

approaches to the quantum many-body problem- the Direct Interaction 

Approximation. An EDQNM code for solving isotropic turbulence will be presented 

and tested throughout the next chapter.  

 

 

https://en.wikipedia.org/wiki/Andrei_Kolmogorov
https://en.wikipedia.org/wiki/Andrei_Kolmogorov
https://en.wikipedia.org/wiki/Lars_Onsager
https://en.wikipedia.org/wiki/Werner_Heisenberg
https://en.wikipedia.org/wiki/Carl_Friedrich_von_Weizs%C3%A4cker
https://en.wikipedia.org/wiki/Carl_Friedrich_von_Weizs%C3%A4cker
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3. A free EDQNM code for isotropic turbulence  

In the following paragraphs we present in detail our EDQNM code for resolving 

forced isotropic turbulence. The work may be considered as continuation of previous 

work done by Michalis Pieris (2016) who wrote an EDQNM code for equally distant 

wave-numbers, however permitting the possibility of resolving large Reynolds 

numbers. Most of the ideas and the coding that will be presented is based in my 

personal communication with Prof. E. Akylas (2016) at CUT. 

 

3.1 Why free? 

During the last years, we faced the need to produce EDQNM results in order to test 

and validate some stages of our research in isotropic turbulence theory (Akylas, 

2015). Interestingly, although there is wide literature related to the EDQNM theory 

and formulation, concerning a real EDQNM application and its related coding it 

seems that everything is rather left to the researcher’s imagination. Although quite 

easy in general the application of an EDQNM closure is not so straight forward, when 

one starts from scrap. Thus, we decided to write a simple code, explaining in detail its 

basic “tricky” features, in an instructive way and give it away to anyone interested 

into the subject. By any means we would had been very happy if some years ago we 

were able to read an article like this one (Akylas, 2015).   

 

3.2 The discretized space of our EDQNM code 

The general EDQNM closure formulation which is originally written for the 

continuous spectral space can be found in a very elementary form in Lessieur and 

Ossia, (2000), in their equations 1-5. In order to proceed with the numerical 

application of the EDQNM closure the continuous spectral space should be 

discretized appropriately. The basic idea in any EDQNM application (which is one of 

their main advantages) is to stretch successively the spectral bandwidths in order to 

cover the “infinite” spectral space with a limited and thus numerically soluble number 

of wave number points. Such a technique allows for resolving very high wave 

numbers in order to achieve drastically large Reynolds numbers. However, the 

application of the EDQNM formulation in such a “stretched” geometry is not so 
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straight forward and special care needs to be given to deal with problems that may 

arise.  

 

We present here, in detail the techniques we used in order to construct a very basic 

EDQNM code. In our application we have chosen to discretize the wave numbers on a 

geometric sequence of the form  

 

          1
1

 i
i kk  , (3.1) 

 

splitting the continuous spectral space (the existence of a minimum wave number 

larger than zero will be discussed later) in wave number bands with widths 

 

           )ln( ii
i kdki

di

dk
c  lnln 1

1
 i

i kk . (3.2) 

 

By doing so, the integrals of the spectral moments in the continuous space can be 

approximated by EDQNM sums as  

 

          .)(
max

1





i

i
ii

n
i kkEkmomentn  (3.3) 

 

For instance the kinetic energy, the dissipation and the palinstrophy of the EDQNM 

spectra are calculated as sums over the index i, ,)(  ii kkEKE

,)(2 2
  iii kkEk xu and so on.  

 

Table 1. The perfect approximation of the spectral moments by equation (3.3). 

moment 0 2 4 6 

analytical 1 1920 6881280 39636172800 

EDQNM sum (3) 1 1920 6881280 39636172800 

 

One can easily verify (table 1) with a spectrum of the form 786432/)( 8/4 kekkE  , 

that the approximation of the integrals by the EDQNM series is very accurate. 
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In order to proceed with the proper sampling during the formation of the 

wavenumber triads we must determine the limits of each spectral band. The upper and 

the lower limits of the i
th

 band will be denoted as 
up
ii xk   and

low
ii xk  respectively, 

with 

 

          i
low
i

up
i kxx  , (3.4) 

 

of course. The intermediate limits of the bands of two successive wave numbers 

should coincide; that is 

 

          low
ii

up
ii xkxk 11   . (3.5) 

 

As a result of equations (3.4-5) we may conclude as a general rule, that

iii
low
i

low
i

kkkxx   11
. This can also be written through equations (3.1-2) as


low
ix 1

low
ix +   




ln1
11 1k

low
ix +   ln1

1 1 ik , and we finally deduce, for 

the lower intercepts, the equivalent more elegant formula 

 

           
1

1 ln1
112














i
lowlow

i kxx , (3.6) 

 

with 
lowx1 a free parameter. At the same time, the upper intercepts are given by (3.4).  

Obviously, we are now ready to proceed with the final calculation of the upper and 

the lower limits of each wave number band, 
up
ii

up
i xkk   and

low
ii

low
i xkk   

respectively (after some algebra) as  
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i
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1
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
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
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, 
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i
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i x
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k 1

11 ln1
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





 


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. 

(3.7a) 

 

(3.7b) 
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Without any serious loss of the generality we may set for convenience (this will help 

markedly the next section’s calculations)   )1/(ln111  kxlow , and then the 

wave number band limits simplify to  

          
11

ln1
1













 i
i

low
i

kk
k , 

11

ln 11







 



 i
i

up
i

kk
k . 

(3.8a) 

 

(3.8b) 

 

In this context, it is quite simple to distribute the energy from the formation of the 

possible triads to each specific band as it will be shown in the next section.  

 

 

Figure 11. The discretized wave numbers and their bands. 

 

In  figure 11, we  present  an example of  the  discretized  wave numbers by (3.1) and 

their bands of influence (3.8a,b) for a part of the energy spectrum 

,786432/)( 8/4 kekkE   and for the choices 
9

1 2k and 8/12 . It is evident that 

the wave numbers by (3.1) are equally distant when plotted in a log-scale and they lay 

almost (but not exactly) in the geometric center of their bands. Actually, one can 

easily calculate that they lay somewhere between the geometric and the arithmetic 

center of their bands. 
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3.3 Formation of the triad interactions and allocation to the 

wave number zones  

After the construction of the discrete domain we have a suitable framework in 

order to proceed with the core mechanism of the EDQNM formulation, the formation 

of the triad interactions among wave numbers   xk , yk and zk  that form a triangle (x, 

y, z are integers). In our discrete realization the continuous formulation found in 

Lesieur and Ossia (2000), for the spectral evolution takes the following form  

 

            ,,,),(2
max

1

2















 i

y
yyxxx ktkkAtkEk

t
  (3.9) 

 

where yk is given by (3.2), imax is the highest available index of the discrete wave 

numbers in our application. The  tkkA yx ,,  term corresponds to the appropriate 

integration of the following expression   

 

          
zy

xyxyx
zxyzxyz
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tkEkktkEk
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),(),(
),()(

23 
 , (3.10) 

 

in terms of zk over an interval  from min
zk to max

zk , with 
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yxz kkk   

  ,, max
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iyxz kkkMaximumk   

(3.11a) 

 

(3.11b) 

 

in order of xk , yk and zk  to be able to form triangles (that is the triadic concept). The 

appearing in (3.10) xyzb  and xyz  terms are given respectively by  
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and 
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where 
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1
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1 








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


 



x

i
iiix kkEka  (3.14) 

 

The first problem in the integration of (3.10) is the correct allocation of each triad to 

its respective wave number band. More specifically, the continuous integration of 

(3.10) for any specific pair of the wave numbers ),,( yx kk allows for zk to take all the 

values in the interval from | xk - yk | to xk + yk , creating an infinite number of 

successive triangles. In the discrete case there is only a limited number of triangles 

that can be formed, depending on the available discrete values of zk that exist in the 

previous interval, as shown schematically in figure 12. 

 

 

Figure 12. Schematic presentation of possible combinations of a pair of kx and kx with kz wave numbers 

(●) to form triadic interactions. The triads in the interior of the kx range (continuous lines) correspond 

to fully covered wave number bands (| |). Towards the upper and lower limits, however, the formed 

triads (dashed lines) cover only partially their bands.    
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In most of the cases, each triad formed, represents in terms of zk , its whole 

representative band. This means that the integration, in the continuous case, of (3.10) 

for a specific ),( yx kk  choice over a full band of zk  (3.8a,b)

,
),(),(

),()(

23

z

k

k zy

xyxyx
zxyzxyz dk

kk

tkEkktkEk
tkEbt

up
z

low
z




 can be approximated by the 

product of (10) for the specific triad ),,( zyx kkk times the band width zk ,        

z
zy

xyxyx
zxyzxyz k

kk

tkEkktkEk
tkEbt 

 ),(),(
),()(

23

 . In some limiting cases however, 

that width should be modified due to the conditions 3.11. 

 

3.4 The forcing term 

The two most frequently studied types of isotropic turbulence are freely decaying, and 

forced statistically stationary turbulence. For studies in which one wishes stationarity 

for statistical sampling, forced turbulence is preferable over decaying turbulence. In 

this study we adopt a band-limited forcing scheme, by injecting the dissipative energy 

back to the system. Specifically, we add a forcing term F(k) to the kinetic-energy 

transfer in equation (3.9), in order to obtain a stationary energy spectrum. We share 

and distribute linearly the energy loss to the wave numbers in the interval between 1< 

k <2.5, in a way that resembles the DNS forcing that was adopted by Isihara et al. 

(2009). 

 

3.5 The code 

In the following lines we present the routine that was created using Visual Basic, as a 

macro in Microsoft Excel in order to perform forced EDQNM at high Reynolds 

number. The characteristics of each run are controlled externally through the 

Microsoft Excel sheet.  

 

Sub EDQNM() 

' 

' EDQNM 

' Macro recorded 10/8/2016 by Cyprus University of Technology 

' 

' Keyboard Shortcut: Ctrl+a 
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    Range("B1").Select 

    maxtimesteps = Selection 

    Range("B2").Select 

    Dt = Selection 

    Range("B3").Select 

    kmax = Selection 

    Range("B5").Select 

    viscosity = Selection 

    Range("B4").Select 

    alpha1 = Selection 

    Range("E1").Select 

    alpha2 = Selection 

    Range("B6").Select 

    A = Selection 

    Range("B7").Select 

    every = Selection 

    Range("B8").Select 

    k1 = Selection 

    Range("B9").Select 

    F = Selection 

    λ = 2 ^ (1 / F) 

    ReDim DWN(256) As Double 

    ReDim WN(256) As Double 

    ReDim E(256) As Double 

    ReDim KE(256) 

    ReDim dis(256) As Double 

    ReDim N(256) As Double 

    ReDim Tk(256) As Double 

        

'.................... Initialization ..................................................................................... 

    For m = 1 To kmax 

    WN(m) = k1 * λ ^ (m - 1) 

    DWN(m) = WN(m) * Log(λ) 

    Worksheets("Sheet1").Cells(m + 11, 4).Select 

    E(m) = Selection 

    N(m) = viscosity * WN(m) ^ 2# 

    Next 

'........................Main Code........................................................................................ 

    For timestep1 = 1 To maxtimesteps / every 

    Range("AB7").Select 

    Selection = timestep1 - 1 

    For timestep2 = 1 To every 

    T = ((timestep1 - 1) * every + timestep2) * Dt + 1000000 

    diss = E(1) * WN(1) ^ 2 * DWN(1) 

    For m = 2 To kmax 

    KE(1) = E(1) * DWN(1) 

    diss = diss + E(m) * WN(m) ^ 2 * DWN(m) 

    dis(1) = E(1) * WN(1) ^ 2 * DWN(1) 

    KE(m) = KE(m - 1) + E(m) * DWN(m) 

    dis(m) = dis(m - 1) + E(m) * WN(m) ^ 2 * DWN(m) 
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    Next 

    eta = (viscosity ^ 2 / (diss * 2)) ^ (1 / 4) 

    Le = (2 * KE(kmax)) ^ (3 / 2) / (2 * viscosity * diss) 

            

    For k = 1 To kmax 

    Tk(k) = 0 

    For p = 1 To kmax 

    qmax1 = Int(Log(ë ^ k + ë ^ p) / Log(ë)) 

     

    If (qmax1 <= kmax) Then qmax = qmax1 Else qmax = kmax 

    qmin1 = Int(Log(Abs(ë ^ k - ë ^ p + 1E-20)) / Log(ë)) 

     

    If (qmin1 <= 0) Then qmin = 1 Else If (Log(Abs(ë ^ k - ë ^ p)) / Log(ë)) = 

Int(Log(Abs(ë ^ k - ë ^ p)) / Log(ë)) Then qmin = Int(Log(Abs(ë ^ k - ë ^ p)) / 

Log(ë)) Else qmin = Int(Log(Abs(ë ^ k - ë ^ p)) / Log(ë)) + 1 

    If (qmax1 > kmax) Then DWNqmax = DWN(kmax) Else DWNqmax = WN(k) + 

WN(p) - ((k1 * Log(ë) * ë ^ (qmax - 1)) / (ë - 1)) 

    If (qmin1 <= 0) Then DWNqmin = DWN(1) Else DWNqmin = ((k1 * Log(ë) * ë ^ 

(qmin)) / (ë - 1)) - Abs(WN(k) - WN(p)) 

 

    For q = qmin To qmax 

    If (qmin = qmax) Then DWNq = WN(k) + WN(p) - Abs(WN(p) - WN(k)) Else If 

(q = qmin) Then DWNq = DWNqmin Else If (q = qmax) Then DWNq = DWNqmax 

Else DWNq = DWN(q) 

    Theta = 1 / (alpha1 * ((2 * WN(k) * eta) ^ (-0 * WN(k) * eta) * dis(k) ^ (1 / 2) * 

Exp(-((WN(k) * eta / 1.1) ^ 2)) + (2 * WN(p) * eta) ^ (-0 * WN(p) * eta) * dis(p) ^ (1 

/ 2) * Exp(-((WN(p) * eta / 1.1) ^ 2)) + (2 * WN(q) * eta) ^ (-0 * WN(q) * eta) * 

dis(q) ^ (1 / 2) * Exp(-((WN(q) * eta / 1.1) ^ 2))) + 1# * N(k) * Exp(-((WN(k) * eta / 

0.65) ^ 2)) + 1# * N(p) * Exp(-((WN(p) * eta / 0.65) ^ 2)) + 1# * N(q) * Exp(-

((WN(q) * eta / 0.65) ^ 2))) 

     

    bkpq = (WN(p) / WN(k)) * (((WN(p) ^ 2 + WN(q) ^ 2 - WN(k) ^ 2) / (2 * WN(p) * 

WN(q))) * ((WN(k) ^ 2 + WN(q) ^ 2 - WN(p) ^ 2) / (2 * WN(k) * WN(q))) + 

((WN(k) ^ 2 + WN(p) ^ 2 - WN(q) ^ 2) / (2 * WN(p) * WN(k))) ^ 3) 

    Tk(k) = Tk(k) + (Theta * WN(k) / (WN(p) * WN(q))) * ((bkpq) * E(q) * (WN(k) ^ 

2 * E(p) - WN(p) ^ 2 * E(k))) * DWNq * DWN(p) 

       Next 

      

   Next 

   Next 

      

      

     S = 0# 

     For k = 1 To kmax 

     S = S + Tk(k) * WN(k) ^ 2 * DWN(k) 

     Next 

      S = S * ((1 / (2# * diss)) ^ (3 / 2)) * ((6# * 15# ^ (1 / 2)) / 7#) 

         Range("C1").Select 

     Selection = S 

      A = diss * viscosity / (KE(18) - KE(13)) 
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      For i = 1 To kmax 

      If (i < 14) Then Aj = 0 Else If (i > 18) Then Aj = 0 Else Aj = A 

      E(i) = E(i) + ((-E(i) * 2 * viscosity * WN(i) ^ 2 + E(i) * 2 * Aj + Tk(i)) * Dt) 

      Next 

 Next 

 For m = 1 To kmax 

     Worksheets("Sheet1").Cells(m + 11, 32 + timestep1).Select 

    Selection = E(m) 

    Worksheets("Sheet1").Cells(m + 11, 4).Select 

    Selection = E(m) 

 

    Worksheets("Sheet1").Cells(m + 16 + kmax, 32 + timestep1).Select 

    Selection = Tk(m) 

       Next 

    Worksheets("Sheet1").Cells(kmax + 17 + kmax, 32 + timestep1).Select 

    Selection = S 

    Range("D11").Select 

    Selection = "OK" 

Next 

End Sub 

 

 

3.6 Forced EDQNM and comparison with respective DNS 

In the following, we perform forced EDQNM with the presented code, in order to 

produce stationary spectra of isotropic turbulence. The specific application resembles 

the band limited forced DNS data by Isihara et al. (2009). Specifically we initialize 

the runs with a spectrum with total KE equal to 0.5 and keep this value constant by 

applying the forcing scheme presented earlier. The viscosity of the case is set to 

0.00044, equal to the respective DNS choice. We used a kmax = 4096, resulting to a 

kmax η value around 3 at the stationary state. The parameter λ is set equal to 2
1/4

 and 

the kmin equal to 0.125. With these choices, a total of 61 wave number bands were 

resolved. The a1 parameter was set to 0.54 resulting to a Kolmogorov constant around 

1.6, and the time dependence in 3.13 was omitted, since we deal with stationary cases.  

We run for sufficient time till a stationary state is achieved and we compare the 

spectrum with the respective DNS at Reynolds number around 700.  

 In figure 13 the compensated spectra show a remarkable coincidence with a 

profound bottleneck at the same position. The peak inside the forcing area is also 

comparable. However, any anomalous scaling effects do not appear in the EDQNM 

spectrum as in the case of the DNS spectra. The Reynolds number of the stationary 

case is 680 almost the same as in the respective DNS case (675) reflecting a good 
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performance in the macroscopic characteristics and the macro-scales of the produced 

turbulence. Also the dissipation spectra show the same qualitative behavior up to the 

peak at k η around 0.2 (Fig. 14).  

 

 

Figure 13. Comparison of the dissipation spectra from forced DNS (Isihara et al. (2009) and our 

EDQNM study (blue line). 

 

 

Figure 14. Comparison of the dissipation spectra from forced DNS (Isihara et al. (2009) and our 

EDQNM study (green line). 
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Figure 15. Comparison of the Palinstrophy spectra from forced DNS (Isihara et al. (2009) and our 

EDQNM study (blue line). 

 

 

 

A different behavior follow the tails of the EDQNM spectra that appear steeper at the 

far dissipation range in comparison to the DNS data. This picture becomes clear by 

the comparison of the palinstrophy spectra in Figure 15. Although the maximum 

locates at the same position (arround k η = 0.4), in the case of the EDQNM it is 

slightly higher and then the slopes of the spectra become very steep resulting in lower 

skewness values. In fact the skewness of the EDQNM stationary spectrum is 0.44, 

while the respective DNS corresponds to 0.68. This feature should be treated with 

different modelling of the θ term in 3.13 but this is left for future work.     
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4. Conclusions 

In the present work we gave a rough description of the present theory about isotropic 

turbulence. We presented the principal equations Navier-Stokes and discussed the 

Direct Numerical Simulations in order to solve them numerically. Finally we 

presented and analyzed in detail an EDQNM code for isotropic turbulence and we 

solved numerically a forced stationary case.   

Isotropic turbulence is an ideal state where the motion properties, in the 

statistical sense, do not show any directional dependence. More strictly, they satisfy 

rotational and translational invariance. Isotropic turbulence is the simplest form of 

turbulent flow still maintaining all its fundamental characteristics. It has been the 

playground for theoretical work through the last century. Isotropy as a statistical 

notion is not manifest at the level of the velocity field dynamics but at the level of the 

correlation functions, where the averaging has removed all the irrelevant direction 

dependencies. Isotropic turbulence lives strictly in an infinite physical space. Via 

this energy cascade, turbulent flow can be realized as a superposition of a spectrum of 

flow velocity fluctuations and eddies upon a mean flow. The eddies are loosely 

defined as coherent patterns of flow velocity, vorticity and pressure. However, the 

isotropic flow, requiring first of all an infinite physical space to live in, is an 

idealization that cannot be strictly realized even in the clinical environment of 

numerical simulations. In the direct numerical simulations (DNS) of isotropic 

turbulence one usually solves the Navier-Stokes equation imposing periodicity. The 

idea is to introduce finiteness in space in a smooth manner. Isotropic flows are 

replaced by another kind of ideal flows that can be handled numerically.  

 In the infinite space the infinite sequence of equations has to be closed at 

some finite order, this is being done semi-empirically. In other words, we must 

truncate this set of equations by a model, each reasonable model is called a closure 

model.  The Eddy Damped Quasi-Normal Markovian (EDQNM) is a sub-filter 

closure model applied in spectral wavenumber space rather than physical space which 

considers interactions between resolved and sub-filter wavenumbers by considering 

the statistics of their possible interactions. The EDQNM achieves closure by modeling 

the 4th spectral moments.  

An EDQNM code for resolving forced isotropic turbulence was created in this 

work. The work may be considered as continuation of previous work done by 

https://en.wikipedia.org/wiki/Energy_cascade
https://en.wikipedia.org/wiki/Mean_flow
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Michalis Pieris (2016) who wrote an EDQNM code for equally distant wave-numbers, 

however permitting the possibility of resolving large Reynolds numbers. The new 

code was applied in the case of for forced turbulence at Reynolds number around 

1000, resembling high Reynolds DNS from the past. The comparison shows 

significant similarities in the macroscopic characteristics of the stationary state, 

however, it reveals a different behavior at the dissipative range with sharper tails and 

lower palinstrophy values at the EDQNM spectra.  
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