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Remote sensing heritage in a petabyte-scale: satellite data and
heritage Earth Engine© applications
Athos Agapiou

Remote Sensing and Geo-Environment Laboratory, Eratosthenes Research Centre, Department of Civil Engineering
and Geomatics, Cyprus University of Technology, Limassol, Cyprus

ABSTRACT
This paper aims to demonstrate results and considerations regarding the
use of remote sensing big data for archaeological and Cultural Heritage
management large scale applications. For this purpose, the Earth
Engine© developed by Google© was exploited. Earth Engine© provides
a robust and expandable cloud platform where several freely distributed
remote sensing big data, such as Landsat, can be accessed, analysed
and visualized. Two different applications are presented here as follows:
the first one is based on the evaluation of multi-temporal Landsat series
datasets for the detection of buried Neolithic tells (‘magoules’) in the
area of Thessaly, in Greece using linear orthogonal equations. The
second case exploits European scale multi-temporal DMSP-OLS Night-
time Lights Time Series to visualize the impact of urban sprawl in the
vicinity of UNESCO World Heritage sites and monuments. Both
applications highlight the considerable opportunities that big data can
offer to the fields of archaeology and Cultural Heritage, while the studies
also demonstrate the great challenges that still are needed to be
overcome in order to make the exploitation of big data process
manageable and fruitful for future applications.
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1. Introduction

Remote sensing archaeological research has been motivated during the last decades and especially
after the launch of the first high-resolution satellite sensor IKONOS in 1999, for the systematic
exploitation of earth observation data. Recent studies (Agapiou and Lysandrou 2015; Tapete and
Cigna, forthcoming) reported a constant increase of applications in the literature oriented towards
the exploitation of earth observation data, either by optical or active space sensors. Traditional
remote sensing applications in archaeology and cultural heritage involved the exploitation of satellite
data or products for the detection of buried archaeological remains (Bjoern et al. 2012; Agapiou et al.
2014; Chen et al. 2015; Reinhold, Belinskiy, and Korobov 2016); for the study of the temporal evol-
ution and changes of the archaeolandscape (Alexakis et al. 2011; Min 2012); for the prediction mod-
elling or automatic recognition of archaeological sites using spatial analysis and statistics from
satellite datasets and products (Jahjah and Ulivieri 2010); for the monitoring of archaeological
sites and monuments against natural and anthropogenic hazards (Lasaponara, Danese, and Masini
2012; Agapiou et al. 2015a), as well as other targeted applications for supporting archaeological
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questions in specific areas of interest (De Laet, Paulissen, and Waelkens 2007). In addition, new
potentials from the exploitation of space-borne synthetic aperture radar (SAR) sensors have been
also presented in the literature (Cigna et al. 2013; Stewart, Lasaponara, and Schiavon 2014; Chen
et al. 2015; Tapete, Cigna, and Donoghue 2016), while the use of Persistent Scatterer Interferometry
has been efficiency used for multispatial/temporal hazard assessment of cultural heritage sites and
historical centres (Stramondo et al. 2008; Gigli et al. 2012; Tapete and Cigna 2012).

However, new developments in Big Data and mining are expected to impact the up-to now tra-
ditional and novel methodologies applied in the scientific field of ‘remote sensing archaeology’, since
they offer an extensive quantity of data, characterized by a certain complexity and growing data
(Sharma 2016) generated by many distinct sources (Wang et al. 2016). Big Data can be defined as
‘Large, diverse, complex, longitudinal, and/or distributed data sets generated from instruments, sen-
sors, Internet transactions, emails, videos, click streams, and/or all other digital sources available
today and in the future’ (National Science Foundation 2012, 2). In addition, as Gobble (2013, 64)
states, ‘big data can also include data which are either moving too fast, or even because these are
not -yet- structured in a usable way’. Actually, Gil and Song (2016) argue that the term ‘Big data’
is very broad, and the single attention to the ‘Big’ word should be avoided, and recommends to
focus also on the difficulty of dealing with such data in different dimensions. The actual pattern
and nature of such Big Data is indistinct, but it is certainly large, complex, heterogeneous, structured
and unstructured at the same time (Sharma 2016).

Currently, Big Data applications are playing a critical role in terms of decision-making and fore-
casting domains such as business analysis, product development, loyalty, healthcare, clinicians, tour-
ism marketing, transportation, etc. (Wang et al. 2016). Therefore, Big Data is rising as a new solution
to common problems found when processing large amounts of data, such as remote sensing datasets
(Merino et al. 2016).

Remote sensing is a rapidly advancing technology, mainly driven by imaging sensor develop-
ments (Toth and Jóźków 2016). In the last years, a variety of new sensors have been launched pro-
viding additional information to end uses. For this reason, Ma et al. (2015b, 48) argued in their recent
study that ‘with the exponential growth of data amount and increasing degree of diversity and com-
plexity, the remotely sensed data can be viewed as ‘Big Data’’. The new generation of space-borne
sensors is generating nearly continuous streams of massive remote sensing imageries sending several
Terabytes of information every day to the satellite data centres (Ma et al. 2015a). Free and open
access remote sensing data including Landsat series, Sentinel datasets, MODIS images or DMSP-
OLS Night-time Lights Time Series enabled researchers to exploit the benefits of Earth Observation.
Since 1972, Landsat satellites are continuously acquiring space-based images of the Earth’s land sur-
face, providing valuable data. Currently, Landsat 8 LDSM and Landsat 7 ETM+ are acquiring over
1200 new images per day (USGS, Landsat Missions 2015). Compare to Envisat satellite which was
providing 0.3 terabyte (TB) per day (before their failure in 2012), the daily volume of Sentinel-3A
and Sentinel-1A/1B data are expected to be increased to 1.6 TB (DLR 2016). In addition, the Senti-
nels-2A and -2B series are collecting more than 400 TB per year.

A number of remote sensing applications have been already applied in regional and global scale
for monitoring forested areas (Hansen et al. 2013; Sexton et al. 2013), deceases (Liu et al. 2015;
Kazansky, Wood, and Sutherlun 2016) or even for global emergencies (Voigt et al. 2016a), based
on Big Data information. Nevertheless, many challenges still occur when using such big data
(Voigt et al. 2016b). As Wang et al. (2016) state, the application of remote sensing, generally follows
a complex multi-stage processing chain, which consists of several independent processing steps. In
addition, the use of large scale data with conventional algorithms can be very time and space (mem-
ory) consuming (Zheng et al. 2016). Moreover, data quality and usage, for remote sensing big data
applications, need to be re-examined since the traditional methods have shown to be inadequate for
properly describing data quality and potential use of these data (Liu et al. 2016). Therefore, novel
methodologies and strategies are needed to be developed, tested and improved so as to extract useful
information from huge multi-temporal datasets. In this new framework, the archaeological
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community and other researchers interested in the protection and further exploitation of earth
observation data for tangible cultural heritage, need to work closely together to meliorate and finally
maximize the impact of big earth observation data in these scientific fields.

With the recent availability of space sensors, new ways of collecting geospatial data have been
emerged, leading to completely new data sources and data types of geographical nature (Li et al.
2016). Indeed, time series analysis of a large numbers of SAR images which has been recently pre-
sented in the literature – especially after the recent advanced mapping capabilities at high-resolution
offered by COSMO-SkyMed and German TerraSAR-X sensors – (Lasaponara and Masini 2013;
Linck et al. 2013; Cigna et al. 2013), have provided new types of data sources and products for
archaeological research.

This paper aims to demonstrate some of the first attempts of how big data and big data platforms
such as the Earth Engine© can be used for supporting archaeological research and Cultural Heritage
management. Two examples are provided, in the first case study Landsat multi-temporal series have
been used for the detection of buried archaeological remains, while in the second case study DMSP-
OLS Night-time Lights Time Series have been used for the systematic monitoring of UNESCO
World Heritage sites in Europe against urban sprawl for a long period (1992–2013). The analyses
performed exploited a huge amount of the freely remote sensing datasets, covering extensive geo-
graphical areas. Such an approach would have been considered in the near past as inapplicable
mainly due to the personal computers capabilities.

The paper is structured as follows: in Section 2 the Earth Engine© and some of the products that
are currently supported by the specific platform are presented. The methodological approach fol-
lowed in the present paper, alongside the cases studies and the data used are described in Section
3, followed by their applications within the Earth Engine© platform. Discussion about consider-
ations and opportunities raised by the case study applications is presented in Section 4 and the
paper ends with the conclusions exposed in Section 5.

2. Earth Engine© and products

Earth Engine© (Google Earth Engine Team 2015) has been recently released by Google© as ‘a plat-
form for petabyte-scale scientific analysis and visualization of geospatial datasets’. The Google Earth
Engine© actually is a computing platform which can be used to run several applications of geospatial
analysis using Google’s infrastructure. The Earth Engine© enables researchers to access a tremen-
dous petabyte of satellite information for global and large scale remote sensing applications. The
data, already organized in the platform include historical images, which could be of great importance
for archaeological and cultural heritage applications. The online platform can be expanded and
modified by the user even for customized applications. The platform can be accessed by the users
– upon approval by Google – either by the so call Core Editor or the Explorer. The latter is an
easy web access point to the platform – with no need of programming skills – where the user
may add remote sensing datasets as well as to apply some standard image analysis techniques
(e.g. algebra between bands, image filters, etc.). The Core Editor is suitable for rendering the devel-
opment of complex geospatial workflows fast and easy. Though, knowledge of programming (Java-
Script) is needed, several remote sensing algorithms are already catalogued and can be directly used
or customized. This approach makes easiest the advance use of the Core Editor interface even for
researchers without any special programming skills.

The Engine includes several remote sensing datasets, freely accessible and open data. Amongst
others, through the Engine the users can access Landsat series datasets (from 1972) and Sentinel
SAR 1 products (from 2014). For Landsat datasets, user can access through the Earth Engine© either
in their raw form (Digital Numbers) or as top of atmosphere (TOA) corrected reflectance products.
In addition, other ready-to-use computed products such as Normalized Difference Vegetation Index
(NDVI) and enhanced vegetation index vegetation indices are also accessible. Other satellite datasets
like Moderate Resolution Imaging Spectroradiometer and Defense Meteorological Satellite Program’s
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Operational Linescan System (DMSP-OLS) products are also available. The latest consist of a large
imagery database of night-time lights at approximately 1-km resolution continuous since 1992.

3. Methodology and case studies

3.1. Case studies

3.1.1. Case study 1: Thessaly region, Greece
Thessaly is an extensive plain region located in Central Greece. According to Alexakis et al. (2009) in
this area several Neolithic settlements called ‘magoules’ (tells) can be found. These Neolithic settle-
ments are usually described as low hills of 1–5 m height and mean diameter of 300 m. Neolithic
Thessaly has been studied for understanding human partitioning and territoriality of the landscape
by non-hierarchical human groups. In this area, several remote sensing applications have been
applied in the past (Alexakis et al. 2009, 2011; Agapiou, Hadjimitsis, and Alexakis 2012; Agapiou
et al. 2012; Orengo et al. 2015).

For this case study Landsat TOA reflectance data have been used from 1999 to 2012. Since the
early 1970s, the Landsat sensors have been widely used in archaeology for a variety of archaeological
applications (Giardino 2011). The sun-synchronous orbit sensors are mounted on the various multi-
spectral platforms covering from visible to infrared part of the spectrum providing systematic cover-
age from the seventies until today to several sites around the world. Currently Landsat 7 ETM+ and
Landsat 8 LDCM are in orbit providing new acquisitions every 16 days. Using the Earth Engine©, a
variety of multi-temporal analysis was performed in reasonable time (less than a minute). Figure 1
presents the annual reflectance TOA over the area of Thessaly. As it is demonstrated, ‘magoules’ are
detected due to the variations of the spectral profile of the site compared to its surrounding cultivated
area. However, visual interpretation is not always easy to perform since these variations – also known
in the literature as crop marks – need to be enhanced using image analysis processing (Agapiou,
Hadjimitsis, and Alexakis 2012).

In order to improve the interpretation of crop marks, linear orthogonal equations have been
recently proposed in the literature (Agapiou et al. 2015b; Agapiou 2016). These equations are sensor
sensitive and therefore for each satellite image a different equation should be used (Agapiou et al.
2013; Agapiou 2016). For instance, for Landsat ETM+ sensors the orthogonal equations are given
below. These equations have been implemented in the Earth Engine© API and applied to the Landsat
TOA reflectance data provided by the Google Engine.

Crop markLandsat 7 ETM+ = −0.42rblue − 0.69rgreen + 0.21rred − 0.55rNIR, (1)

Figure 1. Annual Landsat reflectance TOA image over the Thessalian plain in the NIR-R-G pseudo colour composite (left). Known
Neolithic tells are also indicated as points in this image. On the right the Mellissa 1 tell as seen in the true colour R-G-B.
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VegetationLandsat 7 ETM+ = −0.34rblue − 0.41rgreen − 0.65r (red) + 0.53rNIR, (2)

SoilLandsat 7 ETM+ = 0.12rblue + 0.22rgreen − 0.73rred − 0.64rNIR. (3)

3.1.2. Case study 2: UNESCO World Heritage sites
In the second case study, a larger scale application was performed, using the Earth Engine© capa-
bilities. The purpose of this analysis was to estimate the changes in terms of urban expansion in
the vicinity of Cultural Heritage sites in Europe, Middle East and North Africa regions. For this
reason, all UNESCO World Heritage sites have been used (2015) as demonstrated in Figure 2.
The list includes both natural and cultural heritage sites, as well as combination of the two.

Annual DMSP-OLS Night-time Lights Time Series Version 4 data for the period 1992 until 2013
have been used. As Hsu et al. (2015) discuss that night-time lights are unique among global remote
sensing data products for their high correlation to human activities. These kinds of data (version 4)
consist of cloud-free composites made by using all the available archived DMSP-OLS smooth resol-
ution data. As it stated, by the Earth Engine©, in the cases where two satellites are collecting data –
two composites are produced. From these sources the stable lights value has been mapped. Stable
lights values refer mainly to the lights from cities, towns and other sites with persistent lighting,
including gas flares. Ephemeral events such as fires have been discarded. The background noise
was identified and replaced with values of zero (Google Earth Engine© 2015; see more at Imhoff
et al. 1997).

The visible pixels of these images have relative values ranging from 0 to 63, rather than absolute
values in Watts per m^2. Night lights are known to overestimate the spatial extent of development at
the periphery of settlements and for this reason a low light threshold of 89% is proposed (Imhoff
et al. 1997; Small et al. 2011). Doll (2008) argues that there is no single threshold that can be applied
which would match the urban delimitation for all cities. However, despite these difficulties,

Figure 2. UNESCO World Heritage sites in the area of Europe, Middle East and North Africa regions per year of inscription (source
UNESCO 2015).
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DMSP-OLS Night-time Lights Time Series data are used in the literature as an information source to
detect human settlements and to estimate the urban population (Amaral et al. 2006). Similar
approach was also applied by Agapiou et al. (2015a) for monitoring urban expansion of Paphos dis-
trict in Cyprus using both DMSP-OLS Night-time Lights and archive Landsat satellite datasets.

Based on these annual datasets and the coordinates of the UNESCO World heritage sites, stable
light values for each site was created in a GIS environment (ArcGIS v10.2). Then, the diachronically
evolution of urban sprawl as this is recorded by the stable lights was plotted.

3.2. Applications

3.2.1. Case study 1: Thessaly region, Greece
In the first case study, at Thessalian plain, Landsat 7 ETM+ images (TOA calibrated images), avail-
able from Earth Engine© were used. In the beginning, the reflectance values over the detected
‘magoules’ (i.e. tells) have been extracted from the Earth Engine©. As it was found these reflectance
values of the tells can be very close to the surrounding cultivated area of the Thessalian plain. In
Figure 3, Landsat images acquired between the period of 1 January 2000 and 1 January 2010 have
been processed using the Earth Engine© API (in total 370 satellite images). The NDVI for two
sites has been extracted from the Earth Engine© in csv format and then processed in spreadsheets.
The first site refers to theMelia 1Neolithic tell (coordinates: 22.590065°, 39.548588° World Geodetic
System (WGS) coordinate system), while the second site is from the surrounding cultivated area
(coordinates: 22.586832°, 39.545672° WGS coordinate system). As it is shown in Figure 3, in several
images the absolute NDVI difference of these two sites is in between the pre-calibration radiometric
accuracies and limits of the Landsat sensors (i.e. 5%) (Trishchenko, Cihlar, and Zhanqing 2002;
Agapiou, Alexakis, and Hadjimitsis 2014), and therefore not a statistical bias conclusion can be car-
ried out. In addition, it is clearly demonstrated that in some cases the difference recorded can be
maximized over and above of 20% which should be associate with the different phenological stage
of the crops between the two sites (i.e. full growth and beginning of the phenological cycle).

Figure 3. NDVI values calculated for the period 2000–2010 for two case studies: Melia 1 Neolithic tell and a cultivated site in the
surrounding area. The absolute difference (in %) between the two sites is presented in red colour. Radiometric limits (errors) of the
Landsat sensor are also shown.
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In addition, within the Earth Engine© online platform, the orthogonal equations (see above
Equation (1–3)) have been applied for the images between 1999 and 2002, and then the new pro-
ducts (i.e. 3 bands: crop component, vegetation component and soil component) have been down-
loaded. This period was selected due to the Scan Line Corrector (SLC) error (see more in USGS,
SLC-off products 2015) observed in Landsat 7 ETM+ data since 2003. This dataset (i.e. 2003–2016)
are discussed in Section 4. Figure 4 shows the results after the application of the crop component
(Equation (1)). Red squares indicate all the up today known Neolithic tells of the area under exam-
ination. The size of the area is approximately 15 km length and 12 km width for a total area of
approximately 180 km2. A detail of a tell (Melissa 1, highlighted with yellow square) is indicated
in the top right part of the figure. The figure evidences that the various tells are found in a relatively
close proximity between them, while a gap of information (i.e. north-east area) is detected. The
Neolithic tells are seen in Figure 4 as pixels with spectral difference from the surrounding culti-
vated area. Medium pixel resolution of the Landsat series (i.e. 30-m pixel resolution) is sometimes
problematic for such investigations, however, the used datasets allowed the study and visualization
of the landscape under examination before any major modem alteration of the environment
occurred (e.g. urban expansion; intensive agriculture; adequate infrastructures in the area such
as Karla Lake etc.). Neolithic tells identified from visual inspection and interpretation from this
dataset are indicated in the same figure as green squares. These tells are recognized based on
the different spectral behaviour compare to its surrounding cultivate areas and with their size
and shape properties (i.e. 2–4 pixels’ dimensions and almost circular shape). Crop component
was able to maximize – for most of the tells – the spectral distance between the areas of interest
(i.e. tells) and the surrounding cultivated areas. Since, Figure 4 indicates the average results of
the whole Landsat dataset for the period 1999–2002, this improve the hypothesis that this
multi-temporal spectral difference observed in the recognized tells (i.e. with green square) is
not a noise. Tells with no clear spectral indication (i.e. nit indicated with green square) are

Figure 4. Results from the crop component band applied in the Landsat 7 ETM+ series for the period 1999–2003. Red squares
indicate all the known Neolithic tells of the area (approximately 180 km2). Green squares show tells identified from visual inspection
and interpretation of the Landsat images. A known tell, Melissa 1, is highlighted with yellow square and indicated in the top right
part of the figure.
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probably already flatten areas, used for agricultural purposes and therefore no significant signal
can be recorded.

A similar approach was followed for the other two bands derived from the orthogonal equations:
(a) the vegetation component demonstrated in Figure 5 and (b) the soil component presented in
Figure 6. Again, Neolithic tells recognized by visual interpretation are highlighted in these two
figures in green squares. While the majority of the sites can be only seen in a single component
band, other sites might be also visible in more than one component. As it is shown from
Figures 4–6, almost 33% of the tells (eight tells in total) are recognized in one of the components,
while 15% are spotted in two components (four tells in total) and only 10% can be identified in
all components (two tells in total).

The overall results from this extensive dataset (Landsat 7 ETM+ images from 1999 to 2002) are
shown in Figure 7. From the total application analysis, it was found that more than 50% of the known
Neolithic tells were identifiable from visual interpretation of the crop, vegetation and soil com-
ponents. Given the medium resolution used in this example, as well as the capabilities of the
Earth Engine© to explore additional data from different periods, the success rate of the results is
very promising.

3.2.2. Case study 2: UNESCO World Heritage sites
For the second case study, UNESCO World Heritage sites at a European, Middle East and North
Africa regions level have been examined. DMSP-OLS Night-time Lights Time Series Version 4
data for the period 1992 until 2013 have been downloaded from the Earth Engine© platform and
inserted into the ArcGIS v10.2 software for further analysis. Stable lights for this period –with a
4-year interval (i.e. 1992–1996, 2000–2004 and 2008–2012) – were visualized and shown in Figure 8.
Red colour in Figure 8 indicates areas with higher value of stable lights, a parameter which is linked
to the presence of urban areas. Therefore, multi-temporal analysis of this dataset is suitable as a

Figure 5. Results from the vegetation component band applied in the Landsat 7 ETM+ series for the period 1999–2003. Red
squares indicate all the known Neolithic tells of the area (approximately 180 km2). Green squares show tells identified from visual
inspection and interpretation of the Landsat images. A known tell, Melissa 1, is highlighted with yellow square and indicated in the
top right part of the figure.
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Figure 6. Results from the soil component band applied in the Landsat 7 ETM+ series for the period 1999–2003. Red squares
indicate all the known Neolithic tells of the area (approximately 180 km2). Green squares show tells identified from visual inspection
and interpretation of the Landsat images. A known tell, Melissa 1, is highlighted with yellow square and indicated in the top right
part of the figure.

Figure 7. Overall success results after the application of the orthogonal equations for Landsat 7 ETM+ series for the period 1999–
2003. Red squares indicate all the known Neolithic tells of the area (approximately 180 km2). Green squares are the Neolithic tells
identified from visual inspection and interpretation.
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proxy of the phenomenon of urban sprawl in this area. As it is demonstrated, new large urban
centres have been developed in the last 20 years in several parts of Europe, Middle East and
North Africa regions. In addition, large cities have been grown larger. The central and north-west
parts of Europe, as well as cities in the eastern part of Europe, are the areas with the greatest change
in terms of urban sprawl. Major cities are mainly found in the western part of Europe while excep-
tions are also noticed such as Moscow, Cairo, Athens, etc. During the period between 2008 and 2012,
the largest rate of expansion was recorded mainly in the central part of Europe as well in the western
part of Africa.

Figure 8. DMSP-OLS Night-time Lights Time Series Version 4 data over Europe, Middle East and North Africa regions from 1992–
2012 (with 4-year interval). Red colour indicates higher stable lights values, a value used for the estimation of urban expansion.
(Data generated from Google Earth Engine(c). Background Source Maps: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).
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Based on this information differences between two DMSP-OLS Night-time Lights Time Series
Version 4 data for the years 2012 and 1992 have been calculated for each site. Figure 9, presents
the UNESCO sites grouped into eight major categories according to the differences recorded
from the images of 2012 and 1992 (expressed in percentage). The background image is a pseudo col-
our composite of the DMSP-OLS data for the years 2012, 2002 and 1992. The red colour of the image
stands for areas with large Digital Numbers of stable light values for the year 2012, while blue lights
for areas with large Digital Numbers of stable light values in 1992. Similar for green colour which
indicates areas that have recorded large Digital Numbers of stable light values in 2002. As demon-
strated the urban expansion in relation to the UNESCO monuments is quite heterogeneous over the
area of interest. Positive night lights difference values between the 2012 dataset and the 1992 images
has been recorded for the whole sites under UNESCO Heritage list. Some sites mainly in the central
and western part of Europe have the largest difference. Of course we have to keep in mind the spatial
resolution of the dataset used here (1-km pixel size) which can be only used as an indicator and not
as final conclusions. Even if processes of urban densification are ongoing in some UNESCO city
centres, the 1-km resolution data will not be sensitive enough to show this impact.

In an attempt to analyse further the data collected from the DMSP-OLS Night-time Lights Time
Series, a hot and cold spot analysis was carried out based on the Getis-Ord Gi* statistic (Figure 10).
The Getis-Ord Gi* statistic for each monument is calculated based on the Equations (4–6) given
below:

G∗
i =

∑n
j=1 wi,jxi − �X

∑n
j=1 wi,j

S

��������������������������������
n
∑n

j=1 w
2
i,j −

∑n
j=1 wi,j

( )2[ ]
n− 1

√√√√√
, (4)

Figure 9. Difference between DMSP-OLS Night-time Lights Time Series Version 4 data over Europe, Middle East and North Africa
regions for the period 1992–2012. The background image is a pseudo colour composite of the DMSP-OLS data for the years 2012–
2002–1992. (Data generated from Google Earth Engine(c). Background Source Maps: Esri, DigitalGlobe, GeoEye, Earthstar Geo-
graphics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).
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where xj is the night light value for each monument, wi,j is the spatial weight between two monu-
ments i and j, n is equal to the total number of monuments (here n = 512) and

��X =
∑n

j=1 xj
n

, (5)

S =
�����������������∑n

j=1 x
2
j

n
− (��X)2

√
. (6)

The results from this analysis identify if UNESCO monuments may have (hot) or not (cold) high or
low values cluster spatially within the context of neighbouring features. Therefore, monuments indi-
cated with red colour in Figure 10 which corresponds to hot spot areas are monuments that have
high value (i.e. night light value which is linked to the presence of urban areas) but are also surrounded
by other monuments with high values as well. Cold spot areas, indicated with blue colour in Figure 10,
are monuments that have relative low night values (i.e. low dense urban areas) but also surrounded with
other monuments with low values. The overall analysis takes into considerations the whole sample, and
it was performed for the years 1992, 2002 and 2012. As indicated in this figure, monuments in the east-
ern and southern part of Europe (i.e. Balkans area) are ranked as cold spot areas for the whole period,
compared to the central and western part of Europe (i.e. Germany, France, UK, Spain, etc.). Other
regions, such as the northern part of Africa seem to have no significant difference.

The overall results demonstrated the potential use of such large datasets in large scale appli-
cations, while at the same time the complexity to map urban sprawl in the European, Middle East

Figure 10. Hot spot analysis based on the Getis-Ord Gi* statistic for the years 1992–2002 and 2012 (10-years interval, a,b,c, respect-
ively). The background image is a pseudo colour composite of the DMSP-OLS data for the years 2012–2002–1992. (Data generated
from Google Earth Engine(c). Background Source Maps: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).
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and North Africa regions level was evidenced. However, in some cases it is clear that within the last
20 years (i.e. 2012–1992) a great expansion of urban areas has been recorded in the vicinity of
UNESCOWorld Heritage sites. This overview could be of major substance to local and regional sta-
keholders operating in the field of protection and monitoring of Cultural Heritage sites against natu-
ral and anthropogenic hazards. A step forward would be the exploitation of medium and high-
resolution datasets in order to gather more detail results for specific areas of interested using
again multi-temporal remote sensing datasets. Clustering analysis carried out, based on the night-
time series data, revealed that five classes can be used so as to characterize the UENSCO monuments
(Figure 11). Class 1, indicated with blue dots in Figure 11, represents monuments that from 1992 to
2012 have relative low night values (less than 10). However, monuments of this class have also a
noticeable increase of night value from the value 5 to 10 between the period 2008 and 2012. The
second class, represented with green colour in Figure 11, groups monuments that have light night
values around 15 but again during this period (2008–2012) a significant increase has been recorded
(from light value 18 during 2008 to light value 29 to 2012). The third class (indicated with yellow
colour in Figure 11) has an average night light value of around 25 which then remain stable until
2006. Since then a dramatic increase has been recorded from the DMSP-OLS Night-time Lights
Time Series Version 4 data (light values over 40 in 2012). Dots with orange colour in Figure 11
are the monuments that had high night values (over 40) from the beginning of the dataset (1992)
and by the end of the 20 years’ period, this value was over 50. Last, class five, shown with red
colour in Figure 11, indicates monuments with the highest night values since 1992. This value
remains almost stable at around 60 (top value is 63), and probably these class represent UNESCO
monuments that are found the historical centres of Europe and Middle East with huge
populations.

Figure 11. Group analysis of the monuments in the Europe, Middle East and North Africa regions for the period between 1992 and
2012. Classes refer to monuments with similar trends over the year based on the values from the DMSP-OLS Night-time Lights Time
Series Version 4 data. The background image is a pseudo colour composite of the DMSP-OLS data for the years 2012–2002–1992.
(Data generated from Google Earth Engine(c). Background Source Maps: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/
Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).
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4. Discussion: new challenges and new opportunities for remote sensing
archaeology

As Gattiglia (2015, 117) has recently stated ‘archaeological data are messy and difficult to structure
by definition: archaeological data structures are arbitrary, and there is no question about the inter-
pretative character of their nature’. However, Big Data and Big Data engines as the one used here
are able to provide further insights for researchers working in the fields of cultural heritage and
archaeology. Evaluating the applications and results presented in this study, the question emerging
concerns the notion whether these methodological approach would be of interest and helpful for
pure archaeological research and for cultural heritage management in general. Could all this infor-
mation gathered from the several petabytes of datasets be really supportive to researchers and pro-
fessionals working in the aforementioned fields? Answering this question from a ‘top to bottom’
approach the reply rather turns to be ‘no’ since several issues are needed to be addressed, such as
the interpretation of the data and of the results, the level of accuracy, problems related to the geo-
reference between the different datasets, the parameter of the different scale of observation, the
variety of spectral and spatial resolutions, etc. For instance, in the case study of the Thessalian
plain, the use of Landsat images for the periods 2003–2016 could result problematic due to the
strip complications observed at the sensor after 2003 onwards. As shown in Figure 12, strip
lines are observed in the whole image rendering difficult the interpretation and identification of
the Neolithic tells (shown as green squares). Comparing the results of the crop component recog-
nized for the periods 1999–2003 (Figure 4) and the ones for the periods 2003–2016 (Figure 12), is
becoming evident that interpretation for the second sample of datasets, is problematic.

On the other hand, further to the challenges that both archaeological and remote sensing com-
munity need to address regarding the use of Big Data, approaching this new challenge from a ‘bot-
tom to top’ perspective, future opportunities and potentialities are also observed. Indeed,
complexities of Big Data need to be overcome in order to have the maximum benefits from using
large scale datasets in archaeological research. The example of the UNESCO World Heritage sites

Figure 12. Results from the crop component band applied for Landsat 7 ETM+ series for the period 2013–2016. Red squares indi-
cate all the known Neolithic tells of the area (approximately 180 km2). Green squares are the Neolithic tells identified from visual
inspection and interpretation. Strip problems are also observed in the image.
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(case study 2), based on the multi-temporal analysis of the annual DMSP-OLS Night-time Lights
Time Series Version 4 data, indicates that Big Data engines can support large applications for
large spatial extent and for hundreds of monuments. The critical aspect is therefore shifted from
the storage and manage of these huge datasets, to the analysis and interpretation of the results.
Spatial statistics tools, as those applied in the second case study, show that further insights can be
retrieved for the monuments from the multi-temporal analysis.

Despite the small number of archaeological studies that have been applied in the past based on Big
Data, still their exploitation could be of great benefit to archaeologists in exploring large scales and
multi-temporal datasets. Furthermore, the current capabilities of Big Data engines that provide a
platform for manipulating and analysing the data can be seen as a computational turn in thought
and research as well (Burkholder 1992). New and probably still unknown applications and tools
might be built in the near future for the exploitation of the Big Data datasets in a useful and even
more efficient and accurate manner. Therefore, the multidisciplinary of this approach imposes
the close collaboration between scientists in order to overwhelm in a productive way the compli-
cations here acknowledged.

5. Conclusions

Two different applications have been presented in this study for the exploitation of remote sensing
Big Data in the fields of archaeology and cultural heritage management. An online Big Data platform
(Earth Engine©) has been used to retrieve both Landsat and DMSP-OLS Night-time Lights Time
Series Version 4 data. The Earth Engine provided a robust platform in order to apply the orthogonal
equations in the area of the Thessalian plain. The overall results from this approach were found to be
very promising since more than half of the Neolithic sites in an area of more than 180 km2 were
identified. The success rate could be further increased upon the selection of the ‘best’ datasets (i.e.
images taken during the boot stage of the crops) in an automatic way to minimize the computational
time. For this task-specific algorithms are needed to be developed both for retrieving the ‘best’ data-
sets and for excluding the problematic ones.

Multi-temporal datasets for vast areas such as Europe, Middle East and North Africa regions can
be also easily exploited within the platform. The DMSP-OLS Night-time Lights Time Series Version
4 data for a period of more than 20 years was downloaded in the second case study regarding the
visualization of urban sprawl (based on the stable lights value) in the vicinity of UNESCO World
Heritage sites of Europe, Middle East and North Africa regions.

Both examples provided a fruitful feedback of how Big Data can be used for archaeology and cul-
tural heritage management, while at the same time evidenced both the challenges that are needed to
be addressed and the several opportunities that could be raised in the future. The concluding percep-
tion relies in the essentiality of a close collaboration between archaeologists, remote sensing and IT
experts. Analysis and interpretation of such large multi-temporal datasets will definitely require
additional tools and algorithms to be developed so as to be able to fully take advantage of this
new potential. The use of large datasets, especially for remote sensing application in archaeology,
is essential so as to verify or not a hypothesis that is probably build upon only a single or few satellite
images. Though, the any obstacles that may be still need to deal with, such as the use of medium or
low spatial resolution satellite data (e.g. Landsat and DMSP-OLS Night-time Lights Time Series Ver-
sion 4 data) will probably change in the near future with the use of new data with higher spatial
resolution.
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