
Advances in Engineering Software 98 (2016) 79–96

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Investigating the impact of developer productivity, task

interdependence type and communication overhead in a

multi-objective optimization approach for software project planning

Constantinos Stylianou

a , ∗, Andreas S. Andreou

b

a Department of Computer Science, University of Cyprus, 75 Kallipoleos Avenue, PO Box 20537, 1678, Lefkosia, Cyprus
b Department of Electrical Engineering/Computer Engineering and Informatics, Cyprus University of Technology, 31 Archbishop Kyprianou Avenue, PO Box

50329, 3036, Lemesos, Cyprus

a r t i c l e i n f o

Article history:

Received 26 March 2015

Revised 1 February 2016

Accepted 4 April 2016

Available online 19 April 2016

Keywords:

Productivity-based software project

planning

Task scheduling

Human resource allocation

Multi-objective optimization

Task interdependence

Communication overhead

a b s t r a c t

One of the most important activities in software project planning involves scheduling tasks and assigning

them to developers. Project managers must decide who will do what and when in a software project,

with the aim of minimizing both its duration and cost. However, project managers often struggle to ef-

ficiently allocate developers and schedule tasks in a way that balances these conflicting goals. Further-

more, the different criteria used to select developers could lead to inaccurate estimation of the duration

and cost of tasks, resulting in budget overruns, delays, or reduced software quality. This paper proposes

an approach that makes use of multi-objective optimization to handle the simultaneous minimization of

project cost and duration, taking into account several productivity-related attributes for better estima-

tion of task duration and cost. In particular, we focus on dealing with the non-interchangeable nature

of human resources and the different ways in which teams carry out work by considering the relation-

ship between the type of task interdependence and the productivity rate of developers, as well as the

communication overhead incurred among developers. The approach is applied to four well-known opti-

mization algorithms, whose performance and scalability are compared using generated software project

instances. Additionally, several real-world case studies are explored to help discuss the implications of

such approach in the software development industry. The results and observations show positive indica-

tions that using a productivity-based multi-objective optimization approach has the potential to provide

software project managers with more accurate developer allocation and task scheduling solutions in a

more efficient manner.

© 2016 Elsevier Ltd. All rights reserved.

1

p

a

s

a

e

w

h

c

c

v

c

o

d

i

r

h

o

w

v

i

F

h

0

. Introduction

The success of a software project relies on delivering end-

roducts on time, within budget and with all the required features

nd functionality. These goals can be realized only if the neces-

ary planning, organizing, staffing, directing and control activities

re carried out correctly by project managers. Furthermore, consid-

ring the ever-increasing size and complexity of modern-day soft-

are products, development companies face escalating pressure of

aving to provide software products sooner and cheaper than their

ompetitors in order to remain viable. Therefore, a primary con-

ern for software project managers is to make sure the right de-

elopers are selected while effectively balancing the duration and
∗ Corresponding author: Tel.: +357 25 002099.

E-mail address: cstylianou@cs.ucy.ac.cy (C. Stylianou).

t

t

t

m

u

ttp://dx.doi.org/10.1016/j.advengsoft.2016.04.001

965-9978/© 2016 Elsevier Ltd. All rights reserved.
ost of a project, in order to prevent unnecessary cost and schedule

verruns in subsequent stages of development and any overall re-

uction to the level of quality of the end-products. Consequently, it

s important for software project managers to have support during

esource allocation and scheduling activities through tools that will

elp them successfully select and arrange the most suitable (teams

f) developers to guarantee the success of the software project,

hilst satisfying both time and budgetary criteria simultaneously.

Human resource allocation and task scheduling in software de-

elopment projects is a naturally complex and computationally-

ntensive process since multiple objectives need to be satisfied.

or this reason, the problem is classed as a special case of

he resource-constrained project scheduling problem (RCPSP), and

herefore is considered to be an NP-hard problem, meaning that

here is no algorithm known to be able to solve it in polyno-

ial time [1,2] . Project managers often struggle to use a man-

al approach because there are many different combinations to be

http://dx.doi.org/10.1016/j.advengsoft.2016.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.04.001&domain=pdf
mailto:cstylianou@cs.ucy.ac.cy
http://dx.doi.org/10.1016/j.advengsoft.2016.04.001

80 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

t

v

v

r

r

b

t

S

a

r

S

t

p

m

l

t

S

e

c

t

t

L

p

2

t

i

t

m

5

c

t

l

m

t

a

f

a

p

a

o

t

e

o

v

r

t

t

a

s

n

s

e

r

t

c

a

l

w

examined. Thus, an exhaustive search to find the best solution will

often prove inadequate and impractical, especially if they have a

limited amount of time at their disposal. As a result, the major-

ity of works view the problem as an operational research prob-

lem, where proposed solutions make use of techniques that carry

out combinatorial optimization of various software criteria, such as

cost, duration, or number of defects. Examples include mathemat-

ical modelling methods and computational intelligence techniques,

where specialized algorithms are employed to locate optimal or

near-optimal feasible solutions as a means of providing better and

faster support to decision-makers. Several of these approaches em-

phasize that the allocation of developers and scheduling of tasks

needs to take into account certain attributes of the available work-

force, such as the capabilities and experience of developers in cer-

tain skills, as well as their cost.

There are, however, several other attributes that should also be

addressed, the influence of which could allow project managers in

the software industry to make more accurate staffing decisions and

estimates during their planning activities earlier on in the project.

Specifically, the proposed approach uniquely investigates the inclu-

sion of productivity-related attributes concerning:

• the productivity rate of developers.
• the way in which productivity rates are combined within teams

based on the type of work carried out (known as task interde-

pendence type).
• the communication overhead that is incurred when developers

work together and collaborate.

Including these attributes during planning activities is impor-

tant, especially in cases where tasks are allowed to be undertaken

by several developers whose efforts need to be combined to pro-

duce a task’s output. Consequently, these attributes reflect on both

the duration and cost of a software project, as well as the quality

of the end-product.

The paper contributes to the existing research area in two ways.

First, it adapts the RCPSP of human resource allocation and task

scheduling in software development projects so as to include these

overlooked productivity-related attributes. Second, it presents a

novel attempt to solve the problem of minimizing the duration

and cost of a software development project in its initial stage

with the use of a multi-objective optimization incorporating the

productivity-related attributes. In order to help achieve this, sev-

eral objective and constraint functions are proposed to guide the

generation of feasible and optimal solutions. Also, we attempt to

include hard, realistic assumptions and constraints concerning the

availability and suitability of developers that would normally affect

the planning decisions of software project managers. The inclusion

of these assumptions adds significantly to the complexity of the

adapted RCPSP problem we attempt to solve, which makes it that

much harder for the optimization process to find feasible and op-

timal solutions. We therefore employ several different variations of

multi-objective genetic algorithms (MOGAs) to carry out the opti-

mization and pose our first research question:

R1. How do different MOGAs perform in terms of generating

(near-)optimal solutions with respect to our proposed approach to re-

source allocation and task scheduling?

Given the fact that as current technology capabilities are con-

stantly improved, software systems progressively become larger. It

is also important for our approach to be applicable for varying

sizes of projects undertaken by varying sizes of development com-

panies. Consequently, we examine the issue of scalability by setting

our second research question:

R2. How do different MOGAs behave in terms of scalability as the

number of tasks and developers increases in our proposed approach

to resource allocation and task scheduling?
Furthermore, it is equally important to investigate the implica-

ions of the productivity-based attributes in practical software de-

elopment settings. For this, several real-world projects were in-

estigated. The ultimate goal is to provide an approach that accu-

ately reflects both the manner with which these activities are car-

ied out, and also the factors that may influence decisions taken

y software project managers in an automated, efficient and less

ime-consuming way.

The remainder of the paper is structured as follows:

ection 2 provides an overview of recent related attempts that

lso use optimization techniques to solve the problem of human

esource allocation and task scheduling in software projects.

ection 3 gives a formal description of our proposed adaption of

he RCPSP, which considers task type interdependence, developer

roductivity and communication overhead. Section 4 presents the

ulti-objective optimization process adopted to solve the prob-

em. Section 5 explains the experiments carried out to evaluate

he proposed approach with regards to the research questions.

ection 6 presents the results obtained and the quality indicators

mployed to help compare the MOGA variations. Section 7 dis-

usses several observations made in real-world projects concerning

he applicability of our approach. Section 8 examines potential

hreats to validity and how certain limitations were addressed.

astly, Section 9 presents a synopsis with concluding remarks and

ossible future directions.

. Related work

The majority of attempts to allocate developers and schedule

asks make use of optimization techniques, where the main goal

s to maximize or minimize various software development objec-

ives (most popular being cost and duration) through the use of

athematical modelling methods such as linear programming [3–

] , constraint satisfaction [6,7] , queuing theory [8,9] , and statisti-

al/probabilistic modelling [10] , in addition to computational in-

elligence techniques like genetic algorithms [11,12] , swarm intel-

igence [13–15] , and fuzzy logic [16,17] , or a combination of these

ethods [18] .

Antoniolet al. [18] , Ren et al. [12] , and Di Penta et al. [19] at-

empt to schedule work packages and allocate teams to work pack-

ges with the goal of minimizing project duration. These attempts

ocus on software maintenance projects, where work packages are

ssigned teams of developers as they occur in time or are post-

oned until developers with the required expertise are available

gain. The latter attempt also focuses on minimizing the idle times

f developers, that is, the time a developer waits to be reassigned

o another task. However, these attempts consider that teams are

qually capable of carrying out tasks and require the same amount

f time to do so.

Alba and Chicano [20,21] propose an approach to allocate de-

elopers and schedule tasks in order to minimize the cost and du-

ation of software projects. The authors employ a genetic algorithm

o perform the optimization, in which the duration of tasks is de-

ermined by the degree of dedication of each assigned developer

s long as the skill requirements of tasks are satisfied. Using the

ame approach, Xiao et al. [15] made a comparison between ge-

etic algorithms and particle swarm optimization, and their results

how that the latter technique yield better solutions. Also, Minku

t al. [22,23] attempt to improve the quality of solutions and hit

ates of the original approach by normalizing the degree of dedica-

ion of developers and incorporating a new penalty for evaluating

ost and completion time. The approach, however, considers that

ll developers with a particular skill will possess it to the same

evel and, thus, assumes that those developers are interchangeable,

hich may not be the case in real-world settings.

C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96 81

p

r

m

t

e

o

n

t

s

m

s

g

p

t

g

t

n

o

a

s

i

i

a

t

o

e

t

f

o

w

t

s

i

e

g

t

p

w

s

n

a

t

i

t

t

o

i

t

d

w

h

t

p

i

a

d

f

w

t

v

b

m

h

b

S

w

d

n

a

m

t

c

s

a

v

i

p

c

t

3

{

m

w

d

v

S

r

a

t

e

v

h

c

r

W

i

t

t

t

c

t

r

d

d

fi

e

e

t

n

o

i

d

s

f

t

t

e

r

v

f

o
Kapur et al. [24] and Ngo-The and Ruhe [25] use integer linear

rogramming together with genetic algorithms in order to assign

esources and schedule the implementation of features in incre-

ental software development. One of the goals of the optimiza-

ion is to maximize productivity on the assumption that develop-

rs with different levels of skills will naturally have different rates

f productivity. This can be used by software development compa-

ies as a way to schedule product releases with selected features

hat lead to an optimum business value. However, one of the as-

umptions is that only one developer can be assigned to imple-

ent a feature, which may not be practical considering that larger

oftware projects may require two or more developers to work to-

ether on a task in any phase of development.

In the resource allocation and task scheduling approach pro-

osed by Yanibelli and Amandi [26] , the authors take into account

he level of effectivity of software developers by assessing the de-

ree to which developers will be effective when assigned to work

ogether on the same task. This information is then used in a ge-

etic algorithm approach that attempts to maximize the effectivity

f assigned resources. This approach was later modified, first, with

 memetic algorithm [27] , and second, with a diversity-adapted

imulated annealing method [28] as a way to improve to the qual-

ty of the generated solutions. Make-span minimization was also

ntroduced by the authors as an additional criterion to the original

pproach, hence, transforming it into a multi-objective optimiza-

ion approach [29] . This was then expanded with the integration

f simulated annealing in order to improve the exploitation and

xploration search processes of the genetic algorithm [30] . All of

hese approaches assume that the number of developers required

or each task and the level of effectivity between combinations

f developers is known in advance, which may pose a problem

hen two or more developers are assigned together for the first

ime. Furthermore, the authors completely ignore the cost dimen-

ion when allocating and scheduling developers. The most signif-

cant downside to this approach, however, is that the duration of

ach task is not actually influenced by how developers work to-

ether. In fact, regardless of how effective the developers assigned

o a task are, the duration remains unaffected.

The goal of our approach is to provide support for software

roject managers in their decision regarding who will work on

hat and when, giving them the ability to choose from a set of

olutions with respect to the cost/time trade-off that best fits the

eeds of the project and the development company. We propose to

llocate developers and schedule tasks taking into account the fact

hat even though the amount of work required to complete a task

s the same regardless of who carries it out, the amount of time it

akes for the task to complete depends on the developers assigned

o work on it, providing they possess the necessary skills. Existing

ptimization approaches have tended to overlook this factor, and

nstead either regard developers as interchangeable (meaning that

hey all possess the same skills) or focus simply on whether or not

evelopers possess the necessary skills required by a task. In soft-

are development projects, unlike in other engineering projects,

uman resources should not be regarded as interchangeable. Fur-

hermore, in reality, developers possess varying levels of skills de-

ending on the knowledge acquired through education and train-

ng, their natural abilities and talents, as well as their experiences

ccumulated over time. Hence, differences in levels of skill implies

ifferences in productivity rates of developers, which in turn af-

ects the duration and cost of each task, and of the project as a

hole. Also, our approach is intended to be used for scheduling

asks and allocating resources at the beginning of a software de-

elopment project to help project managers make more accurate

udget and time estimates. Furthermore, we intentionally allow for

ore than one developer to be allocated to a task and consider

ow the contributions of each individual team member are com-
 e
ined with respect to their productivity rate. For this, we adopt

teiner’s [31] classification of task interdependence to help select

hich operator to use for aggregating individual productivity rates

epending on the specific type of software development task. Fi-

ally, another important factor that also influences the duration

nd cost of a project, which is often neglected, is the issue of com-

unication overhead. To the best of our knowledge, very few at-

empts have taken into account the increase in time that could oc-

ur when developers work together on a task. One attempt is pre-

ented by Di Penta et al. [32], who explore how different models

nd levels of communication overhead affect the allocation of de-

elopers in teams, as well as on the overall make-span of a project

n a search-based project staffing and scheduling approach. Our ap-

roach adopts a similar rationale by incorporating this factor in the

alculation of a task’s duration that is then used in the optimiza-

ion process.

. Description of adapted RCPSP

A software development project consists of a set T =
 t 1 , t 2 , . . . , t M

} of M tasks, which are determined by the project

anager based on the activities from the different phases of soft-

are development that will be required. All tasks must be un-

ertaken by at least one software developer employed by the de-

elopment company. The project manager also determines the set

 = { s 1 , s 2 , . . . , s K } of K professions whose associated skills will be

equired by the software project. Each task t i ∈ T is subsequently

ssigned one (and only one) of these professions, denoted by t
prof
i

,

he skills of which are required for the task to be completed. For

xample, a project manager would assign a task that entails inter-

iewing stakeholders to a requirements analysis profession since

e or she will determine that elicitation skills will be necessary to

arry out the task.

Next, the software project manager determines which tasks are

elated to each other in the form of dependency relationships.

e assume that only finish-to-start dependency relationships ex-

st, meaning that in order for a task to start, all its predecessor

asks must first finish. The set of dependency relationships D con-

ains pairs of tasks such that (t i , t j) ∈ D if task t j depends on task

 i . A task precedence graph (TPG) consisting of nodes and edges

an be used to help depict the dependency relationship between

asks, where the nodes and edges represent tasks and dependency

elationships, respectively. Fig. 1 illustrates an example task prece-

ence graph of a software project consisting of eight tasks and ten

ependency relationships.

Once the tasks and dependency relationships have been identi-

ed, it is up to the project manager to provide an estimate of the

ffort or workload that will be required to carry out each task. The

ffort required for each task t i ∈ T is denoted by t effort
i

. According

o the Project Management Institute [33] , effort is defined as “the

umber of units of labour needed to complete a scheduled activity

r work breakdown structure component .” It is commonly expressed

n person-hours (i.e., the number of hours needed for an average

eveloper to carry out the work), though it is possible to repre-

ent effort in person-days, person-weeks or even person-months

or large projects.

The human resources of a software development company form

he set R = { r 1 , r 2 , . . . , r N } of N software developers, who are able

o participate in a project based on their availability and area of

xpertise. Each developer r i ∈ R is associated with an hourly wage

ate (r
salary
i

), used to calculate the cost of each task to which de-

eloper r i is assigned. The hourly wage rate can be easily obtained

rom the company’s human resource or accounting department.

Often, developers may possess appropriate skills in more than

ne profession. As a result, they can work on a project in differ-

nt capacities, thus adding to the complexity of the allocation and

82 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

Fig. 1. An example TPG for a software project.

i

m

m

o

t

t

t

a

w

w

e

m

d

t

i

t

o

o

u

q

f

p

t

p

o

t

c

t

s

q

o

i

s

t

w

C

o

c

o

i

s

d

i

i

c

d

t

i

i

fl

a
scheduling process. This is particularly true in small-to-medium

sized companies, where developers are often forced to undertake

several roles in the company due to limited resources. To accom-

modate this in our approach, each developer r i ∈ R is assigned a

rate of productivity for each profession s j ∈ S required by the soft-

ware project. This information is represented by a productivity ma-

trix P = [p i j] where p ij denotes the rate at which developer r i is

able to carry out any task belonging to profession s j . The value of

this productivity rate is selected by the project manager from the

range [0.0,2.0] and can be determined in any number of ways us-

ing the metrics employed by the software development company

and then normalized to fit this range. If a development company

is mature enough, project managers may be able to adopt princi-

ples from standards and frameworks, such as the People CMM [34] ,

which provide ways to quantify productivity using factors such as

experience, competency and capacity. Also, project managers may

have access to developers’ scores in evaluation reports to help de-

termine their productivity rate. Additionally, project managers can

use their experience and expertise to assess the technical skills,

know-how and performance of developers in past projects with

similar tasks to form a productivity profile of their resources. If

a developer does not possess any of the skills of a particular pro-

fession, then the project manager will assign a rate of productivity

equal to 0.0, and the developer will not be considered as a candi-

date to be assigned to any task belonging to that profession. For

an average developer that possesses the skills of a specific profes-

sion, the project manager will likely assign a nominal value of 1.0

as a productivity rate for that profession. In the case of a novice or

newly-recruited developer that is considered to be half as produc-

tive as an average developer in a certain profession, he or she may

be assigned a productivity rate of around 0.5 for that profession.

On the other hand, for an above-average developer that possesses

the skills of a certain profession (such as an expert), a project man-

ager may assign the developer a productivity rate of 2.0 if he or

she is considered to be twice as productive as an average devel-

oper in that profession.

As mentioned previously, our approach allows for more than

one developer to be assigned to a task. Therefore, it is important

to identify how developers will work together to produce the out-

put of each task. In order to do this, we adopt the task interde-

pendence categorization proposed in Steiner’s taxonomy of group

task [31] . Steiner identified different “combinatorial strategies ” that

define the ways with which a team’s overall contribution to a task

can be measured based on the individual contributions of its mem-

bers. According to Steiner, there are five different types of task

interdependence: additive, compensatory, disjunctive, conjunctive

and discretionary, where each type adopts a unique function for

aggregating individual productivity in order to determine overall

team productivity. The types of task interdependence and their cor-

responding aggregation functions used in our approach are addi-

tive, disjunctive and conjunctive tasks. Hence, the software project

manager assigns a task interdependence type (t
type
i

) to each task t i
∈ T taken from set G = { additive, disjunctive, conjuctive }.
In the case of additive tasks, the overall productivity of a team

s obtained by adding together the individual productivity of its

embers. Additive tasks are classed as divisible and maximizing,

eaning that these tasks can be broken into subtasks, the goals

f which focus on the quantity of the output. Examples of addi-

ive software development tasks include verification and validation

asks, such as usability inspections and software reviews, where

he work can be divided into subtasks in order for developers to

ttempt to find as many defects as possible [35] . Since developers

ill work individually in such tasks and then pool together their

ork, the higher their individual productivity rates, the higher the

ffectiveness of the team in defect detection. Software develop-

ent tasks that require brainstorming may also be considered ad-

itive tasks. With regards to disjunctive tasks, the overall produc-

ivity of a team is equivalent to the highest individual productiv-

ty. Disjunctive tasks are unitary and optimizing, indicating that

hey cannot be further decomposed and that they focus on the

utput’s quality. Database design may be considered an example

f a disjunctive task. If a team of developers is assigned to come

p with a suitable (optimal) schema, not all developers are re-

uired to come up with the best solution. Instead, it is enough

or only one member to provide the best solution. Hence, a highly

roductive member who is able to come up with the best solu-

ion quicker will help the team finish such a task sooner com-

ared to a team whose most productive member has an average

r lower productivity rate. Similarly, a task involving the integra-

ion of two modules can also be regarded as a disjunctive task. For

onjunctive tasks, the overall productivity of a team is defined as

he lowest individual productivity. Conjunctive tasks can be con-

idered either divisible focusing on quality, or unitary focusing on

uantity. Implementation tasks are an example of software devel-

pment tasks that can be regarded as conjunctive. For example,

n the case where the programming/coding of a module has been

plit into subtasks for team members to implement individually,

he developer possessing the lowest rate of productivity out of the

hole team will determine the team’s overall rate of productivity.

ompensatory and discretionary types of tasks are not adopted in

ur approach as they are not considered to be applicable in the

ase of software development tasks. In compensatory tasks, the

verall productivity of a team can be expressed as the variability of

ndividual productivity. In our approach though, it does not make

ense to require developers to have diversity in their rates of pro-

uctivity. In discretionary tasks, the decision on how to combine

ndividual contribution is left up to the team members. However,

n our approach we assume that the output of each software task

an only be derived using one specific type.

Finally, each task incurs a communication overhead (t overhead
i

)

epending on the number of developers assigned to carry out the

ask. Typically, when developers work together as a group, there

s an amount of time spent on communicating with each other

n order to coordinate activities, discuss issues and resolve con-

icts regarding a task. Communication can take many forms (such

s meetings, phone calls, e-mails, video calls, etc.) all of which

C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96 83

Table 1

Correlation between team size, number of communication paths and

percentage of communication overhead [38] .

Team size Communication paths Communication overhead

0 0 0 .00%

5 10 1 .50%

10 45 6 .00%

15 105 13 .50%

20 190 24 .00%

25 300 37 .50%

30 435 54 .00%

t

W

n

t

l

p

i

s

c

t

o

r

A

i

c

a

h

i

B

e

v

a

c

t

g

t

m

o

a

s

o

T

a

F

i

t

t

a

i

a

t

d

u

f

s

4

s

m

e

m

r

u

t

d

f

l

t

t

t

s

t

g

b

t

t

g

l

s

(

m

t

w

w

n

j

a

o

t

s

a

t

o

s

s

c

4

u

f

t

p

o

T

w

r

c

t

i

i

t

b

T

e

t

a

t

ake away from work that the developers are assigned to perform.

e propose, therefore, to take into account this additional time

eeded for communication by adjusting the make-span of each

ask in order to give a more accurate project duration and cost.

According to Brooks [36] , there is a polynomial relationship

inking the size of a team working on a task with the number of

ossible communication paths between pairs of developers. Specif-

cally, the relationship between the number of developers (t n
i

) as-

igned to task t i and the number of communication paths (t
paths
i

)

an be defined using Eq. (1) .

paths
i

=

t n
i

×
(
t n

i
− 1

)
2

(1)

This means that as the number of developers working together

n a task increases, so does the number of communication paths,

esulting in an exponential growth in communication overhead.

bdel-Hamid and Madnick [37] , therefore, carried out an empirical

nvestigation to attempt to quantify the percentage of communi-

ation overhead incurred given different team sizes. Their findings

re presented in Table 1.

In order to determine the percentage of communication over-

ead for any specific number of developers, Douglas [38] suggests

nterpolating between the two nearest team sizes given in Table 1 .

y applying linear regression, he was then able to formulate an

quation (Eq. (2)) using the number of communication paths as a

ariable to calculate the percentage of communication overhead of

ny team size. Our approach adopts this formula to calculate the

ommunication overhead (t overhead
i

) of each task t i ∈ T .

overhead
i = 0 . 001248269 × t paths

i
(2)

With the above information regarding tasks and developers, the

oal is to allocate developers and schedule tasks in such a way that

he shortest possible project make-span and cost are achieved si-

ultaneously. It is assumed that a task can be assigned more than

ne developer, and a developer can be assigned to tasks associ-

ted with different professions as long as they possess the required

kills and have a positive non-zero productivity rate. Also, a devel-

per can be assigned to work on only one task at any given time.

his means that a developer will not be set to work on tasks that

re executed concurrently, thus avoiding conflicts in assignment.

urthermore, tasks cannot be pre-empted, that is, once a task starts

t must be completed and its execution cannot be suspended. In

he case of divisible tasks, a developer may finish his or her con-

ribution earlier than other team members. Normally, this would

llow the developer to be free to work on another task. However,

n this investigation, we consider that developers are assigned to

 task as a team and so all developers will remain assigned until

he whole task is complete and they will be paid for the whole

uration of the task. In order to achieve these goals and satisfy the

nderlying constraints, we propose several objective and constraint

unctions in Section 4 to guide the generation of optimal and fea-

ible solutions.
. Multi-objective optimization approach

The aim of our approach is to allocate human resources and

chedule tasks so that the overall project duration and cost are

inimized. We propose to solve our adaptation of the RCPSP by

mploying a multi-objective genetic algorithm as the optimization

ethod that will generate near-optimal solutions. Genetic algo-

ithms [39] are a type of evolutionary algorithm, which are widely

sed to solve search-based optimization problems by simulating

he theory of natural evolution on a population of individuals (can-

idate solutions). Each solution is evaluated using an objective

unction, which assesses how fit a solution is in solving the prob-

em. By iteratively applying mechanisms inspired by the survival of

he fittest (such as selection, crossover and mutation) to the solu-

ions, each generation gradually improves the fitness (or quality) of

he solutions and discards lower-quality solutions until an optimal

olution is located. Often, certain problems require several criteria

o be optimized at the same time. To handle this, multi-objective

enetic algorithms can be employed, where the goal is to find the

est solution by optimizing a vector of objective functions. Some-

imes, however, objectives can be conflicting or competing in na-

ure, and in such cases a multi-objective genetic algorithm would

enerate a set of optimal solutions rather than a single optimal so-

ution [40,41] . This set of solutions is known as the Pareto optimal

et and contains only those solutions that are non-dominated by

or non-inferior to) others in the set. In other words, each opti-

al solution represents a particular trade-off between the objec-

ives, where any improvement in one of the objectives leads to the

orsening of one or more other objectives. Because this approach

orks as an a posteriori method, that is, the decision-maker does

ot provide any preferences regarding the importance of each ob-

ective before the optimization, the decision-maker is free to adopt

ny one of the optimal solutions generated [42] . In the context of

ur approach, the individuals represent developer assignments and

ask schedules that are evolved repeatedly in order to generate a

et of non-dominated solutions that minimize the project duration

nd cost simultaneously based on productivity-related characteris-

ics of the tasks and available developers, as shown in the diagram

f our proposed approach (Fig. 2). After examining the generated

olutions, a project manager can then decide which one is most

uitable to follow based on the trade-off between make-span and

ost.

.1. Representation and encoding

Candidate solutions are represented by individuals in the pop-

lation that are composed of two variables: one to handle the in-

ormation regarding the allocation of resources and one to handle

he information related to the scheduling of tasks, as similarly pro-

osed by Yannibelli and Amandi [26] . An example of the encoding

f a candidate solution using the TPG of Fig. 1 is shown in Fig. 3 .

he first variable is encoded using a binary array of length M ,

here each element u of the array contains a sequence of bits that

epresent only those developers that possess the required skills to

arry out task t u . If the value of a bit in the sequence is “0”, then

he corresponding developer is not assigned to the task, whereas

f the value of the bit in the sequence is “1”, then the correspond-

ng developer is assigned to the task. With this representation, the

otal number of bits required always varies according to the num-

er of tasks and number of available developers in each profession.

he second variable uses a permutation array whose length is also

qual to the number of tasks in the project, M . Each element v of

he array contains the index of a task in the project. Tasks can only

ppear once in the array and are chosen for scheduling in order of

heir appearance from left to right in the array.

84 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

Fig. 2. The elements of the proposed productivity-based multi-objective optimization approach.

Fig. 3. Example of the encoding used to represent an individual: (top) developer allocation variable, and (bottom) task schedule variable.

s

a

t

r

[

i

i

v

o

t

t

a

t

b

e

i

t

w

t

d

t

v

b

m

A

i

t

4.2. Population initialization

Both variables must be initialized subject to several feasibility

restrictions in order to guarantee that the candidate solutions they

represent are valid. At the same time, the initialization should en-

sure that the population represents a varied and heterogeneous

pool of candidate solutions. This can be achieved by randomly set-

ting the starting values of the two variables subject to the neces-

sary constraints. For the binary array representing the allocation of

developers, each task must have at least one developer assigned

to it. For the permutation array representing the scheduling order

of tasks, each task must appear in the array after all of its pre-

decessors in order for the solution to be feasible. To ensure this,

the initialization follows a process of randomly selecting a task

only from a set that consists of tasks that have not yet been se-

lected and whose predecessors have already been inserted in the

array. Thus, the initial permutation arrays will always represent

feasible project schedules, since no task will be selected before its

predecessors.

4.3. Solution fitness and feasibility

Our optimization approach adopts two objective functions,

F duration (x) and F cost (x), in order to assess the fitness of each in-

dividual solution x in the population. The values given to these

two objective functions denote the duration and the cost of the

project, respectively. Also, our approach uses two constraint func-

tions, G assignment (x) and G dependency (x), which assess the feasibil-

ity of an individual solution. The first constraint function reflects

whether or not at least one developer is assigned to a task, and

the second one reflects whether or not any dependency violations

between tasks exist. The following subsections describe in detail

how the values of each function are calculated.

4.3.1. Project duration objective function

In order to compute the overall duration of a project, F duration (x),

represented by a solution x in the population, POP , our approach

first calculates the duration of each task individually to determine

the amount of time (in hours) that developers will spend on each

task they are assigned to. Then, by using the precedence relation-
hips between tasks and the availability of developers, the starting

nd finishing times of each task are determined. The project dura-

ion is then established as the highest finishing time of all tasks.

The duration of a task is calculated using the productivity

ate of developers, similarly to the way presented in Kapur et al.

24] and Ngo-The and Ruhe [25] , but also using the type of task

nterdependence. The order in which task durations are computed

s determined by the order that tasks appear in permutation array

ariable. With this forward scheduling approach, the first element

f the permutation array (position v = 1) contains the index u of

he task whose duration is to be calculated first. Using this index,

he corresponding element at position u of the binary array vari-

ble is decoded in order to obtain the set of developers assigned

o the task. Once the set of developers A i assigned to task t i has

een determined, the duration is then calculated by dividing the

ffort that t i is estimated to require by the overall productivity rate

(t
prod
i

) of the team of developers comprising the set A i , as shown

n Eq. (3) .

duration
i =

t effort
i

t prod
i

(3)

The overall productivity rate t
prod
i

is computed using Eq. (4) ,

hich takes into account the information in the productivity ma-

rix P concerning each developer r k ∈ A i and the task’s interdepen-

ence type t
type
i

.

prod
i

=

⎧ ⎪ ⎨

⎪ ⎩

sum

{
p k j | r k ∈ A i

}
, if t prof

i
= s j and t type

i
= ad d iti v e

max
{

p k j | r k ∈ A i

}
, if t prof

i
= s j and t type

i
=d is j uncti v e

min

{
p k j | r k ∈ A i

}
, if t prof

i
= s j and t type

i
=con juncti v e

(4)

The term p kj denotes the rate of productivity possessed by de-

eloper r k at profession s j . Using the operationalization suggested

y Steiner [31] , if task t i is categorized as additive, then the sum-

ation operator is used to aggregate individual productivity rates.

lternatively, if task t i is categorized as disjunctive, then the max-

mum operator is applied. Else, if task t i is categorized as conjunc-

ive, then the minimum operator is.

C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96 85

Algorithm 1 Procedure to compute earliest start and finish time of a task.

1. Input: Set of developers A i assigned to task t i , start time t start
i

, duration t duration
i

and finish time t finish
i

.

2:

3. conflict ← true

4. while conflict

5. for all developers r k ∈ A i do

6. if developer r k is assigned to any task t j (j � = i) at any time unit between t start
i

and t finish
i

7. t start
i

= t start
i

+ 1

8. t finish
i

= t start
i

+ t duration
i

9. conflict ← true

10. else

11. conflict ← false

12. end if

13. end for

14. end while

15.

16. Output: Start time t start
i

of task t i and finish time t finish
i

of task t i .

i

(

o

t

t

i

c

i

i

t

s

t

p

v

i

t

a

fl

o

fi

t

t

s

o

t

t

T

i

t

t

x

i

g

E

F

4

r

g

e

t

h

t

t

r

t

s

F

4

a

S

i

v

t

a

t

v

a

c

t

p

t

G

G

4

r

l

p

P
With this information, we can then adjust the duration to take

nto account the communication overhead calculated from Eqs.

1) and (2) accordingly, using Eq. (5) for calculating the duration

f a task. The ceiling function rounds up to the nearest hour.

duration
i =

t effort
i

t prod
i

× 1

1 − t overhead
i

(5)

Following this, the starting and finishing times of task t i can

hen be calculated. Specifically, the starting time (t start
i

) of task t i
s determined by the maximum finishing time out of all its prede-

essor tasks. If task t i has no predecessor tasks, then it can begin

mmediately. Formally, the starting time of a task is expressed us-

ng Eq. (6) .

start
i =

{

0 , if ∃ t j such that
(
t j , t i

)
∈ D

max
{

t finish
j

| (t j , t i
)

∈ D

}
, otherwise

(6)

The finishing time (t finish
i

) of a task t i is simply equal to the

tarting time plus its duration, as shown in Eq. (7) .

finish
i = t start

i + t duration
i (7)

As previously mentioned, the durations of the tasks are com-

uted using the order in which they appear in the task schedule

ariable. Hence, each task is placed at the earliest possible start-

ng time taking into account the finishing times of its predecessor

asks. However, before doing this, it is necessary to examine the

vailability of the assigned developers in order to avoid any con-

icts that will cause a schedule to be infeasible. The steps carried

ut to handle this are presented in Algorithm 1 . First, the start and

nish times of task t i are calculated using Eqs (6) and (7), respec-

ively. If all developers r k ∈ A i are available for the duration of task

 i , then no modifications to the start and finish times are neces-

ary. However, if at least one of the developers assigned to carry

ut task t i is already assigned to a different task between the start

ime and finish time of task t i , then the value of t start
i

is adjusted

o the next time step and t finish
i

is recalculated again using Eq. (7) .

his process repeats until the earliest time is determined that sat-

sfies that all developers are available to work for the whole dura-

ion of the task.

Once all task start and finish times have been determined, then

he overall duration of the software project represented by solution

 is calculated by taking the value corresponding to the highest fin-

shing time out of all M tasks. This value corresponds to the value

iven to the first objective function, F duration (x), and is defined in

q. (8) . {
finish

}

 duration (x) = max t i | t i ∈ T (8) t
.3.2. Project cost objective

To calculated the overall cost of a software project, F cost (x), rep-

esented by a solution x in the population, POP , our approach be-

ins by calculating how much the assigned developers will cost for

ach task, and then aggregating all individual task cost. Specifically,

he cost (t cost
i

) of task t i is computed by Eq. (9) , which aggregates

ow much each assigned developer r k ∈ A i will cost for the dura-

ion of the task based on his or her wage rate.

cost
i =

t n
i ∑

k =1 , r k ∈ A i

(
t duration

i × r salary

k

)
(9)

Subsequently, the overall cost of developers for the project rep-

esented by solution x is computed by summing the cost of all M

asks individually. This value corresponds to the value given to the

econd objective function, F cost (x), and is defined in Eq. (10) .

 cost (x) =

M ∑

i =1

t cost
i (10)

.3.3. Assignment and dependency constraints

The feasibility of each candidate solution x in the population is

ssessed by again using the information stored in the two arrays.

ince our approach uses forward scheduling based on the availabil-

ty of the assigned developers, there is never a violation that a de-

eloper is assigned to more than one task at any given time. Hence,

he only constraints evaluated concern (a) whether or not a task is

ssigned at least one developer and (b) whether the scheduling of

asks conforms to the precedence relationships. For the former, the

alue is equivalent to the number of tasks that have no developers

ssigned, which is calculated by the conditional summation in the

onstraint function of Eq. (11) . For the latter, the value equals to

he number of dependencies violated by the schedule, which com-

uted by the conditional summation given in the constraint func-

ion of Eq. (12) .

 assignment =

M ∑

i =1

[
t n i = 0

]
(11)

 dependency =

| D | ∑

(t i , t j) ∈ D

[
t start

j ≤ t finish
i

]
(12)

.3.4. Optimization function

The goal of the optimization is to consider the productivity-

elated characteristics of tasks and developers so as to perform al-

ocation and scheduling in a way that simultaneously minimizes

roject duration and project cost of a solution x of the population,

OP , bound by the constraints. At the same time, the two objec-

ives are competing in nature, that is, attempting to decrease one

86 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

Table 2

List of software development professions used in cre-

ation of synthetic software projects.

1. Computer and information systems managers

2. Information security analysts

3. Computer systems analysts

4. Computer systems engineers/ architects

5. Database architects

6. Computer network architects

7. Computer programmers

8. Web developers

9. SQA engineers and testers

a

a

w

M

t

d

u

O

a

t

(

t

i

d

g

w

N

1

a

e

t

A

h

s

o

h

o

w

t

5

M

a

t

[

t

(

f

s

2

i

s

p

g

f

t

s

t

b

T
objective would lead to an increase in the other. The optimization

will therefore provide a set of optimal solutions rather than a sin-

gle optimal solution. Thus, the goal is to minimize a vector con-

sisting of the two objective functions of Eqs (8) and (9) depending

on the constraints of Eqs (11) and (12), as shown in Eq. (13) .

Minimize F (x) = (F duration (x) , F cost (x)) subject to G assignment (x)

= 0 and G d epend ency (x) = 0 , x ∈ P OP (13)

For each individual x in the population, POP , the two objective

functions are evaluated simultaneously. As the algorithm attempts

to improve the quality of the population, during selection individ-

uals are compared against each other using both their objective

function values to ascertain which individuals are non-dominated

as previously described in the beginning of Section 4 . Ultimately,

since each solution represents a different allocation and schedul-

ing plan, the project manager will be offered a choice on which

plan he or she feels suits the project and the organization better.

4.5. Genetic operators

In our approach, two binary tournaments are performed in or-

der to select the parents to create offspring. In each tournament, a

pair of individuals is randomly selected as candidate parents and

then compared with each other based on their fitness (i.e., objec-

tive function values). The individual with the highest fitness is de-

clared “winner” of the tournament and is chosen as a parent. In

this way, individuals with greater fitness have a better chance of

becoming parents and surviving into the next generation. If the fit-

ness of two candidates is tied, then the candidate with the lowest

number of violations as determined by the constraint functions is

chosen. For the crossover operator, the developer allocation vari-

able uses single-point crossover at a random bit of the binary ar-

ray, whereas the task scheduling variable uses partially-mapped

crossover [43] , which guarantees that the constraint of having each

task only appear once is satisfied. For the mutation operator, the

developer allocation variable uses a bit-flip operator where a ran-

domly selected bit is altered from a value of “0” to a value of “1”

or vice-versa. For the task scheduling variable, a swap mutation

takes place where two positions in the permutation array are cho-

sen randomly and the indices in those positions are swapped. In

this way, the preservation of the validity of an individual is en-

sured.

5. Experimental process

5.1. RQ1: Performance of multi-objective genetic algorithms

The first research question investigates whether certain varia-

tions of MOGA are able to perform better with respect to locating

(near-)optimal developer allocations and task schedules, in view of

the increased optimization complexity that results from the addi-

tion of realistic assumptions and constraints in our productivity-

related adaptation of the RCPSP. Therefore, to answer the first re-

search question, we selected to compare four well-known varia-

tions of MOGAs, namely, the Non-dominated Sorting Genetic Algo-

rithm II (NSGA-II) [44] , the Strength Pareto Evolutionary Algorithm

2 (SPEA2) [45] , the Pareto Archived Evolution Strategy (PAES) [46] ,

and the Multi-Objective Cellular algorithm (MOCell) [47] . We se-

lected these algorithms because they have been extensively used

as the underlying mechanism to solve related project scheduling

optimization problems in the past. In addition, their use would

allow similar future research attempts to compare with our pro-

posed approach.

A dataset (DS1) containing sixteen synthetic software projects

of varying size, both in terms of the total number of tasks involved,
s well as the total number of available developers was then gener-

ted, subject to several conditions. To begin with, four distinct soft-

are development projects were constructed with varying size of

 : (i) 25 tasks, (ii) 50 tasks, (iii) 75 tasks, and (iv) 100 tasks. Each

ask in a project was randomly assigned to one of nine software

evelopment professions shown in Table 2 , which were identified

sing the Standard Occupational Classification System [48] and the

 ∗NET Resource Center [49] .

In addition, the task precedence graph of each project was cre-

ted in such a way so as no circular dependencies existed among

asks. Also, each task was assigned a task interdependence type

additive, conjunctive or disjunctive). For the sake of experimen-

ation, this assignment was generated randomly, though in further

nvestigations development tasks are assigned specific task inter-

ependence types. Finally, the tasks in each project were randomly

iven an estimated effort value. Next, four separate sets of soft-

are developers were randomly generated with different sizes for

 : (a) 25 developers, (b) 50 developers, (c) 75 developers, and (d)

00 developers. A productivity matrix was then randomly gener-

ted containing values in the range of [0.0, 2.0] making sure that

ach profession had at least two developers with a value greater

han zero to guarantee that all tasks will be able to be completed.

dditionally, each developer was assigned a salary indicating his or

er wage rate per hour. Salaries were randomly generated within

cale ranges in order to reflect that developers with higher levels

f expertise and proficiency in skills are more likely to possess a

igher productivity rate and, subsequently, cost more in a devel-

pment company. Finally, each of the four software projects (i)-(iv)

as paired with each of the four sets of available workforce (a)-(d)

o form 16 project instances.

.2. RQ2: Scalability of multi-objective genetic algorithms

The second research question assesses the behaviour of the

OGA variations with respect to scalability as the number of tasks

nd number of available developers increase. To answer this ques-

ion, we made use of the project instances provided by Luna et al.

50,51] , which were intended for use in experiments that adopted

he approach presented by Alba and Chicano [20,21] . This dataset

DS2) contains randomly generated projects consisting of six dif-

erent task sizes (16, 32, 64, 128, 256, and 512) each paired with

ix different sizes of available developers (8, 16, 32, 64, 128 and

56) for a total of 36 project instances. Because of the underly-

ng differences between approaches, several data present in the in-

tances were then adapted to meet the data requirements of our

roposed approach. For example, the instances contained data re-

arding the skills possessed by developers. This had to be trans-

ormed into developer professions so that a developer produc-

ivity matrix could be randomly generated for each project in-

tance. In addition, task interdependence types were not present in

he instances. Therefore, these also had to be randomly generated

ased on the number of tasks and number of available developers.

he effort required for each task, task precedencies and salary of

C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96 87

Table 3

Parameters and algorithm settings used in execution of the MOGA variations.

Parameter Value

Population size 100

Selection operator Binary tournament

Crossover probability 0.90 (single-point) 0.90 (partially-mapped)

Mutation probability 1/ L (bit-flip mutation) 0.90 (swap mutation)

Stopping condition 50 0,0 0 0 objective function evaluations

Number of runs per algorithm 100

d

o

5

f

M

m

g

s

1

t

s

t

w

t

b

i

e

t

6

t

s

s

S

t

t

i

o

f

i

m

P

d

f

p

e

a

o

w

c

a

t

s

6

[

g

a

s

t

o

v

t

g

u

T

t

p

t

d

l

c

o

v

p

6

m

e

T

r

m

v

r

T

C

t

N

a

a

b

t

e

a

f

d

t

R

o

m

t

t

g

I

a

q

w

t
evelopers in all project instances were left as provided in the

riginal dataset.

.3. Execution

The representation scheme, objective functions and constraint

unctions explained in Section 4 were implemented for all four

OGA variations using jMetal 4.3 – a Java-based framework for

ulti-objective optimization [52] . The same parameters and al-

orithm settings were used for all algorithms throughout all in-

tances, as summarized in Table 3 . Preliminary runs for 50,0 0 0 and

0 0,0 0 0 fitness evaluations were performed in order to investigate

he convergence of the algorithms with respect to the quality of

olutions. Even though the results obtained in these runs showed

hat the number of fitness evaluations did not actually influence

hich of the four algorithms performed better, they did show that

he quality of solutions could be improved by increasing the num-

er of fitness evaluations. Therefore, in order to allow for a sat-

sfactory trade-off between convergence and computational time,

ach of the algorithms was executed for 50 0,0 0 0 fitness evalua-

ions.

. Results and discussion

For each project instance, the four algorithms were run 100

imes resulting in the generation of 100 Pareto fronts, each con-

isting of a number of non-dominated solutions in the objective

pace corresponding to developer allocations and task schedules.

ubsequently, by combining the 100 Pareto fronts, we were able

o extract an approximation Pareto front containing the best solu-

ions each algorithm managed to locate for a project instance over

ts 100 runs. Then, by combining the approximation Pareto fronts

f all four algorithms, we were able to construct a reference Pareto

ront consisting of the overall best solutions found for each project

nstance. Consequently, each project instance had four approxi-

ation Pareto fronts (one for each algorithm) and one reference

areto front (combining the best solutions of all algorithms). Fig. 4

isplays the approximation and reference Pareto fronts achieved

or dataset DS1.

We can see that in the smaller-sized project instances, the ap-

roximation Pareto fronts of individual algorithms overlap the ref-

rence Pareto front, indicating possibly that they are as equally

ble to find the same near-optimal solutions. However, as the size

f the projects increases, both in terms of tasks and developers,

e observe that fewer overlaps with the reference Pareto front oc-

ur, as well as greater differences in the shape of the individual

pproximation curves. This could mean that each algorithm is able

o locate near-optimal solutions in different regions of the solution

pace.

.1. Quality indicators

The hypervolume [53] and inverted generational distance

42] quality indicators were selected to help compare the four al-

orithms with respect to performance and scalability given their
bility to assess both convergence and diversity (uniformity and

pread) of algorithms. Specifically, the hypervolume (HV) indica-

or assesses the volume covered by the non-dominated solutions

f a Pareto front in the objective space. Therefore, the larger the

olume covered by the solutions generated in a run, the higher

he HV value, which indicates a better performance. Since each al-

orithm was run 100 times, 100 corresponding HV indicator val-

es were calculated for each algorithm for each project instance.

he inverted generational distance (IGD) indicator assesses how far

he elements of the true Pareto front are from the non-dominated

oints of an approximation Pareto front. Therefore, the greater

he extent of the true Pareto front that is covered by the non-

ominated points generated by a run in the objective space, the

ower the IGD value, which denotes a better performance. In our

ase, because it is not possible to know the true Pareto front a pri-

ri, the reference Pareto front is used instead. Similarly, 100 IGD

alues were calculated for the 100 runs of each algorithm for each

roject instance.

.2. RQ1: Comparison of performance

In order to compare the performance of the four algorithms, the

edian HV and IGD values for each algorithm were calculated for

ach project instance in dataset DS1. The values are presented in

ables 4 and 5 , respectively. The shaded cells indicate which algo-

ithm(s) achieved the best value in each project instance (highest

edian value in the case of the HV indicator or the lowest median

alue in the case of the IGD indicator). In addition, the average

ank of each algorithm is also given.

With respect to the HV indicator, it can be seen from

able 4 that the approximation Pareto fronts generated by MO-

ell managed to achieve the best median value in ten of the six-

een instances, while the approximation Pareto fronts reached by

SGA-II and SPEA2 achieved the best (highest) median value five

nd three times, respectively. PAES was the only algorithm not to

chieve the highest median value in any of the instances. It should

e noted that when computing HV values for a project instance,

he solutions of each algorithm are normalized using the refer-

nce Pareto front extracted for that particular project instance. As

 result, any non-dominated solutions on an approximation Pareto

ront that are outside of the limits of the reference Pareto front are

isregarded. For this reason, a median HV value of zero for cer-

ain algorithms can be observed in some project instances [50,51] .

egarding the IGD quality indicator, Table 5 shows that MOCell is

nce again the predominant algorithm; it attains the best (lowest)

edian value in eleven of the sixteen instances. NSGA-II achieves

he best median value in five instances again, while SPEA2 achieves

he best median value six times. The approximation Pareto fronts

enerated by PAES never obtained the lowest median value for the

GD indicator in any of the instances.

In order to assess which algorithm(s) perform better for our

pproach, we first carried out a Friedman rank sum test on both

uality indicators (with level of significance α = 0 . 05) to detect

hether or not a statistically significant difference exists among

he four algorithms. For the HV indicator, the test produced a

88 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

Fig. 4. Reference and approximation Pareto fronts for all algorithms for the sixteen project instances in DS1.

Table 4

Median HV values obtained after 100 runs of each algorithm for project instances in DS1.

Project instance MOGA variation

MOCELL NSGA-II PAES SPEA2

1 25 Tasks 25 Developers 0 .9231 0 .9231 0 .9106 0 .9231

2 25 Tasks 50 Developers 0 .9533 0 .9486 0 .9333 0 .9431

3 25 Tasks 75 Developers 0 .8028 0 .7908 0 .7250 0 .7585

4 25 Tasks 100 Developers 0 .8333 0 .8438 0 .6501 0 .7867

5 50 Tasks 25 Developers 0 .7364 0 .7484 0 .6286 0 .7468

6 50 Tasks 50 Developers 0 .6206 0 .6120 0 .4925 0 .5886

7 50 Tasks 75 Developers 0 .6551 0 .6733 0 .4891 0 .6189

8 50 Tasks 100 Developers 0 .1773 0 .1217 0 .0 0 0 0 0 .0915

9 75 Tasks 25 Developers 0 .7942 0 .7771 0 .6175 0 .7687

10 75 Tasks 50 Developers 0 .3755 0 .3848 0 .1940 0 .3916

11 75 Tasks 75 Developers 0 .4295 0 .4280 0 .1431 0 .3883

12 75 Tasks 100 Developers 0 .3951 0 .3911 0 .1648 0 .2575

13 100 Tasks 25 Developers 0 .5352 0 .4754 0 .1894 0 .4638

14 100 Tasks 50 Developers 0 .4765 0 .4761 0 .1391 0 .4469

15 100 Tasks 75 Developers 0 .0841 0 .0842 0 .0 0 0 0 0 .0701

16 100 Tasks 100 Developers 0 .0935 0 .0986 0 .0 0 0 0 0 .1388

Average ranking 1 .6250 (1) 1 .7500 (2) 4 .0 0 0 0 (4) 2 .6250 (3)

t

t

f

p

i

d

i

N
Friedman statistic χ2
F

= 35 . 3846 , p -value: 1 . 010 × 10 −07 , whereas

for the IGD indicator the test returned a Friedman statistic χ2
F

=
34 . 6212 , p -value: 1 . 464 × 10 −07 . For both indicators, the critical

chi-square value at α = 0 . 05 for k − 1 = 3 degrees of freedom is

computed at 7.815, which is lower than the respective statistics.

Hence the tests led to the rejection of the null hypothesis that the

algorithms are equivalent with respect to both the HV and IGD in-

dicators. Since the Freidman tests strongly suggested that signifi-

cant differences do exist between at least two algorithms, a mul-
iple pairwise comparison of algorithms was carried out to iden-

ify exact differences between pairs of algorithms. To handle the

amily-wise error rate accumulated, p -values were adjusted using a

ost-hoc Holm procedure. The results of the comparison are shown

n Table 6 , where pairs of algorithms with a statistically significant

ifference (p < 0.05) are shown shaded.

According to the pairwise comparisons, no significant difference

s observed between MOCell and NSGA-II, MOCell and SPEA2, and

SGA-II and SPEA2 in either indicator. However, MOCell, NSGA-II

C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96 89

Table 5

Median IGD values attained after 100 runs of each algorithm for project instances in DS1.

Project instance MOGA variation

MOCELL NSGA-II PAES SPEA2

1 25 Tasks 25 Developers 0 .0 0 01 0 .0 0 01 0 .0 0 07 0 .0 0 01

2 25 Tasks 50 Developers 0 .0014 0 .0014 0 .0015 0 .0014

3 25 Tasks 75 Developers 0 .0066 0 .0073 0 .0111 0 .0086

4 25 Tasks 100 Developers 0 .0144 0 .0153 0 .0185 0 .0154

5 50 Tasks 25 Developers 0 .0 0 09 0 .0 0 09 0 .0021 0 .0 0 09

6 50 Tasks 50 Developers 0 .0128 0 .0127 0 .0170 0 .0144

7 50 Tasks 75 Developers 0 .0160 0 .0150 0 .0272 0 .0177

8 50 Tasks 100 Developers 0 .0536 0 .0597 0 .0859 0 .0638

9 75 Tasks 25 Developers 0 .0081 0 .0082 0 .0124 0 .0080

10 75 Tasks 50 Developers 0 .0280 0 .0272 0 .0418 0 .0265

11 75 Tasks 75 Developers 0 .0301 0 .0304 0 .0572 0 .0330

12 75 Tasks 100 Developers 0 .0326 0 .0327 0 .0498 0 .0412

13 100 Tasks 25 Developers 0 .0189 0 .0220 0 .0435 0 .0225

14 100 Tasks 50 Developers 0 .0215 0 .0216 0 .0432 0 .0229

15 100 Tasks 75 Developers 0 .0398 0 .0399 0 .0951 0 .0413

16 100 Tasks 100 Developers 0 .0385 0 .0382 0 .0666 0 .0345

Average ranking 1 .6250 (1) 1 .9375 (2) 4 .0 0 0 0 (3) 2 .4375 (4)

Table 6

Adjusted p -values resulting from the pairwise com-

parison (α = 0 . 05) for hypervolume and inverted

generational distance indicators.

HV NSGA-II PAES SPEA2

MOCELL 0 .784191 0 .0 0 0 0 01 0 .085379

NSGA-II – 0 .0 0 0 0 04 0 .110468

PAES – – 0 .010365

IGD NSGA-II PAES SPEA2

MOCELL 0 .546643 0 .0 0 0 0 01 0 .225180

NSGA-II – 0 .0 0 0 031 0 .546643

PAES – – 0 .002475

a

S

v

a

l

m

s

m

a

v

t

6

i

f

a

a

t

a

p

w

t

f

n

s

F

a

Table 7

Average median HV values per algorithm for instances

with the same number of tasks over all sizes of available

developers.

Task size MOGA variation

MOCELL NSGA-II PAES SPEA2

16 0 .4130 0 .4190 0 .3859 0 .4099

32 0 .2692 0 .2765 0 .2262 0 .2687

64 0 .0846 0 .0805 0 .0 0 0 0 0 .0763

128 0 .0681 0 .0946 0 .1384 0 .0893

256 0 .0037 0 .0 0 0 0 0 .1799 0 .0 0 0 0

512 0 .0 0 0 0 0 .0 0 0 0 0 .3151 0 .0 0 0 0

T

c

b

o

i

6

a

t

r

a

f

P

a

a

p

o

d

e

a

v

S

n

m

g

r

v

f

r

s

nd SPEA2 all have statistically significant differences with PAES.

ince the HV and IGD indicators relate to the convergence and di-

ersity of a Pareto front, the approximation Pareto fronts gener-

ted by MOCell, NSGA-II and SPEA2 can be considered to cover a

arger volume of the objective space and are nearer to the opti-

al compared to PAES. Therefore, based on the statistical analy-

is these three algorithms would perform better as the underlying

ulti-objective optimization mechanism for our productivity-based

pproach, since they are equally capable of generating a more di-

erse range of trade-offs between project duration and project cost

hat correspond to developer assignments and task schedules.

.3. RQ2: Comparison of scalability

In order to compare the scalability of the algorithms, we exam-

ned our approach with the 36 instances found in dataset DS2, and

ollowed the method described in Luna et al. [51] . Scalability was

ssessed in terms of number of tasks and available developers sep-

rately, again using the HV indicator as a basis of comparison due

o the fact that this metric considers the diversity of solutions and

lso the convergence of algorithms. In the same way as described

reviously, the median HV value over 100 runs of each algorithm

as calculated for all thirty-six instances.

First, we assessed how the algorithms behave as the size of

he projects increases in terms of number of tasks. To do this,

or each algorithm we grouped project instances having the same

umber of tasks and then averaged the median HV values. Table 7

hows these averages for all six different task sizes in dataset DS2.

rom the table, for example, we can see that for NSGA-II, the aver-

ged HV value of the six project instances with 64 tasks is 0.0805.
he results of the table are also shown graphically in the left bar

hart of Fig. 5 . It is generally expected that the higher the num-

er of tasks, the harder it will be for the algorithms to find near-

ptimal solutions. Indeed, this does hold true in our case, where

t is observed that as the number of tasks increases from 16 to

4, the averaged HV values tend to worsen for all algorithms with

 steep slope. For MOCELL, NSGA-II and SPEA2, the increase be-

ween 64 and 128 tasks shows a steady behaviour of the algo-

ithms with respect to scalability as there is little change in the

veraged HV values. Interestingly, as the number of tasks increase

rom 128 to 512, the averaged HV value actually increases for

AES.

In a similar fashion, we evaluated how the algorithms behave

s the size of the projects increases in terms of number of avail-

ble developers. For each algorithm, again we grouped instances of

rojects, but this time by those having the same number of devel-

pers, and then averaged their HV values. The averages for all six

eveloper sizes of dataset DS2 are presented in Table 8 and the

quivalent bar graph is shown in the right bar chart Fig. 5 . For ex-

mple, we can see that, according to the table, the averaged HV

alue of the six project instances with 32 available developers for

PEA2 is 0.2687. Once more, it is generally expected that as the

umber of developers increase, the HV values will decrease. This is

irrored in the behaviour of the MOCELL, NSGA-II and SPEA2 al-

orithms, which show that they do not scale considerably well, but

ather have a sharp gradient. On the other hand, the averaged HV

alues for PAES show that the algorithm exhibits a better ability

or scaling. Overall, the results indicate that PAES is superior with

espect to scalability of both task size and developer size, which is

imilarly concluded in Luna et al. [50,51] .

90 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

Fig. 5. Comparison of average HV values per algorithm for instances with the same number of: (left) tasks over all sizes of developers, and (right) developers over all sizes

of tasks.

Table 8

Average median HV values per algorithm for instances with the

same number of available developers over all sizes of tasks.

Developer size MOGA variation

MOCELL NSGA-II PAES SPEA2

8 0 .4793 0 .5017 0 .3582 0 .4924

16 0 .2631 0 .2714 0 .2159 0 .2636

32 0 .0739 0 .0619 0 .0938 0 .0594

64 0 .0222 0 .0356 0 .1584 0 .0289

128 0 .0 0 01 0 .0 0 0 0 0 .2126 0 .0 0 0 0

256 0 .0 0 0 0 0 .0 0 0 0 0 .2066 0 .0 0 0 0

s

d

o

p

a

t

s

p

h

m

b

t

a

n

b

p

t

t

w

b

v

m

G

d

p

r

w

S

a

t

t

t

t

m

p

i

a

r

a

t

o

p

c
7. Real-World observations and considerations

As part of our research, we also examined several software

projects that were carried out by third-year university students

during a project-oriented Software Engineering course spanning

two semesters. The students possessed software development

knowledge and skills at different levels of proficiency, and also had

gained various practical experiences from their university course-

work and, in some cases, industry employment. Groups of four to

five students were required to develop a software product follow-

ing a traditional waterfall life-cycle model and plan-driven devel-

opment based on requirements from external real-world clients. In

some cases, group members worked on tasks individually, whereas

in other cases, tasks required two or more group members to work

together as a team. Considering that the projects were approxi-

mately of the same size, difficulty and complexity, we were able

to make several comparisons regarding how the characteristics of

the tasks and the productivity rates of the students influenced the

duration of tasks. First , we noticed that in tasks with a conjunctive

interdependence, such as various programming tasks, if at least

one student in a team had a relatively low productivity rate then

the whole team would struggle and take longer than planned to

complete such a task. We also observed that in tasks with a dis-

junctive interdependence, such as database designing, even if the

majority of the members were not familiar with the task’s content,

as long as there was one member who possessed the necessary

skills and had a high productivity rate, that member was able to

help the whole team finish the task sooner. In addition, we noted

that in additive tasks, such as the execution of test-cases in the

testing phase, students working together with more knowledge in

testing had a higher combined productivity rate and, as a result,

took shorter time to complete these types of tasks in contrast to

teams whose overall team productivity rate was lower. These ob-
ervations help validate the applicability of our approach that in-

eed developers combine their effort s in different ways depending

n the type of work that needs to be performed and their rate of

roductivity, which subsequently affects task completion times.

To further investigate the proposed approach, we conducted an

dditional experiment using a real-world software project under-

aken by a local IT company concerning the development of a ves-

el policies management system for a large insurance brokers com-

any. The supervising project manager at the time of the project

ad just over five years of industry experience in software project

anagement, and was responsible for the initial planning at the

eginning of the project, aiming to find a balance between the

otal duration and cost of the project. Table 9 presents the char-

cteristics of the project, which comprised 31 tasks split into a

umber of software development activities (professions). The ta-

le also shows the type interdependence of each task, which the

roject manager helped define according to the nature of the ac-

ivities in the project. The human resources available to undertake

he project (presented in Table 10) consisted of four developers

ith skills and expertise in one or more of the professions required

y the project tasks. The project manager was consulted to pro-

ide the estimated effort for each task, as well as the productivity

atrix and salary of the developers. Finally, he also provided the

antt chart he constructed for the project (Fig. 6).

Using the same parameters and settings as before, we con-

ucted 100 runs for all four algorithms and subsequently com-

uted the HV quality indicator from the solutions generated. The

esults obtained followed to a large degree the same pattern that

as observed with the previous experimental software projects.

pecifically, NSGA-II and MOCell both managed to outperform PAES

nd SPEA2 with respect to the quality indicator, demonstrating

heir ability to generate solutions with higher diversity and cover

he extent of the reference Pareto front to a larger degree. Fur-

hermore, there was no statistically significant difference between

he results obtained for NSGA-II and MOCell, which suggests once

ore that these two optimizers are equally suitable for our ap-

roach. The reference Pareto containing the overall best solutions

s displayed in Fig. 7 . Also, in the same figure, we plot the duration

nd cost of the project corresponding to the original allocation of

esources and schedule of tasks constructed by the project man-

ger.

The 27 solutions on the reference Pareto front all dominate

he initial estimate made by the project manager either in terms

f duration or in terms of cost. The solutions correspond to

roject plans ranging from short make-spans at higher costs to low

osts with longer make-span. The project manager’s goal was to

C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96 91

Table 9

Task characteristics of real-world software project.

Task Effort Type Profession Task Effort Type Profession

T1 48 Disjunctive Req. Analysis T16 8 Disjunctive Testing

T2 16 Conjunctive GUI Design T17 12 Additive Programming

T3 8 Conjunctive DB Design T18 4 Conjunctive DB Design

T4 8 Conjunctive DB Design T19 6 Conjunctive Programming

T5 6 Additive Req. Analysis T20 6 Conjunctive Programming

T6 8 Disjunctive Testing T21 64 Conjunctive Integration

T7 16 Additive Programming T22 16 Disjunctive Testing

T8 4 Conjunctive Programming T23 16 Additive Programming

T9 4 Conjunctive Programming T24 4 Conjunctive Programming

T10 4 Conjunctive Programming T25 16 Conjunctive Programming

T11 4 Conjunctive Programming T26 12 Conjunctive Programming

T12 4 Conjunctive Programming T27 6 Conjunctive DB Design

T13 6 Conjunctive Programming T28 32 Conjunctive Integration

T14 6 Conjunctive Programming T29 8 Disjunctive Deployment

T15 8 Conjunctive Programming T30 12 Additive Programming

T31 24 Additive Training

Table 10

Characteristics of resources available to undertake the real-world software project.

Developer A Developer B Developer C Developer D

Wage rate €10 .23 €6 .25 €7 .39 €5 .68

Productivity rate

Req. analysis 2 .00 0 .50 0 .50 0 .00

DB design 2 .00 1 .00 2 .00 0 .00

GUI design 2 .00 0 .00 2 .00 0 .00

Programming 2 .00 1 .00 1 .00 0 .00

Integration 2 .00 0 .50 0 .50 0 .00

Testing 0 .00 0 .00 0 .00 2 .00

Deployment 0 .00 0 .00 0 .00 1 .00

Training 2 .00 0 .50 1 .00 0 .00

a

t

e

t

(

p

c

F

r

a

o

r

i

c

i

Fig. 7. Comparison of project manager’s initial estimate with reference Pareto front.

p

t

p

o

p

a
llocate developers and schedule tasks so that a balance between

he total duration and cost was achieved. Notably, the closest gen-

rated solutions to the project manager’s estimate represent plans

hat also offer a more equal trade-off between the two objectives

enclosed in the dotted rectangle in Fig. 7). In other words, the

roject manager’s estimate is not nearer either extreme, but rather

loser to the midway solutions. The point on the Pareto front in

ig. 7 marked ED represents a solution whose task schedule and

esource assignment yield a duration equal to the project man-

ger’s initial duration estimate. On the other hand, the point EC

n the Pareto front represents a solution whose task schedule and

esource assignment produce a cost equal to the project manager’s

nitial cost estimate. The comparison of the resource assignments,

osts and duration of these two points with the project manager’s

nitial estimate for each task is presented in Table 11.
Fig. 6. Gantt chart for real-world software project c
It is clear from Table 11 that by taking into account the rate of

roductivity of developers, the type of task interdependence and

he communication overhead at task level, our optimization ap-

roach manages to assign resources and schedule tasks in a variety

f ways. The generated solutions can easily be presented to the

roject manager through a decision support system, from which

 project manager may select the most suitable allocation and
onstructed by the software project manager.

92 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

Table 11

Comparison of project manager’s initial estimation against solutions ED and EC with respect to resource assignment, task cost and

task duration.

PM’s initial estimation Generated solution ED Generated solution EC

Task Resources Duration Cost Resources Duration Cost Resources Duration Cost

T1 A 24 245 .52 A 24 245 .52 A 24 245 .52

T2 C 8 59 .12 A 8 81 .84 A 8 81 .84

T3 C 8 59 .12 C 4 29 .56 A 4 40 .92

T4 A 8 81 .84 A 4 40 .92 C 4 29 .56

T5 B 12 75 .00 A 3 30 .69 B 12 75 .00

T6 D 4 22 .72 D 4 22 .72 D 4 22 .72

T7 B,C 3 40 .92 A,B 6 98 .88 A,B 6 98 .88

T8 B 4 25 .00 B 4 25 .00 B 4 25 .00

T9 B 4 25 .00 A 2 20 .46 A 2 20 .46

T10 C 4 29 .56 B 4 25 .00 C 4 29 .56

T11 C 4 29 .56 C 4 29 .56 C 4 29 .56

T12 B 4 25 .00 C 4 29 .56 B 4 25 .00

T13 B 6 37 .50 A 3 30 .69 A 3 30 .69

T14 C 6 44 .34 A 3 30 .69 A 3 30 .69

T15 C 8 59 .12 A 4 40 .92 A 4 40 .92

T16 D 4 22 .72 D 4 22 .72 D 4 22 .72

T17 A,B,C 2 47 .74 A 6 61 .38 A 6 61 .38

T18 B 4 25 .00 C 2 14 .78 C 2 14 .78

T19 B 6 37 .50 A 3 30 .69 A 3 30 .69

T20 C 6 44 .34 A 3 30 .69 A 3 30 .69

T21 A,B 16 263 .68 A 32 327 .36 A 32 327 .36

T22 D 8 45 .44 D 8 45 .44 D 8 45 .44

T23 C 3 22 .17 A 8 81 .84 A,B 6 98 .88

T24 B 4 25 .00 A 2 20 .46 A 2 20 .46

T25 C 16 118 .24 A 8 81 .84 A 8 81 .84

T26 B 12 75 .00 A 6 61 .38 A 6 61 .38

T27 B 6 37 .50 C 3 22 .17 C 3 22 .17

T28 A 16 163 .68 A 16 163 .68 A 16 163 .68

T29 D 4 22 .72 D 8 45 .44 D 8 45 .44

T30 B 2 12 .50 A 6 61 .38 A 6 61 .38

T31 B,C 19 259 .16 A 12 122 .76 A,B,C 7 167 .09

Total cost 2081 .71 1976 .02 2081 .70

Total duration 177 177 167

t

t

o

t

v

s

t

b

t

s

m

m

i

a

t

g

c

e

m

o

d

d

t

a

a

t

l

b

r

u
schedule scheme according to his or her priorities. Furthermore, a

project manager is able to generate more accurate solutions com-

pared to ad-hoc and manual approaches with a small amount of

effort. The differences between solutions are also evident when

comparing each of our generated solutions with the project man-

ager’s initial estimation in regards to the overall project cost and

project duration, as shown in Table 12.

As seen from the solutions that are shaded in Table 12 (i.e.,

the solutions enclosed in the dotted rectangle in the Pareto front

of Fig. 7), compared to the estimated resource allocation and task

schedule our approach was able to find a range of alternative plans

that are up to approximately 6% shorter in duration for the same

estimated cost or up to roughly 5% cheaper in terms of costs for

the same estimated duration. The Gantt chart of the latter case

(solution ED) is given in Fig. 8 , where our approach generated a

solution that manages to allocate developers and schedule tasks

with the same project duration as the project manager’s, but with

a cheaper project cost. Essentially, the difference in cost is due

having different combinations of developer assignments that are

more cost-effective. In some tasks, the developers assigned pos-

sessed a high productivity rate and, although these developers cost

more, it was still cheaper than assigning developers with a low

productivity rate for a longer duration. In other tasks, the devel-

opers assigned possessed a low productivity rate and, despite the

tasks taking longer, it was still cheaper than assigning developers

with a high productivity rate for a shorter duration. This empha-

sizes the competitive nature of duration and cost, and underlines

the fact that machine-based optimization activities may handle the

complexity posed by this competition more efficiently compared to

software project managers, irrespective of their experience and ex-

pertise. Furthermore, when we presented several of these solutions
o the supervising project manager, he confirmed that in several

asks certain combinations of developers that existed both in the

riginal allocation, as well as in the generated solutions completed

he work earlier than planned, due to some of the assigned de-

elopers possessing high productivity rates in the required profes-

ions. In addition, he also confirmed that the final cost and dura-

ion of the project was much more near to the solutions generated

y our approach rather than his initial estimated values. Although

he percentage of reduction was relatively small due to the small

ize of the project, in larger and more complex projects improve-

ents to the cost and duration estimates could be greater, proving

ore beneficial to software companies.

Several observations were also made regarding the type of tasks

nterdependence. First , the solutions generated by our approach

voided the assignment of more than one developer to certain

asks. Further examination revealed that these tasks were pro-

ramming tasks that had a conjunctive interdependence type. Be-

ause the duration of a conjunctive task is determined by the low-

st productivity rate in the team, our approach rejected the assign-

ent of a team of developers to such a task in favour of assigning

nly one developer that possessed a high rate of productivity, thus

ecreasing both the duration and cost of the task. Furthermore,

ue to the dependency relationships, a number of programming

asks were able to be scheduled to start at the same time (for ex-

mple, tasks T8, T12 and T14 in Fig. 8). In order to simultaneously

void assignment conflicts and minimize the project’s make-span,

he most cost-effective solution was to assign a developer with a

ower productivity rate and having the task start as soon as possi-

le (rather than to assign one of the developers with the highest

ate of productivity and forcing the start of a task to be delayed

ntil one of those developers was available). Conversely, it was

C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96 93

Table 12

Difference between project manager’s cost and duration estimation and each generated solution.

Project Duration Difference from estimated duration Project Cost Difference from estimated cost

PM Estimation 177 2081 .71

Solution

Solution 1 161 −16 2190 .84 109 .84

Solution 2 162 −15 2170 .37 89 .37

Solution 3 163 −14 2149 .90 68 .90

Solution 4 164 −13 2136 .27 55 .27

Solution 5 165 −12 2115 .80 34 .80

Solution 6 166 −11 2102 .17 21 .17

Solution 7 (EC) 167 −10 2081 .70 0 .01

Solution 8 168 −9 2071 .49 −9 .51

Solution 9 169 −8 2057 .86 −23 .14

Solution 10 170 −7 2037 .39 −43 .61

Solution 11 171 −6 2026 .03 −54 .97

Solution 12 172 −5 2020 .35 −60 .65

Solution 13 173 −4 2008 .99 −72 .01

Solution 14 174 −3 2003 .31 −77 .69

Solution 15 175 −2 1991 .95 −89 .05

Solution 16 176 −1 1981 .70 −99 .30

Solution 17 (ED) 177 0 1976 .02 −104 .98

Solution 18 178 1 1964 .66 −116 .34

Solution 19 179 2 1958 .98 −122 .02

Solution 20 180 3 1947 .62 −133 .38

Solution 21 181 4 1943 .07 −137 .93

Solution 22 182 5 1938 .52 −142 .48

Solution 23 183 6 1931 .69 −149 .31

Solution 24 184 7 1929 .42 −151 .58

Solution 25 185 8 1927 .15 −153 .85

Solution 26 186 9 1924 .88 −156 .12

Solution 27 188 11 1920 .34 −160 .66

Fig. 8. Gantt chart for real-world software project corresponding to solution ED with equal duration.

o

p

I

n

(

a

s

c

m

F

s

fi

u

t

o

r

w

t

p

p

a

p

8

8

s

o

i

t

o

t

i

a

c

t

m
bserved that the solutions generated by our approach showed no

reference to the number of developers assigned to additive tasks.

n some cases, only one developer was assigned (the cheaper alter-

ative), whereas in other cases, several developers were assigned

the faster alternative). These observations suggest that taking into

ccount the type of task interdependence can prove valuable to a

oftware project manager for his or her allocation decisions.

Overall, there are positive indications that by taking into ac-

ount productivity-related attributes, our approach can provide

ore accurate duration and cost estimates for project planning.

urthermore, it could also provide a basis for a promising decision-

upport tool with which software project managers are able to ef-

ciently select a suitable allocation of resources and task sched-

le that satisfies his or her criteria the most from a range of al-

ernatives through the use of multi-objective optimization. Multi-

bjective optimization allows for different trade-offs between du-

ation and cost to be examined by software project managers,

hich would otherwise not be possible due to the many permu-

ations that require effort and time to produce manually. It is im-

ortant, however, to examine our approach using more real-world
rojects from the local software industry. To this end, we have

pproached several development companies to provide us with

roject and resource data for further experimentation.

. Threats to validity

.1. Construct validity

Threats to construct validity that may exist concern the as-

umptions and simplifications made regarding the software devel-

pment process. In our case, the proposed approach does not take

nto account each developer’s degree of dedication to the tasks

hat he or she is assigned to. Rather, the allocation of a devel-

per is constrained to only one task for the whole duration of that

ask. However, on the one hand, taking this into account was not

n the scope of the current work and, on the other hand, the par-

llel assignment of a developer to multiple tasks requires minimal

hanges in the task scheduling procedure and subsequent calcula-

ion of the fitness of each individual solution. Also, we assume a

aximum rate of productivity (in our case, a rate of 2.0), which

94 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

d

W

t

o

w

t

g

f

l

a

a

s

a

t

e

t

t

o

c

e

t

i

t

m

m

I

s

m

y

g

c

t

p

t

m

w

w

o

S

q

w

i

N

r

i

m

t

t

t

e

b

s

d

w

p

c

s

i

m

p

s

c

i

d
in practice may be either surpassed, or contrarily, never reached.

Nevertheless, any potential effect of this threat is limited, since

the productivity rate values used in our approach scale relatively

rather than absolutely.

8.2. Internal validity

Genetic algorithms are stochastic in nature and use various de-

grees of randomness in order to evolve populations and generate

solutions. In order to limit this internal validity threat in our ex-

periments, we executed each project instance 100 times for each

algorithm investigated, and in addition we used the Pareto fronts

generated from the solutions to apply the HV quality indicator.

Furthermore, we employed statistical tests to examine if signif-

icant differences existed between the results generated by each

algorithm. Also, given the random nature of genetic algorithms,

the results of the experiments may be influenced by the settings

and parameters chosen, such as the probabilities of mutation and

crossover. In order to mitigate this, preliminary runs were carried

out with various settings, which led to the use of the ones pro-

vided in Table 3.

8.3. External validity

The main threat to external validity causing a limitation in the

ability to make generalizations from our findings is the fact that

experimentation of our approach was carried on using randomly

generated problems. To mitigate this threat, the project instances

were created after discussions with several local software project

managers, who were consulted in order to extract various project

and developer characteristics, including number of tasks, complex-

ity in terms of task precedence relationships, number of available

developers and salary ranges. These parameters were then used

to randomly generate the project instances as realistic as possi-

ble. An experiment using a real-world case study was also con-

ducted, which showed that the solutions generated were of better

quality and more realistic than compared to the schedule and allo-

cations constructed manually by the software project manager, let

alone the fact that these solutions were generated much quicker.

However, further experiments using real-world software projects

are necessary in order to support the results already obtained, and

are planned as part of our future research. In addition, the ability

of the genetic algorithms to achieve a satisfactory level of qual-

ity of solutions in a reasonable amount of time is dependent on

the number of iterations that they are left to run for. This means

that for larger software projects, there may be an issue of scaling,

where the approach will require longer computational time in or-

der to find better solutions. This threat however was addressed by

preliminarily running the algorithms for 50,0 0 0 and 10 0,0 0 0 ob-

jective function executions, before finally running the algorithms

for 50 0,0 0 0 executions. From our findings, we concluded that a

significant improvement to the results is not expected by increas-

ing the number of this value even further than 50 0,0 0 0 for our

approach. Computation overhead may be addressed even more ef-

ficiently in cases of large projects using modules in high perfor-

mance computing environments, thus executing in much less time

compared to the original experiments.

9. Conclusions

This paper addressed the problem of human resource alloca-

tion and task scheduling for software development, which is one

of the most challenging planning activities faced by project man-

agers as they attempt to minimize the cost and duration of the

project. We adapted the traditional RCPSP to include productivity-

related attributes, focusing on the fact that developers possessing
ifferent rates of productivity carry out tasks at different speeds.

e have also established that the nature of the work required

o be carried out can influence how the individual contributions

f developers are aggregated in terms of productivity. In addition,

e also factored in the increase in the duration of a task due

o communication overhead incurred while developers work to-

ether. Up until now, very few works have explored how these

actors can be taken into consideration in software resource al-

ocation and task scheduling. A multi-objective genetic algorithm

pproach is then applied to simultaneously minimize the duration

nd cost of a software project. A set of feasible and near-optimal

olutions of developer allocations and task schedules were gener-

ted by evolving a population of candidate individuals with selec-

ion, recombination and mutation genetic operators. The fitness of

ach individual in the population was evaluated using two objec-

ive functions that assess how much time and money it will take

he developer(s) assigned to complete each task based on their rate

f productivity, the type of task interdependence and communi-

ation overhead. Additionally, in order to evaluate the validity of

ach individual, we applied two constraint functions that assess

he degree to which each task has a developer assigned to carry

t out and the degree to which the precedence relationships be-

ween tasks are satisfied. The benefit of using multi-objective opti-

ization in our approach is that it is able to offer software project

anagers alternative near-optimal solutions rather than just one.

f the criterion of a project manager is to allocate resources and

chedule tasks so that the project finishes as soon as possible no

atter the cost, then the choice would be made using solutions

ielding a shorter make-span. Alternatively, if a project manager’s

oal is to allocate resources and schedule tasks so that the project

osts as little as possible no matter its duration, then the selec-

ion would be based on solutions yielding lower cost. Otherwise, a

roject manager would look to choose a solution that balances the

wo criteria.

Several experiments were carried out to evaluate the perfor-

ance and applicability of our approach. Sixteen synthetic soft-

are project instances of varying size and available developers

ere constructed and used to compare four algorithms of multi-

bjective genetic algorithms, namely MOCell, NSGA-II, PAES, and

PEA2. The comparison was performed using the hypervolume

uality indicator, which was calculated using median values that

ere generated over 100 runs of each algorithm for each project

nstance. From the results obtained, it was clear that MOCell,

SGA-II and SPEA2 were the most dominant of the four algo-

ithms, managing to outperform PAES in the majority of project

nstances. This suggests that for our approach, these algorithms are

ore capable of providing developer allocations and task schedules

hat are closer to the optimal, as well as more diverse. Additionally,

hirty-six project instances were used to compare the scalability of

he algorithms. Each algorithm was again executed 100 times with

ach project instance. By averaging the hypervolume values across

oth the various task sizes and available developer sizes, the re-

ults indicated that PAES was able to scale better than the rest,

espite producing solutions with lower quality.

We also used data from a real-world project, the results of

hich provided encouraging signs on the applicability of our ap-

roach. The optimization managed to find solutions that were

heaper and with shorter make-spans compared to the initial re-

ource allocation and task scheduling constructed by the supervis-

ng software project manager, and that these solutions were in fact

ore in line with the actual project cost and duration than the

roject manager’s initial estimate. Finally, we also observed that

tudent teams possessing varying levels of skills and competen-

ies worked at different speeds depending on the type of task be-

ng carried out, hence enhancing our belief that task interdepen-

ence affects the way developers combine their efforts and rates of

C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96 95

p

c

t

s

m

t

o

s

e

d

t

d

o

t

c

o

t

d

t

t

t

t

s

m

a

i

r

a

s

o

o

i

d

A

d

a

t

g

t

d

d

s

R

[

[

[

[

[

[

[

roductivity, which ultimately translates into increases or de-

reases in task duration and cost.

There are several potential topics that can be addressed in order

o improve and enhance our current approach. First, a better repre-

entation of the productivity rates of developers may help provide

ore accurate estimations of the time and cost of a task. Since

he topic of productivity is multifaceted and complicated, a thor-

ugh investigation is required to ensure that its usage generates

olutions that are as realistic as possible. Also, there is a need to

xplore the rates of completion of software development tasks at

ifferent levels of productivity and to examine whether a satura-

ion point exists where a task cannot be completed in a shorter

uration regardless of how highly productive a developer is. Sec-

nd, apart from communication overhead there are additional fac-

ors, such as organizational, human and process factors [25] , which

an be incorporated within our approach to adjust the increase

r decrease of the duration of a task. A recent trend in software

eam staffing involves the integration of the personality types of

evelopers [54,55] . For example, personality types have been used

o allocate developers to tasks and roles that are best suited to

heir individual traits as it has been found to affect team produc-

ivity [56] . Also, personality types have been examined in relation

o issues such as job satisfaction, performance, team cohesion and

ocial conflict [57] . All these aspects could necessitate the adjust-

ent of the duration and subsequent cost of a task to more re-

listic values. A comprehensive investigation, therefore, is required

n order to accurately measure and integrate these factors during

esource allocation, with a suitable mechanism for project man-

gers to prioritize their criteria. Third, our approach currently as-

umes that developers are available to work solely and fully on

ne project. Realistically, however, this is not the case as devel-

pers may be assigned to work on other projects concurrently. To

mprove our approach we plan to incorporate degrees of resource

edication and availability, as well as resource levelling constraints.

nother intended improvement involves handling the release of

evelopers working on divisible tasks so that they are made avail-

ble again once their contribution to such a task is over rather

han have them be committed for its full duration. Last, other

enetic algorithm variations, as well as alternative optimization

echniques can be considered, such as swarm intelligence, in or-

er to determine whether such methods are able to provide more

iverse and even nearer-to-optimal resource allocation and task

chedules.

eferences

[1] Chang CK, Christensen MJ, Zhang T. Genetic algorithms for project manage-
ment. Ann Softw Eng 2001;11(1):107–39. doi: 10.1023/A:1012543203763 .

[2] Pan N-H, Hsaio P-W, Chen K-Y. A study of project scheduling optimization us-
ing tabu search algorithm. Eng Appl Artif Intell 2008;21(7):1101–12. doi: 10.

1016/j.engappai.20 07.11.0 06 .

[3] Li C, van den Akker JM, Brinkkemper S, Diepen G. Integrated requirement
selection and scheduling for the release planning of a software product. In:

Sawyer P, Paech B, Heymans P, editors. Requirements engineering. REFSQ 2007:
Proceedings of the 13th international working conference on requirements en-

gineering: foundation for software quality; 2007 June 11–12; Trondheim. Nor-
way. Berlin: Springer; 2007. 2007 p. 93–108. doi: 10.1007/978- 3- 540- 73031- 6 .

[4] Otero LD, Centeno G, Ruiz-Torres AJ, Otero CE. A systematic approach for re-

source allocation in software projects. Comput Ind Eng. 2009;56(4):1333–9.
doi: 10.1016/j.cie.20 08.08.0 02 .

[5] Otero CE, Otero LD, Weissberger I, Qureshi A. A multi-criteria decision mak-
ing approach for resource allocation in software engineering. In: Al-Dabass D,

Orsoni A, Cant R, Abraham A, editors. Computer modelling and simulation. UK-
Sim 2010: Proceedings of the 12th international conference on computer mod-

elling and simulation; 2010 Mar24-26. Cambridge, UK. Los Alamitos, CA: IEEE;
2010. p. 137–41. doi: 10.1109/UKSIM.2010.32 .

[6] Barreto A, Barros MO, Werner CML. Staffing a software project: a constraint

satisfaction approach. ACM SIGSOFT Softw Eng Notes 2005;30(4):1–5. doi: 10.
1145/1082983.1083093 .

[7] Barreto A, Barros MO, Werner CML. Staffing a software project: a con-
straint satisfaction and optimization-based approach. Comput Oper Res.

2008;35(10):3073–89. doi: 10.1016/j.cor.2007.01.010 .
[8] Antoniol G, Di Penta M, Harman M. Search-based techniques for optimizing
software project resource allocation. In: Deb K, editor. Genetic and evolution-

ary computation. GECCO 2004: Proceedings of the 2004 genetic and evolu-
tionary computation conference; 2004 Jun 26–30. Seattle, WA, USA. Berlin:

Springer; 2004. p. 1425–6. doi: 10.1007/978- 3- 540- 24855- 2 _ 162 .
[9] Jalote P, Jain G. Assigning tasks in a 24-hour software development model.

Software engineering APSEC 2004: Proceedings of the 11th Asia-Pacific soft-
ware engineering conference; 2004 Nov 30-Dec 3. Busan, Korea Washington,

DC: IEEE; 2004. p. 309–15. doi: 101109/APSEC200433 .

[10] Padberg F. A study on optimal scheduling for software projects. J Softw-Evol
Proc. 2006;11(1):77–91. doi: 10.1002/spip.254 .

[11] Chang CK, Jiang H, Di Y, Zhu D, Ge Y. Time-line based model for
software project scheduling with genetic algorithms. Inf Softw Technol

2008;50(11):1142–54. doi: 10.1016/j.infsof.2008.03.002 .
[12] Ren J, Harman M, Di Penta M. Cooperative co-evolutionary optimization of

software project staff assignments and job scheduling. In: Cohen MB, Ó Cin-

néide M, editors. Search-based software engineering. SBSE 2011: Proceedings
of the 3rd international symposium on Search-Based Software Engineering;

2011 Sep 10–12. Szeged, Hungary. Berlin: Springer; 2011. p. 127–41. doi: 10.
1007/978- 3- 642- 23716- 4 _ 14 .

[13] Gerasimou S, Stylianou C, Andreou AS. An investigation of optimal project
scheduling and team staffing in software development using particle swarm

optimization. In: Maciaszek LA, Cuzzocrea A, Cordeiro J, editors. Enterprise in-

formation systems. ICEIS 2012: Proceedings of the 14th international confer-
ence on enterprise information systems; 2012 Jun 28-Jul 1. Wrocław, Poland.

Setúbal: SciTePress; 2012. p. 168–71. doi: 10.5220/0 0 040 010 01680171 .
[14] Chen W-N, Zhang J. Ant colony optimization for software project schedul-

ing and staffing with an event-based scheduler. IEEE Trans Softw Eng.
2013;39(1):1–17. doi: 10.1109/TSE.2012.17 .

[15] Xiao J, Ao X-T, Tang Y. Solving software project scheduling problems with

ant colony optimization. Comput Oper Res. 2013;40(1):33–46. doi: 10.1016/j.cor.
2012.05.007 .

[16] Hapke M, Jaszkiewicz A, Slowinski R. Fuzzy project scheduling system
for software development. Fuzzy Set Syst. 1994;67(1):101–17. doi: 10.1016/

0165-0114(94)90211-9 .
[17] Callegari DA, Bastos BRM. A multi-criteria resource selection method for soft-

ware projects using fuzzy logic. In: Filipe J, Cordeiro J, editors. Enterprise in-

formation systems. ICEIS 2009: Proceedings of the 11th international confer-
ence on enterprise information systems; 2009 May 6-10. Milan, Italy. Berlin:

Springer; 2009. p. 376–88. doi: 10.1007/978- 3- 642- 01347- 8 _ 32 .
[18] Antoniol G, Di Penta M, Harman M. Search-based techniques applied to op-

timization of project planning for a massive maintenance project. Software
maintenance ICSM 2005: Proceedings of the 21st IEEE international conference

on software maintenance; 2005 Sep 26–29. Budapest, Hungary Los Alamitos,

CA: IEEE; 2005. p. 240–9. doi: 101109/ICSM200579 .
[19] Di Penta M, Harman M, Antoniol G. The use of search-based optimization tech-

niques to schedule and staff software projects: an approach and an empirical
study. Softw Pract Exp. 2011;41(5):495–519. doi: 10.1002/spe.1001 .

20] Alba E , Chicano JF . Management of software projects with GAs. In: Metaheuris-
tics. MIC 2005: Proceedings of the 6th Metaheuristics International Confer-

ence; 2005 Aug 22–26; 2005. p. 13–18 .
[21] Alba E, Chicano JF. Software project management with GAs. Inform Sci.

2007;177(11):2380–401. doi: 10.1016/j.ins.2006.12.020 .

22] Minku LL, Sudholt D, Yao X. Evolutionary algorithms for the project schedul-
ing problem: runtime analysis and improved design. In: Soule T, editor. Ge-

netic and evolutionary computation. GECCO 2012: Proceedings of the 2012 ge-
netic and evolutionary computation conference; 2012 July 7–11. Philadelphia,

PA , USA . New York: ACM; 2012. p. 1221–8. doi: 10.1145/2330163.2330332 .
23] Minku LL, Sudholt D, Yao X. Improved evolutionary algorithm design for the

project scheduling problem based on runtime analysis. IEEE Trans Softw Eng.

2014;40(1):83–102. doi: 10.1109/TSE.2013.52 .
[24] Kapur P, Ngo-The A, Ruhe G, Smith A. Optimized staffing for product re-

leases and its application at Chartwell Technology. J Softw Maint Evol-R
2008;20(5):365–86. doi: 10.1002/smr.379 .

25] Ngo-The A, Ruhe G. Optimized resource allocation for software release plan-
ning. IEEE Trans Softw Eng. 2009;35(1):109–23. doi: 10.1109/TSE.2008.80 .

26] Yannibelli V, Amandi A. A knowledge-based evolutionary assistant to software

development project scheduling. Expert Syst Appl. 2011;38(7):8403–13. doi: 10.
1016/j.eswa.2011.01.035 .

[27] Yannibelli V, Amandi A. A memetic approach to project scheduling that max-
imizes the effectiveness of the human resources assigned to project activi-

ties. In: Corchado E, Snášel V, Abraham A, Wo ́zniak M, Graña M, Cho S-B,
editors. Hybrid artificial intelligence systems. HAIS 2012: Proceedings of the

7th international conference on hybrid artificial intelligence systems; 2012

Mar 28–30; Salamanca. Spain. Berlin: Springer; 2012. p. 159–73. doi: 10.1007/
978- 3- 642- 28942- 2 _ 15 .

28] Yannibelli V, Amandi A. A diversity-adaptive hybrid evolutionary algorithm to
solve a project scheduling problem. In: Corchado E, Lozano JA, Quintián H,

Yin H, editors. Intelligent data engineering and automated learning. IDEAL
2014: Proceedings of the 15th international conference on intelligent data en-

gineering and automated learning; 2014 Sep 10–12; Salamanca. Spain. Berlin:

Springer; 2014. p. 412–23. doi: 10.1007/978- 3- 319- 10840- 7 _ 50 .
29] Yannibelli V, Amandi A. Project scheduling: a multi-objective evolutionary al-

gorithm that optimizes the effectiveness of human resources and the project
makespan. Eng Optim 2013;45(1):45–65. doi: 10.1080/0305215X.2012.658782 .

http://dx.doi.org/10.1023/A:1012543203763
http://dx.doi.org/10.1016/j.engappai.2007.11.006
http://dx.doi.org/10.1007/978-3-540-73031-6
http://dx.doi.org/10.1016/j.cie.2008.08.002
http://dx.doi.org/10.1109/UKSIM.2010.32
http://dx.doi.org/10.1145/1082983.1083093
http://dx.doi.org/10.1016/j.cor.2007.01.010
http://dx.doi.org/10.1007/978-3-540-24855-2_162
http://dx.doi.org/101109/APSEC200433
http://dx.doi.org/10.1002/spip.254
http://dx.doi.org/10.1016/j.infsof.2008.03.002
http://dx.doi.org/10.1007/978-3-642-23716-4_14
http://dx.doi.org/10.5220/0004001001680171
http://dx.doi.org/10.1109/TSE.2012.17
http://dx.doi.org/10.1016/j.cor.2012.05.007
http://dx.doi.org/10.1016/0165-0114(94)90211-9
http://dx.doi.org/10.1007/978-3-642-01347-8_32
http://dx.doi.org/101109/ICSM200579
http://dx.doi.org/10.1002/spe.1001
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0020
http://dx.doi.org/10.1016/j.ins.2006.12.020
http://dx.doi.org/10.1145/2330163.2330332
http://dx.doi.org/10.1109/TSE.2013.52
http://dx.doi.org/10.1002/smr.379
http://dx.doi.org/10.1109/TSE.2008.80
http://dx.doi.org/10.1016/j.eswa.2011.01.035
http://dx.doi.org/10.1007/978-3-642-28942-2_15
http://dx.doi.org/10.1007/978-3-319-10840-7_50
http://dx.doi.org/10.1080/0305215X.2012.658782

96 C. Stylianou, A.S. Andreou / Advances in Engineering Software 98 (2016) 79–96

[30] Yannibelli V, Amandi A. Hybridizing a multi-objective simulated annealing
algorithm with a multi-objective evolutionary algorithm to solve a multi-

objective project scheduling problem. Expert Syst Appl. 2013;40:2421–34.
doi: 10.1016/j.eswa.2012.10.058 .

[31] Steiner ID . Group processes and productivity. New York, NY: Academic Press;
1972 .

[32] Di Penta M, Harman M, Antoniol G, Qureshi F. The effect of communication
overhead on software maintenance project staffing: a search-based approach.

Software maintenance ICSMW 2007: Proceedings of the 23rd international

conference on software maintenance; 2007 Oct 2–5. Paris, France Los Alamitos,
CA: IEEE; 2007. p. 315–24. doi: 101109/ICSM20074362644 .

[33] PMI Lexicon of Project Management Terms [Internet]. Philadelphia, PA: Project
Management Institute. c2012 [cited 2015 Mar 26]. Available from: http://www.

pmi.org/PMBOK- Guide- and- Standards/PMI- lexicon.aspx
[34] Curtis B., Hefley W.E., Miller S. The people capability maturity model (P-CMM)

version 2.0, 2nd ed. Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University; 2009 Jul. Report No.: CMU/SEI-2009-TR-003.
[35] Mäntyläa MV, Itkonena J. More testers – the effect of crowd size and time

restriction in software testing. Inf Softw Technol 2013;55(6):986–1003. doi: 10.
1016/j.infsof.2012.12.004 .

[36] Brooks FP Jr . The mythical man-month: essays on software engineering. Read-
ing, UK: Addison-Wesley Publishing Company; 1975 .

[37] Abdel-Hamid TK , Madnick SE . Software project dynamics: an integrated ap-

proach. Englewood Cliffs, NJ: Prentice Hall; 1991 .
[38] Douglas MJ . The impacts of the handoffs on software development: a cost es-

timation model [dissertation]. Tampa: FL: University of South Florida; 2006 .
[39] Holland JH . Adaptation in natural and artificial systems. Ann Arbor, MI: Uni-

versity of Michigan Press; 1975 .
[40] Miettinen M . Nonlinear multiobjective optimization. Norwell, MA: Kluwer Aca-

demic Publishers; 1999 .

[41] Deb K . Multi-objective optimization using evolutionary algorithms. Chichester,
UK: Wiley; 2001 .

[42] Van Veldhuizen D.A., Lamont G.B. Multiobjective evolutionary algorithm re-
search: a history and analysis. Wright-Patterson Air Force Base, OH: Depart-

ment of Electrical and Computer Engineering, Air Force Institute of Technol-
ogy; 1998 Mar. Report No.: TR-98-03.

[43] Goldberg DE , Lingle R Jr . Alleles, loci and the travelling salesman problem. In:

Grefenstette JJ, editor. Proceedings of the 1st international conference on ge-
netic algorithms; 1985 July 24–26. Pittsburgh, PA, USA. Hillsdale, NJ: Lawrence

Erlbaum Associates; 1985. p. 154–9 .
[44] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans on Evol Comput 2002;6(2):182–97.
doi: 10.1109/4235.996017 .

[45] Zitzler E., Laumanns M., Thiele L. SPEA2: improving the strength Pareto evo-

lutionary algorithm. Zurich: Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH), Zurich; 2001 May. Report

No.: TIK-Report 103.
[46] Knowles JD, Corne DW. Approximating the nondominated front using the
Pareto archived evolution strategy. Evol Comput 20 0 0;8(2):149–72. doi: 10.

1162/106365600568167 .
[47] Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E. Design issues in a mul-

tiobjective cellular genetic algorithm. In: Obayashi S, Deb K, Poloni C, Hi-
royasu T, Murata T, editors. Evolutionary multi-criterion optimization. EMO

2007: Proceedings of the 4th international conference on evolutionary multi-
criterion optimization; 2007 Mar 5–8; Matsushima. Japan. Berlin: Springer;

2007. p. 126–40. doi: 10.1007/978- 3- 540- 70928- 2 _ 13 .

[48] 2010 Standard Occupational Classification System [Internet]. Washington, DC:
Bureau of Labor Statistics, United States Department of Labor. c2010 [cited

2015 Mar 26]. Available from: http://www.bls.gov/soc/classification.htm .
[49] O ∗Net OnLine [Internet]. Raleigh, NC: National Center for O ∗NET Development.

c1998 [cited 2015 Mar 26]. Available from: http://www.onetonline.org
[50] Luna F, González-Álvarez DL, Chicano F, Vega-Rodríguez MA. On the scal-

ability of multi-objective metaheuristics for the software scheduling prob-

lem. Intelligent systems design and applications ISDA 2011: Proceedings of
the 11th international conference on intelligent systems design and applica-

tions; 2011 Nov 22–24. Córdoba, Spain Piscataway (NJ): IEEE; 2011. p. 1110–15.
doi: 101109/ISDA20116121807 .

[51] Luna F, González-Álvarez DL, Chicano F, Vega-Rodríguez MA. The software
project scheduling problem: a scalability analysis of multi-objective meta-

heuristics. Appl Soft Comput 2014;15:136–48. doi: 10.1016/j.asoc.2013.10.015 .

[52] Durillo JJ, Nebro AJ. jMetal: a Java framework for multi-objective optimization.
Adv Eng Softw. 2011;42(10):760–71. doi: 10.1016/j.advengsoft.2011.05.014 .

[53] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE Trans Evol Comput

1999;3(4):257–71. doi: 10.1109/4235.797969 .
[54] Stylianou C, Andreou AS. Human resource allocation and scheduling for soft-

ware project management. In: Ruhe G, Wohlin C, editors. Software project

management in a changing world. Berlin: Springer; 2014. p. 73–106. doi: 10.
1007/978- 3- 642- 55035- 5 _ 4 .

[55] Cruz S, da Silva FQB, Capretz LF. Forty years of research on personality in
software engineering: a mapping study. Comput Hum Behav 2015;46:94–113.

doi: 10.1016/j.chb.2014.12.008 .
[56] André M, Baldoquín MG, Acuña ST. Formal model for assigning human re-

sources to teams in software projects. Inf Softw Technol 2011;53(3):259–75.

doi: 10.1016/j.insof.2010.11.011 .
[57] Acuña ST, Gómez M, Juristo N. How do personality, team processes and task

characteristics relate to job satisfaction and software quality? Inf Softw Tech-
nol 2009;51(3):627–39. doi: 10.1016/j.infsof.2008.08.006 .

http://dx.doi.org/10.1016/j.eswa.2012.10.058
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0031
http://dx.doi.org/101109/ICSM20074362644
http://www.pmi.org/PMBOK-Guide-and-Standards/PMI-lexicon.aspx
http://dx.doi.org/10.1016/j.infsof.2012.12.004
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30076-X/sbref0040
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1162/106365600568167
http://dx.doi.org/10.1007/978-3-540-70928-2_13
http://www.bls.gov/soc/classification.htm
http://www.onetonline.org
http://dx.doi.org/101109/ISDA20116121807
http://dx.doi.org/10.1016/j.asoc.2013.10.015
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1007/978-3-642-55035-5_4
http://dx.doi.org/10.1016/j.chb.2014.12.008
http://dx.doi.org/10.1016/j.insof.2010.11.011
http://dx.doi.org/10.1016/j.infsof.2008.08.006

	Investigating the impact of developer productivity, task interdependence type and communication overhead in a multi-objective optimization approach for software project planning
	1 Introduction
	2 Related work
	3 Description of adapted RCPSP
	4 Multi-objective optimization approach
	4.1 Representation and encoding
	4.2 Population initialization
	4.3 Solution fitness and feasibility
	4.3.1 Project duration objective function
	4.3.2 Project cost objective
	4.3.3 Assignment and dependency constraints
	4.3.4 Optimization function

	4.5 Genetic operators

	5 Experimental process
	5.1 RQ1: Performance of multi-objective genetic algorithms
	5.2 RQ2: Scalability of multi-objective genetic algorithms
	5.3 Execution

	6 Results and discussion
	6.1 Quality indicators
	6.2 RQ1: Comparison of performance
	6.3 RQ2: Comparison of scalability

	7 Real-World observations and considerations
	8 Threats to validity
	8.1 Construct validity
	8.2 Internal validity
	8.3 External validity

	9 Conclusions
	 References

