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Process
Sotirios P. Chatzis and Dimitrios Kosmopoulos

Abstract—In this paper, we propose a Gaussian process
model for analysis of nonlinear time series. Formulation of our
model is based on the consideration that the observed data
are functions of latent variables, with the associated mapping
between observations and latent representations modeled through
Gaussian process priors. In addition, to capture the temporal
dynamics in the modeled data, we assume that subsequent latent
representations depend on each other on the basis of a hidden
Markov prior imposed over them. Derivation of our model
is performed by marginalizing out the model parameters in
closed form by using Gaussian process priors for observation
mappings, and appropriate stick-breaking priors for the latent
variable (Markovian) dynamics. This way, we eventually obtain
a nonparametric Bayesian model for dynamical systems that
accounts for uncertainty in the modeled data. We provide efficient
inference algorithms for our model on the basis of a truncated
variational Bayesian approximation. We demonstrate the efficacy
of our approach considering a number of applications dealing
with real-world data, and compare it to related state-of-the-art
approaches.

Index Terms—Gaussian process, stick-breaking process,
Markovian dynamics, latent manifold, variational Bayes.

I. INTRODUCTION

There is a wide variety of generative models used to perform

analysis of nonlinear time series [1]. Approaches based on

hidden Markov models (HMMs) and linear dynamical systems

(LDS) are quite ubiquitous in the current literature due to their

simplicity, efficiency, and generally satisfactory performance

in many applications. More expressive models, such as switch-

ing linear dynamical systems (SLDS) and nonlinear dynamical

systems (NLDS), have also been proposed; however, these

approaches are faced with difficulties in terms of their learning

and inference algorithms, due to the entailed large number of

parameters that must be estimated, and the hence needed large

amounts of training data [1].

Recently, a nonparametric Bayesian approach designed to

resolve these issues of NLDS, namely the Gaussian process

dynamical model (GPDM), was introduced in [2]. This ap-

proach is fully defined by a set of low-dimensional represen-

tations of the observed data, with both the observation and

dynamical processes learned by means of Gaussian process

(GP) regression [3]. This GP-based formulation of the model

gives rise to a nonparametric Bayesian nature, which removes

the need to select a large number of parameters associated

with function approximators, while retaining the power of

nonlinear dynamics and observation. GPDM is essentially an

extension of the GP latent variable model (GPLVM) of [4],

which models the joint distribution of the observed data and

their representation in a low-dimensional latent space through

a GP prior. GPDM extends GPLVM by augmenting it with a

model of temporal dynamics captured through imposition of

a dedicated GP prior. This way, GPDM allows for not only

obtaining predictions about future data, but also regularizing

the latent space to allow for more effective modeling of

temporal dynamics.

Despite the merits of GPDM, a significant drawback of this

model consists in the need of its inference algorithm to obtain

maximum a posteriori (MAP) estimates of its parameters

through type-II maximum-likelihood [2] (performed by means

of scaled conjugate gradient descent, SCG [5]). This formula-

tion poses a significant bottleneck to GPDM, due to both the

entailed high computational costs, as well as the possibility

of obtaining bad estimates due to the algorithm getting stuck

to poor local maxima in cases of limited training datasets. In

addition, to increase computational efficiency, GPDM imposes

an oversimplistic spherical Gaussian prior over its model

of temporal dynamics, which probably undermines its data

modeling capacity. Finally, the use of GP priors to describe the

temporal dynamics between the latent variables of the model

leads to significant computational overheads, as it gives rise

to calculations that entail inverting very large gram matrices

[3].

To resolve these issues, in this paper we propose a flexible

generative model for modeling sequential data by means of

nonparametric component densities. Formulation of our pro-

posed model is based on the assumption that, when modeling

sequential data, each observation in a given sequence is related

to a vector in a latent space, and is generated through a latent

nonlinear function that maps the latent space to the space of

observations. We use a GP prior to infer this unknown mapping

function from the data in a flexible manner.

In addition, the latent vectors that generate the observed

sequential data are assumed to possess strong temporal inter-

dependencies; to capture these dependencies, we assume that

these latent variables are generated from a hidden Markov

model in the manifold of latent variables. Specifically, we

assume a latent space HMM with infinite hidden states, and

use flexible stick-breaking priors [6], [7] to infer its hidden

state dynamics; this formulation allows us to automatically

determine the required number of states in this latent manifold

HMM in a data-driven fashion. We dub our approach the latent

manifold hidden Markov Gaussian process (LM2GP) model.

Inference for our model is performed by means of an efficient

truncated variational Bayesian algorithm [8], [9]. We evaluate

the efficacy of our approach in several applications, dealing

with sequential data clustering, classification, and generation.

A high-level illustration of the conceptual configuration of our
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Figure 1. Intuitive illustration of the generative construction of our model.

model is provided in Fig. 1.

The remainder of this paper is organized as follows: In

Section II, we provide a brief presentation of the theoretical

background of the proposed method. Initially, we present the

Dirichlet process and its function as a prior in nonparametric

Bayesian models; further, we provide a brief summary of

the GPDM model. In Section III, we introduce the pro-

posed LM2GP model, and derive efficient model inference

algorithms based on the variational Bayesian framework. In

Section IV, we conduct the experimental evaluation of our

proposed model, considering a number of applications dealing

with several real-world datasets, and we compare its perfor-

mance to state-of-the-art related approaches. Finally, in the last

section of this paper, we conclude and summarize our work.

II. PRELIMINARIES

A. The Dirichlet process

Dirichlet process models were first introduced by Ferguson

[7]. A DP is characterized by a base distribution G0 and

a positive scalar α, usually referred to as the innovation

parameter, and is denoted as DP(α,G0). Essentially, a DP

is a distribution placed over a distribution. Let us suppose

we randomly draw a sample distribution G from a DP, and,

subsequently, we independently draw M random variables

{Θ∗

m}Mm=1 from G:

G|α,G0 ∼ DP(α,G0) (1)

Θ∗

m|G ∼ G, m = 1, . . .M (2)

Integrating out G, the joint distribution of the variables

{Θ∗

m}Mm=1 can be shown to exhibit a clustering effect. Specif-

ically, given the first M − 1 samples of G, {Θ∗

m}M−1
m=1 , it can

be shown that a new sample Θ∗

M is either (a) drawn from

the base distribution G0 with probability α
α+M−1 , or (b) is

selected from the existing draws, according to a multinomial

allocation, with probabilities proportional to the number of the

previous draws with the same allocation [10]. Let {Θc}Cc=1 be

the set of distinct values taken by the variables {Θ∗

m}M−1
m=1 .

Denoting as νM−1
c the number of values in {Θ∗

m}M−1
m=1 that

equal to Θc, the distribution of Θ∗

M given {Θ∗

m}M−1
m=1 can be

shown to be of the form [10]

p(Θ∗

M |{Θ∗

m}M−1
m=1 , α,G0) =

α

α+M − 1
G0

+
C
∑

c=1

νM−1
c

α+M − 1
δΘc

(3)

where δΘc
denotes the distribution concentrated at a single

point Θc. These results illustrate two key properties of the DP

scheme. First, the innovation parameter α plays a key-role in

determining the number of distinct parameter values. A larger

α induces a higher tendency of drawing new parameters from

the base distribution G0; indeed, as α → ∞ we get G→ G0.

Conversely, as α→ 0 all {Θ∗

m}Mm=1 tend to cluster to a single

random variable. Second, the more often a parameter is shared,

the more likely it will be shared in the future.

A characterization of the (unconditional) distribution of

the random variable G drawn from a DP, DP(α,G0), is

provided by the stick-breaking construction of Sethuraman

[6]. Consider two infinite collections of independent random

variables v = [vc]
∞

c=1, {Θc}∞c=1, where the vc are drawn from

a Beta distribution, and the Θc are independently drawn from

the base distribution G0. The stick-breaking representation of

G is then given by

G =

∞
∑

c=1

̟c(v)δΘc
(4)

where

p(vc) = Beta(1, α) (5)

̟c(v) = vc

c−1
∏

j=1

(1− vj) ∈ [0, 1] (6)

and
∞
∑

c=1

̟c(v) = 1 (7)

Under the stick-breaking representation of the DP, the atoms

Θc, drawn independently from the base distribution G0, can

be seen as the parameters of the component distributions

of a mixture model comprising an unbounded number of

component densities, with mixing proportions ̟c(v).

B. The Gaussian process dynamical model

1) Gaussian process models: Let us begin with a brief

description of GP regression. Consider an observation space

X ; a Gaussian process f(x), x ∈ X , is defined as a collection

of random variables, any finite number of which have a joint

Gaussian distribution [3]. We typically use the notation

f(x) ∼ GP(m(x), k(x,x)) (8)

where m(x) is the mean function of the process, and k(x,x′)
is the covariance function of the process. Usually, for sim-

plicity, and without any loss of generality, the mean of the

process is taken to be zero, m(x) = 0, although this is not

necessary. Concerning selection of the covariance function, a

large variety of kernel functions k(x,x′) might be employed,

depending on the application considered [3]. Eventually, the
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real process f(x) drawn from a GP with mean zero and kernel

function k(x,x′) follows a Gaussian distribution with

p(f |x) = N (f |0, k(x,x)). (9)

Let us suppose a set of independent and identically dis-

tributed (i.i.d.) samples D = {(xi, yi)|i = 1, ..., N}, with the

d-dimensional variables xi being the observations related to a

modeled phenomenon, and the scalars yi being the associated

target values. The goal of a regression model is, given a new

observation x∗, to predict the corresponding target value y∗,

based on the information contained in the training set D. The

basic notion behind Gaussian process regression consists in

the assumption that the observable (training) target values y

in a considered regression problem can be expressed as the

superposition of a Gaussian process over the input space X ,

f(x), and an independent white Gaussian noise

y = f(x) + ǫ (10)

where f(x) is given by (8), and

p(ǫ) = N (ǫ|0, σ2) (11)

Under this regard, the joint normality of the training target

values Y = [yi]
N
i=1 and some unknown target value y∗,

approximated by the value f∗ of the postulated Gaussian

process evaluated at the observation point x∗, is a Gaussian

of the form [3]

N
([

Y

f∗

]

∣

∣0,

[

K(X,X) + σ2IN k(x∗)
k(x∗)

T k(x∗,x∗)

])

(12)

where

k(x∗) , [k(x1,x∗), . . . , k(xN ,x∗)]
T (13)

X = [xi]
N
i=1, IN is the N ×N identity matrix, and K is the

matrix of the covariances between the N training data points

(gram matrix), i.e.

K(X,X) ,











k(x1,x1) k(x1,x2) . . . k(x1,xN )
k(x2,x1) k(x2,x2) . . . k(x2,xN )

...
...

...

k(xN ,x1) k(xN ,x2) . . . k(xN ,xN )











(14)

From (12), and conditioning on the available training samples,

we can derive the expression of the model predictive distribu-

tion, yielding

p(f∗|x∗,D) = N (f∗|µ∗, σ
2
∗
) (15)

µ∗ = k(x∗)
T (K(X,X) + σ2IN )−1Y (16)

σ2
∗
= σ2−k(x∗)

T
(

K(X,X) + σ2IN

)−1
k(x∗)+k(x∗,x∗)

(17)

2) Gaussian process latent variable models: Building upon

the GP model, the Gaussian process latent variable model

(GPLVM) is essentially a GP the input variables x of which

are considered latent variables rather than observed ones.

Specifically, GPLVM considers that the y ∈ R
D are observed

multidimensional variables, while the latent vectors x are vari-

ables lying in some lower-dimensional manifold that generate

the observed variables y through an unknown latent mapping

f , modeled through a GP. This way, we have

p(y|x) =
D
∏

d=1

N (yd|0, kd(x,x)) (18)

which, considering a set of observations Y = [yn]
N
n=1, obtains

p(Y |X) =

D
∏

d=1

N (Yd|0,Kd(X,X)) (19)

where kd(·, ·) is the kernel of the model for the dth observed

dimension, X = [xn]
N
n=1, Yd = [ynd]

N
n=1, and Kd(X,X)

is the gram matrix (with inputs X) corresponding to the dth

dimension of the modeled data. GPLVM learns the values of

the latent variables x corresponding to the observed data y

through maximization of the model marginal likelihood, i.e. in

a MAP fashion. As shown in [4], GPLVM can be viewed as a

GP-based, nonparametric Bayesian extension of probabilistic

principal component analysis (PPCA) [11], [12], a popular

method for latent manifold modeling of high-dimensional data.

3) Dynamic Gaussian process latent variable models: In-

spired from GPLVM, GPDM performs modeling of sequential

data by considering a GP prior as in GPLVM, and introducing

an additional model of temporal interdependencies between

successive latent vectors x. Specifically, considering a se-

quence of observed data Y = [yn]
N
n=1, where yn = [ynd]

D
d=1,

with corresponding latent manifold projections X = [xn]
N
n=1,

xn ∈ R
Q, GPDM models the dependencies between the latent

and observed data in the form (19), while also considering a

GP-based model of the interdependencies between the latent

vectors xn. In detail, this latter model initially postulates

p(X) = p(x1)

ˆ N
∏

n=2

p(xn|xn−1;A)p(A)dA (20)

which, assuming

p(xn|xn−1;A) = N (xn|Axn−1, σ
2) (21)

and a simplistic isotropic Gaussian prior on the columns of

the parameters matrix A, yields a GP prior of the form

p(X) =
p(x1)

√

(2π)Q(N−1)|Λ(X,X)|Q

× exp

(

−1

2
tr(Λ(X,X)−1X2:NX

T
2:N )

) (22)

where Λ(X,X) is the gram matrix:

Λ(X,X) ,











k(x1,x1) k(x1,x2) . . . k(x1,xN−1)
k(x2,x1) k(x2,x2) . . . k(x2,xN−1)

...
...

...

k(xN−1,x1) k(xN−1,x2) . . . k(xN−1,xN−1)











(23)

Estimation of the set of (dynamically interdependent) latent

variables X of the GPDM is performed by means of type-II

maximum-likelihood, similar to GPLVM.

As we observe, GPDM utilizes a rather simplistic modeling

approach for the dependencies between the latent variables

x, which is based on a linear model of dependencies, as in
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(21), combined with a rather implausible spherical prior over

A. This model formulation is clearly restrictive, and limits

the level of complexity of the temporal structure that GPDM

can capture. In addition, the requirement of MAP estimation

of the latent variables x ∈ R
Q results in high computational

requirements. This is aggravated even more by the form of the

prior (22), which gives rise to computations entailing inverting

the gram matrix Λ(X,X), in addition to computing the inverse

of the matrices Kd(X,X). Our proposed model is designed

to ameliorate these issues, as we shall discuss next.

III. PROPOSED APPROACH

A. Model definition

Let us consider a sequence of observations with strong

temporal interdependencies Y = [yn]
N
n=1. Similar to GPLVM,

we assume a latent lower-dimensional manifold that generates

the observation space, and a smooth, nonlinear mapping from

the latent space to the observations space. To infer this non-

linear mapping, we postulate a GP prior, similar to GPLVM.

In addition though, we also postulate a model capable of

capturing the temporal dynamics in the modeled data. For this

purpose, we prefer to work in the lower-dimensional manifold

of the latent vectors generating our observations. Specifically,

we consider a generative, nonparametric Bayesian model for

these latent coordinates: we assume they are generated from

a hidden Markov model comprising infinite (latent) states. To

make formulation of this latent manifold infinite-state HMM

possible, we impose suitable stick-breaking priors over its

state-transition dynamics, similar to the work of [13].

In particular, formulation of our model commences by

considering a smooth nonlinear (generative) mapping of the

latent vectors xn to the observed ones yn, described by means

of a GP, with the addition of some additive white noise. Given

these assumptions, we yield a likelihood function of the form

p
(

yn|xn

)

=

D
∏

d=1

N (ynd|fd(xn), β
−1) (24)

where β is the white noise precision, and fd(xn) is modeled

by means of a GP prior, such that

p(fd|X) = N (fd|0,Kd(X,X)) (25)

where fd is the vector of the fd(xn) ∀n, i.e., fd ,

[fd(xn)]
N
n=1, and Kd(X,X) is the gram matrix pertaining

to the dth dimension of the observations space, with kernel

hyperparameters set ψd.

Subsequently, we consider that the latent manifold projec-

tions x are generated by an HMM comprising infinite states.

Let us introduce the set of variables Z = {znc}N,∞
n,c=1, with

znc = 1 if xn is considered to be generated from the cth

HMM model state, znc = 0 otherwise. Then, our introduced

generative model for the latent vectors xn comprises the

assumptions [13]

p(xn|znc = 1) = N (xn|µc,R
−1
c ) (26)

p(znj = 1|zn−1,i = 1;v̟
i ) = ̟j(v

̟
i ), n > 1 (27)

Figure 2. Plate diagram representation of the LM2GP model. The arrows
represent conditional dependencies. The plates indicate independent copies
for states i, j.

̟j(v
̟
i ) = v̟ij

j−1
∏

k=1

(1− v̟ik) ∈ [0, 1] (28)

p(z1i = 1|;vπ) = πi(v
π) (29)

πi(v
π) = vπi

i−1
∏

j=1

(1 − vπj ) ∈ [0, 1] (30)

with
∞
∑

j=1

̟j(v
̟
i ) = 1 ∀i (31)

∞
∑

j=1

πj(v
π) = 1 (32)

For the stick-variables {v̟
i }∞i=1, where v̟

i = [v̟ij ]
∞

j=1, and

vπ = [vπi ]
∞

i=1, we impose Beta priors [13] of the form

p(v̟ij ) = Beta(1, α̟
i ) ∀j (33)

p(vπi ) = Beta(1, απ) ∀i (34)

In essence, this parameterization of the imposed Beta priors

gives rise to a Dirichlet process-based prior construction for

the transition dynamics of our model [6].

Finally, due to the effect of the innovation parameters on

the number of effective latent Markov chain states, we also

impose Gamma priors over them:

p(α̟
i ) = G(α̟

i |η̟1 , η̟2 ) (35)

p(απ) = G(απ |ηπ1 , ηπ2 ). (36)

We also impose suitable conjugate priors over the mean and

precision parameters of the (Markov chain-)state-conditional

likelihoods of the latent vectors. Specifically, we choose

Normal-Wishart priors, yielding

p(µc,Rc) = NW(µc,Rc|λc,mc, ωc,Φc) (37)

This completes the definition of our proposed LM2GP model.

A plate diagram of our model is provided in Fig. 2.
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B. Inference algorithm

Inference for nonparametric models can be conducted under

a Bayesian setting, typically by means of variational Bayes

(e.g., [9]), or Markov Chain Monte Carlo techniques (e.g.,

[14]). Here, we prefer a variational Bayesian approach, due

to its considerably better scalability in terms of computational

costs, which becomes of major importance when having to

deal with large data corpora.

Our variational Bayesian inference algorithm for the

LM2GP model comprises derivation of a family of variational

posterior distributions q(.) which approximate the true pos-

terior distribution over the infinite sets Z , {µc,Rc}∞c=1, vπ,

{v̟
i }∞i=1, and {α̟

i }∞i=1, as well the parameters απ , the latent

mapping function values fd = [fd(xn)]
N
n=1, and the latent

mappings X = [xn]
N
n=1. Apparently, Bayesian inference is

not tractable under this setting, since we are dealing with an

infinite number of parameters.

For this reason, we employ a common strategy in the liter-

ature of Bayesian nonparametrics, formulated on the basis of

a truncation of the stick-breaking process [9]. Specifically, we

fix a value C and we let the variational posterior over the v̟ij
and the vπi have the property q(v̟iC = 1) = 1, ∀i = 1, . . . , C,

and q(vπC = 1) = 1. In other words, we set πc(v
π) and

̟c(v
̟
i ) equal to zero for c > C. Note that, under this setting,

the treated LM2GP model involves full stick-breaking priors;

truncation is not imposed on the model itself, but only on the

variational distribution to allow for tractable inference. Hence,

the truncation level C is a variational parameter which can be

freely set, and not part of the prior model specification.

Let W , {X,Z,vπ, απ, {fd}Dd=1, {v̟
c , α

̟
c ,µc,Rc}Cc=1}

be the set of all the parameters of the LM2GP model over

which a prior distribution has been imposed, and Ξ be the

set of the hyperparameters of the model priors and kernel

functions. Variational Bayesian inference introduces an arbi-

trary distribution q(W ) to approximate the actual posterior

p(W |Ξ, Y ) which is computationally intractable, yielding [8]

logp(Y ) = L(q) + KL(q||p) (38)

where

L(q) =
ˆ

dWq(W )log
p(Y,W |Ξ)
q(W )

(39)

and KL(q||p) stands for the Kullback-Leibler (KL) divergence

between the (approximate) variational posterior, q(W ), and

the actual posterior, p(W |Ξ, Y ). Since KL divergence is

nonnegative, L(q) forms a strict lower bound of the log

evidence, and would become exact if q(W ) = p(W |Ξ, Y ).
Hence, by maximizing this lower bound L(q) (variational free

energy) so that it becomes as tight as possible, not only do

we minimize the KL-divergence between the true and the

variational posterior, but we also implicitly integrate out the

unknowns W [8].

To facilitate variational Bayesian inference for our model,

we assume that the posterior factorizes similar to the prior of

our model (mean-field approximation) [15], [16]. This way, the

variational free energy L(q) yields (ignoring constant terms):

L(q) =
D
∑

d=1

ˆ ˆ

dXdfdq(X)q(fd)

[

log
p(fd|X)

q(fd)

+

N
∑

n=1

logp(ynd|fd(xn), β
−1)

]

+

C
∑

c=1

ˆ ˆ

dµcdRcq(µc,Rc)

× log
p(µc,Rc|λc,mc, ωc,Φc)

q(µc,Rc)

+

ˆ

dαπq(απ)

{

log
p(απ|ηπ1 , ηπ2 )

q(απ)

+

C−1
∑

c=1

ˆ

dvπc q(v
π
c )log

p(vπc |απ)

q(vπc )

}

+

C−1
∑

c=1

ˆ

dα̟
c q(α

̟
c )

{

log
p(α̟

c |η̟1 , η̟2 )

q(α̟
c )

+

C−1
∑

c′=1

ˆ

dv̟cc′q(v
̟
cc′)log

p(v̟cc′ |α̟
c )

q(v̟cc′)

}

+

C
∑

i=1

C
∑

j=1

N
∑

n=2

q(znj = 1|zn−1,i = 1)

×
ˆ

dv̟
i q(v

̟
i )log

p(znj = 1|zn−1,i = 1;v̟
i )

q(znj = 1|zn−1,i = 1)

+

C
∑

c=1

q(z1c = 1)

ˆ

dvπq(vπ)log
p(z1c = 1|vπ)

q(z1c = 1)

+

C
∑

c=1

N
∑

n=1

q(znc = 1)

ˆ ˆ ˆ

dxndµcdRc

× q(xn)q(µc,Rc)log
p(xn|µc,Rc)

q(xn)

(40)

Derivation of the variational posterior distribution q(W )
involves maximization of the variational free energy L(q)
over each one of the factors of q(W ) in turn, holding the

others fixed, in an iterative manner [15]. On each iteration,

apart from variational posterior updating, we also update the

estimates of the model hyperparameters in Ξ, by maximization

of the variational free energy L(q) over each one of them. By

construction, this iterative, consecutive updating of the model

is guaranteed to monotonically and maximally increase the

free energy L(q) [17].

Variational posteriors. Let us denote as 〈.〉q(·) the posterior

expectation of a quantity, that is the quantity’s mean value con-

sidering the entailed random variables follow the variational

posteriors q(·). In the following, all these posterior means can

be computed analytically, except for the expectations w.r.t. the

posterior q(xn) over the latent manifold representations of

our modeled data. We shall elaborate on computation of these

latter quantities later in this section.

From (40), we obtain the following variational (approxi-

mate) posteriors over the parameters of our model:
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1. For the q(v̟
i ), we have

q(v̟ij ) = Beta(β̟̃
ij , β̂

̟
ij ) (41)

β̟̃
ij = 1 +

N
∑

n=2

q(znj = 1|zn−1,i = 1) (42)

β̟̂
ij = 〈α̟

i 〉q(α̟

i
) +

C
∑

̺=j+1

N
∑

n=2

q(znρ = 1|zn−1,i = 1) (43)

2. Similar, for the q(vπ) we have

q(vπi ) = Beta(β̃π
i , β̂

π
i ) (44)

β̃π
i = 1 + q(z1i = 1) (45)

β̂π
i = 〈απ〉q(απ) +

C
∑

̺=i+1

q(z1ρ = 1) (46)

3. For the q(α̟
i ) we have

q(α̟
i ) = G(α̟

i |ǫ̟̃i , ǫ̟̂i ) (47)

where

ǫ̟̃i = η̟1 + C − 1 (48)

ǫ̟̂i = η̟2 −
C−1
∑

j=1

[

ψ(β̟̂
ij )− ψ(β̟̃

ij + β̟̂
ij )

]

(49)

4. For the q(απ) we have

q(απ) = G(απ |ε̃π, ε̂π) (50)

where

ε̃π = ηπ1 + C − 1 (51)

ε̂π = ηπ2 −
C−1
∑

i=1

[

ψ(β̂π
i )− ψ(β̃π

i + β̂π
i )
]

(52)

5. The posteriors q(µc,Rc) are approximated in the following

form:

q(µc,Rc) = NW(µc,Rc|λ̃c, m̃c, ω̃c, Φ̃c) (53)

where we introduce the notation

x̄c ,

∑N
n=1 q(znc = 1) 〈xn〉q(xn)

∑N
n=1 q(znc = 1)

(54)

∆c ,

N
∑

n=1

q(znc = 1)
(

〈xn〉q(xn)
− x̄c

)(

〈xn〉q(xn)
− x̄c

)T

(55)

and, we have

ω̃c = ωc +

N
∑

n=1

q(znc = 1) (56)

Φ̃c =
λc

∑N
n=1 q(znc = 1)

λc +
∑N

n=1 q(znc = 1)
(mc − x̄c) (mc − x̄c)

T

+Φc +∆c

(57)

λ̃c = λc +

N
∑

n=1

q(znc = 1) (58)

m̃c =
λcmc + x̄c

∑N
n=1 q(znc = 1)

λc +
∑N

n=1 q(znc = 1)
(59)

In the above expressions, 〈xn〉q(xn)
is the (posterior) expec-

tation of the latent variable xn given its posterior q(xn).
6. Regarding the posteriors over the latent functions fd, we

have

q(fd) = N (fd|µ̂d,Σd) (60)

where

Σd =
(

〈

Kd(X,X)−1
〉

q(X)
+ βI

)

−1

(61)

µ̂d = βΣdIYd (62)

Yd , [ynd]
N
n=1, and

〈

Kd(X,X)−1
〉

q(X)
is the posterior mean

of the inverse gram matrix Kd(X,X)−1 given the variational

posteriors q(xn) ∀n.

7. Similar, the posteriors over the indicator variables Z yield

q(Z) ∝ π∗

δ1

N−1
∏

n=1

̟∗

δnδn+1

N
∏

n=1

p∗(xn|µδn
,Rδn) (63)

where

π∗

c , exp
[

〈logπc(vπ)〉q(vπ)

]

(64)

̟∗

ij , exp
[〈

log̟j(v
̟
i )q(v̟

i
)

〉]

(65)

p∗(xt|µi,Ri) , exp
[

〈logp(xt|µi,Ri)〉q(µ
i
,Ri),q(xt)

]

(66)

and

δn , arg
c
(znc = 1)

From (63), and comparing this expression to the corresponding

expressions of standard HMMs [18], it is easy to observe that

computation of the probabilities q(znj = 1|zn−1,i = 1), and

q(znc = 1), which constitute the variational posterior q(Z),
can be easily performed by means of the forward-backward

algorithm for simple HMMs trained by means of maximum-

likelihood, exactly as described in [19]; specifically, it suffices

to run forward-backward for a simple HMM model with

its optimized values (“point”-estimates) of the Markov chain

probabilities set equal to the posterior expected values π∗

c , ̟∗

ij

in (64)-(65), and its state-conditional likelihoods set equal to

the expectations p∗(xt|µi,Ri).
8. Finally, regarding the latent variable posteriors q(xn),
optimization over L(q) yields

logq(xn) =

C
∑

c=1

q(znc = 1) 〈logp(xn|znc = 1)〉q(µ
c
,Rc)

+

D
∑

d=1

〈logp(fd|0,Kd(X,X))〉q(f
d
)

(67)

From (67), it becomes apparent that model configuration is

not conjugate when it comes to the latent variables xn.

As a consequence, the model does not yield a closed-form

expression for the posteriors q(xn). A repercussion of this fact

is that the entailed posterior expectations w.r.t. q(xn) cannot

be computed in an analytical fashion, wherever they appear in

the inference algorithm of our model (namely, the quantities
〈

Kd(X,X)−1
〉

q(xn)
and 〈xn〉q(xn)

). To resolve this issue, we
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can either resort to a deterministic approximation of the pos-

teriors q(xn), e.g., by application of Laplace approximation,

or perform sampling by means of MCMC. Our investigations

have shown that Laplace approximation does not perform very

well for our model. For this reason, in this paper we opt for

the latter alternative.

Specifically, for this purpose we draw samples from the

variational posterior (67) using hybrid Monte Carlo (HMC)

[20]. HMC provides an efficient method to draw samples

from the variational posterior distribution q(xn) by performing

a physical simulation of an energy-conserving system to

generate proposal moves. In detail, we add “kinetic energy”

variables, p, for each latent dimension, while the expression

of −logq(xn) is used to specify a potential energy over the

latent variables. Each HMC step involves sampling p and

carrying out a physics-based simulation using “leap-frog”

discretization. The final state of the simulation is accepted

or rejected based on the Metropolis-Hastings algorithm. HMC

sampling of xn requires computation of the gradient of q(xn),
which can be analytically performed in a straightforward

manner.

Hyperparameter Selection. Regarding the values of the

hyperparameters of the model priors, we set mc = 0, λc = 1,

ωc = 10, Φc = 100I. Regarding the hyperparameters of the

kernel functions kd(·, ·), we estimate them by performing max-

imization of the model variational free energy L(q) over each

one of them. Computation of the variational free energy L(q)
and its gradient requires derivation of the entailed posterior

expectations in (40), which can be obtained analytically, except

for the expectations w.r.t. the posteriors q(xn). These latter

quantities can be obtained by means of MCMC, utilizing the

samples of xn, previously drawn by HMC sampling. Given

the fact that none of the sought quantities yields closed-form

estimators, to perform L(q) maximization we resort to the L-

BFGS algorithm [21].

C. Predictive density

Let us now consider the problem of computing the probabil-

ity of a given sequence of observations Y ∗ = [y∗

n]
N∗

n=1 w.r.t. a

trained LM2GP model. This quantity is useful, e.g., in apply-

ing our model to (sequence-level) classification applications.

For this purpose, we need to derive the predictive density of

the model

p(Y ∗|Y ) =

ˆ ˆ

p(Y ∗|X∗;Y,X)p(X∗|X,Y )p(X |Y )dXdX∗

(68)

To begin with, the expression of p(Y ∗|X∗;Y,X) is anal-

ogous to the predictive density expression of standard GP

regression, yielding

p(Y ∗|X∗;Y,X) =

N∗

∏

n=1

D
∏

d=1

N (y∗nd|a∗nd, (σ∗

nd)
2) (69)

a∗nd = kd(x
∗

n)
T
(

Kd(X,X) + β−1
)−1

Yd (70)

(σ∗

nd)
2
= −kd(x

∗

n)
T
(

Kd(X,X) + β−1
)−1

kd(x
∗

n)

+kd(x∗,x∗)
(71)

where

kd(x
∗

n) , [kd(x1,x
∗

n), ..., kd(xN ,x
∗

n)]
T (72)

Now, regarding the computation of the entailed expecta-

tion of p(Y ∗|X∗;Y,X) w.r.t. the distributions p(X |Y ) and

p(X∗|X,Y ), we proceed as follows: First, we substitute

p(X |Y ) with its approximation (variational posterior) q(X) =
∏N

n=1 q(xn). This way, the corresponding expectation can be

approximated by making use of the samples of the latent

variables xn previously drawn through HMC. Finally, to

obtain the expectations w.r.t. the density p(X∗|X,Y ), we

resort to Gibbs sampling from the inferred latent-manifold

infinite-state HMM. This obtains a set of samples of X∗ from

the latent manifold which can be used to approximate the

sought (remaining) expectation w.r.t. p(X∗|X,Y ).

D. Relations to existing approaches

As we have already discussed, our model is related to the

GPDM method of [2]. The main difference between our work

and GPDM is that the latter uses a simplistic linear model

of temporal dynamics combined with a spherical GP prior

over the latent variables. In contrast, our approach employs a

more flexible generative construction, which considers latent

variable emission from a latent stick-breaking hidden Markov

model. In addition, one can also observe that our method es-

sentially reduces to a GPLVM model by setting the truncation

threshold C equal to one, i.e. C = 1.

IV. EXPERIMENTS

Here, we experimentally evaluate our method in three sce-

narios: (i) Unsupervised segmentation (frame-level clustering)

of sequential data; (ii) supervised segmentation (frame-level

classification) of sequential data; and (iii) (whole) sequence

classification.

In the context of our unsupervised sequence segmentation

experiments, we estimate the assignment of the data points

(frames) of each sequence to the discovered latent classes

(model states) using q(Z), and compare the estimated values to

the available groundtruth sequence segmentation. To compute

the optimal assignment of the discovered class labels to the

available groundtruth class labels, we resort to the Munkres

assignment algorithm. This set of experiments makes it thus

possible for us to evaluate the quality of the latent temporal

dynamics discovered by our model.

On the other hand, the considered supervised sequence

segmentation experiments allow for us to additionally evaluate

the quality of the drawn latent manifold representations of

the modeled data. Specifically, in this set of experiments, the

drawn latent manifold representations xn are subsequently fed

to a simple multiclass classifier (specifically, a multiclass linear

support vector machine [22]), which is trained to discover

the correct (frame-level) classes by being presented with the

generated manifold representations xn. We expect that a good

performance of our model under such an experimental setup

would indicate high quality representational capabilities for

both the generated latent manifold representations xn and the

temporal dynamics discovered by our model. Further, in the
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context of this set of experiments, we also explore whether our

model could be used to obtain a deep learning architecture,

by stacking multiple layers of models, each one fed with

the latent state representations generated from the previous

layer (and the first layer fed with the actual observations). We

believe that, by stacking multiple layers of models, we might

be capable of extracting more complex, higher-level temporal

dynamics encoded in the final-layer latent representations xn,

thus allowing for eventually obtaining increased supervised

(frame-level) classification performance.

Finally, in the case of the sequence classification experi-

ments, we train one model for each one of the considered

classes, and evaluate our method by assigning each test

sequence to the class the model of which yields the highest

predictive probability for that sequence.

To obtain some comparative results, in our experiments,

apart from our method, we also evaluate GPLVM [4] and

GPDM models [2], as well as other state-of-the-art approaches

relevant to each scenario. In our experiments, we make use of

the large-scale linear SVM library of [23], and the HMM-SVM

implementation of Thorsten Joachims. In all our experiments,

we use RBF kernels for all the evaluated GP-based models.

Finally, HMC is run for 100 iterations, with 25 leap-frog steps

at each iteration, and with a step-length equal to 0.001
√
N ,

where N is the number of modeled data points.

A. Unsupervised sequence segmentation

1) Workflow recognition: We first consider an unsupervised

sequence segmentation (frame-level clustering) application.

For this purpose, we use a public benchmark dataset in-

volving action recognition of humans, namely the workflow

recognition (WR) database [24]. Specifically, we use the first

two workflows pertaining to car assembly (see [24] for more

details). The frame-level tasks to recognize in an unsupervised

fashion in these workflows are the following:

1) Worker 1 picks up part 1 from rack 1 (upper) and places

it on the welding cell; mean duration is 8-10 sec.

2) Worker 1 and worker 2 pick part 2a from rack 2 and

place it on the welding cell.

3) Worker 1 and worker 2 pick part 2b from rack 3 and

place it on the welding cell.

4) Worker 2 picks up spare parts 3a, 3b from rack 4 and

places them on the welding cell.

5) Worker 2 picks up spare part 4 from rack 1 and places

it on the welding cell.

6) Worker 1 and worker 2 pick up part 5 from rack 5 and

place it on the welding cell.

Feature extraction is performed as follows: To extract

the spatiotemporal variations, we use pixel change

history images to capture the motion history (see,

e.g., [25]), and compute the complex Zernike moments

A00, A11, A20, A22, A31, A33, A40, A42, A44, A51, A53, A55,

A60, A62, A64, A66, for each of which we compute the norm

and the angle. Additionally the center of gravity and the

area of the found blobs are also used. In total, this feature

extraction procedure results in 31-dimensional observation

vectors. Zernike moments are calculated in rectangular

Table I
UNSUPERVISED SEQUENCE SEGMENTATION: Workflow Recognition. ERROR

RATES (%) FOR OPTIMAL LATENT MANIFOLD DIMENSIONALITY.

Model Mean Performance Error Variance

LM2GP 40.5 0.037

GPDM 45.31 0.046

GPLVM 47.39 0.075

SB-HMM 43.17 0.057
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Figure 3. Unsupervised sequence segmentation: Workflow Recognition. Error
rate fluctuation with latent manifold dimensionality.

regions of interest of approximately 15K pixels in each image

to limit the processing and allow real time feature extraction

(performed at a rate of approximately 50-60 fps). In our

experiments, we use a total of 40 sequences representing full

assembly cycles and containing at least one of the considered

behaviors, with each sequence being approximately 1K frames

long. Frame annotation has been performed manually.

In Table I, we illustrate the obtained error rates for optimal

selection of the latent manifold dimensionality of our method,

as well as the GPDM and GPLVM methods. Regarding the

GPDM and GPLVM methods, clustering was performed by

presenting the generated latent subspace representations to a

stick-breaking HMM (SB-HMM) [13]. All these results are

means and variances over 10 repetitions of the experiment.

As a baseline, we also evaluate SB-HMMs presented with the

original (observed) data. As we observe, our approach yields a

clear advantage over the competition; we also observe that all

the other latent manifold models yield inferior performance

compared to the baseline SB-HMM. This result is a clear

indication of the much improved capability of our approach

to capture latent temporal dynamics in the modeled data.

In addition, in Fig. 3 we show how model performance

changes as a function of the postulated latent manifold di-

mensionality, for the LM2GP, GPDM, and GPLVM methods.

We observe that model performance increases with manifold

dimensionality in a consistent fashion. We also observe that

our model benefits the most by an increase in latent manifold

dimensionality. Further, we run the Student’s-t test on all

pairs of performances across the evaluated methods, to assess

the statistical significance of the obtained differences; we

obtain that all performance differences are deemed statistically

significant.
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Figure 4. Workflow Recognition. Average execution time (per sequence) of
inference algorithm.

Finally, in Fig. 4 we show an indicative empirical com-

parison of computational times, for processing one of the

sequences in our dataset (means and error bars over all the

used sequences). As we observe, GPDM requires the longest

time between the compared methods; our method is faster than

GPDM, while imposing a reasonable increase in computational

costs compared to GPLVM. This difference from GPDM was

expected, since our method involves one less Gram matrix

compared to GPDM.

2) Honeybee dataset: Further, we perform a second unsu-

pervised sequence segmentation experiment using the Hon-

eybee dataset [26]; it contains video sequences of honeybees

which communicate the location and distance to a food source

through a dance that takes place within the hive. The dance

can be decomposed into three different movement patterns

that must be recognized by the evaluated algorithms: waggle,

right-turn, and left-turn. During the waggle dance, the bee

moves roughly in a straight line while rapidly shaking its

body from left to right; the duration and orientation of this

phase correspond to the distance and the orientation to the

food source. At the endpoint of a waggle dance, the bee turns

in a clockwise or counter-clockwise direction to form a turning

dance.

Our dataset consists of six video sequences with lengths

1058, 1125, 1054, 757, 609, and 814 frames, respectively. The

bees were visually tracked, and their locations and head angles

were recorded. This resulted in obtaining 4-dimensional frame-

level feature vectors comprising the 2D location of the bee

and the sine and cosine of its head angle. Once the sequence

observations were obtained, the trajectories were preprocessed

as in [27]. Specifically, the trajectory sequences were rotated

so that the waggle dances had head angle measurements

centered about zero radian. The sequences were then translated

to center at (0, 0), and the 2D coordinates were scaled to

the [-1,1] range. Aligning the waggle dances was possible

by looking at the high frequency portions of the head angle

measurements. Following the suggestion of [26], the data

was smoothed using a Gaussian FIR pulse-shaping filter with

0.5dB bandwidth-symbol time.

In our evaluations, we adopt the experimental setup of

Table II
UNSUPERVISED SEQUENCE SEGMENTATION: Honeybee. ERROR RATES (%)

FOR OPTIMAL LATENT MANIFOLD DIMENSIONALITY.

Model Mean Performance Error Variance

LM2GP 41.85 0.017

GPDM 48.26 0.018

GPLVM 47.16 0.026

SB-HMM 42.02 0.022
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Figure 5. Unsupervised sequence segmentation: Honeybee. Error rate fluctu-
ation with latent manifold dimensionality.

the previous experiment. In Fig. 5, we show how model

performance changes as a function of the postulated latent

manifold dimensionality, for the LM2GP, GPDM, and GPLVM

methods. In Table II, we provide the error rates of all the

evaluated models for optimal latent manifold dimensionality

(wherever applicable). These results are means and variances

over 10 repetitions of the experiment. We again observe that

both GPDM and GPLVM are outperformed by the baseline

SB-HMM. Our method works better than all the alternatives.

Finally, we run the Student’s-t test on all pairs of perfor-

mances across the evaluated methods, to assess the statistical

significance of the obtained differences; we obtain that all

performance differences are deemed statistically significant,

except for the differences between the optimal performance

of GPLVM and the optimal performance of GPDM (obtained

for 3 and 4 latent features, respectively).

B. Supervised sequence segmentation

1) Workflow recognition: Here, we use the same dataset as

in Section IV.A.1, but with the goal to perform supervised

sequence segmentation using the obtained latent manifold

representations of the modeled data. For this purpose, we first

use our approach to obtain the latent manifold representations

of the considered datasets. Subsequently, we use half of the

resulting representations (corresponding to all the modeled

classes) for initial training of a (frame-level) multiclass linear

SVM classifier [22], and keep the rest for testing of the

obtained classifier. Apart from our method, we also evaluate

GPDM and GPLVM under the same experimental setup. In

addition, as a baseline, we evaluate the HMM-SVM approach

of [28] (presented with the original data, not the latent

encodings).
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Table III
SUPERVISED SEQUENCE SEGMENTATION: Workflow Recognition. ERROR

RATES (%) FOR OPTIMAL LATENT MANIFOLD DIMENSIONALITY.

Model Mean Performance Error Variance

LM2GP 27.72 0.020

GPDM 32.82 0.022

GPLVM 31.40 0.022

HMM-SVM 41.66 0.014
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Figure 6. Supervised sequence segmentation: Workflow Recognition. Error
rate fluctuation with latent manifold dimensionality.

In Table III, we provide the obtained classification error

rates for the considered models. These results correspond

to optimal latent manifold dimensionality selection for the

LM2GP, GPDM, and GPLVM methods, and constitute means

and variances over 10 repetitions of the experiment. As we

observe, our method outperforms the competition. We also

observe that GPDM and GPLVM yield essentially identical

results; this fact indicates that GPDM doesn’t capture richer

temporal dynamics in our data compared to GPLVM. Another

significant finding from these results is that the state-of-

the-art HMM-SVM approach yields a considerably inferior

performance compared to the evaluated latent variable models.

This result seems to indicate that extracting latent manifold

representations of the modeled data is much more effective for

classification purposes than directly using the observed data

and assuming temporal dynamics in the observations space. In

addition, in Fig. 6 we show how model performance changes

with the number of latent features for the LM2GP, GPDM,

and GPLVM methods. We observe that all methods yield their

optimal performance with 10 latent features.

Further, we turn to our deep learning scenario, examining

how model performance changes if we add a second layer

of models (with the same latent dimensionality), fed with the

latent manifold representations generated by the original mod-

els. We present the output (latent manifold representations) of

the second-layer models as input to a multiclass linear SVM

classifier, and we evaluate the classification performance of

the so-obtained classifier in the considered tasks.

In Fig. 7, we illustrate the classification error rates of the

resulting models as a function of latent manifold dimension-

ality. As we observe, 2-layer deep learning architectures yield

a significant improvement over the corresponding single-layer

architectures when the latent manifold dimensionality is low;
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Figure 7. Supervised sequence segmentation: Workflow Recognition. Error
rate fluctuation with latent manifold dimensionality for 2-layer deep learning
architectures.

however, performance for high latent manifold dimensionality

turns out to be similar in the cases of GPDM and our

model, and substantially worse in the case of GPLVM. To

our perception, this result indicates that our model encodes

richer and more consistent temporal dynamics information

in the obtained latent manifold representations, that can be

combined in a hierarchical manner to extract even more

complex temporal dynamics.

Finally, the Student’s-t test on all pairs of performances

across the evaluated methods obtains here some very inter-

esting results:

(i) Our method yields statistically significant differences

from GPDM and GPLVM for latent manifold dimensionality

between 10 and 20. However, for more or less latent dimen-

sions the obtained differences are not statistically significant.

(ii) GPDM and GPLVM are comparable, with no statisti-

cally significant differences, whatsoever.

(iii) Models with two layers have statistically significant

performance differences w.r.t. similar one-layer models in

cases of low latent manifold dimensionality. However, these

differences quickly become insignificant as the number of

latent dimensions increases.

2) Honeybee dataset: Further, we perform additional

frame-level classification experiments using the Honeybee

dataset described in Section IV.A.2. In our evaluations, we

adopt the experimental setup of the previous experiment.

First, we consider a shallow modeling scenario. In Table

IV, we provide the obtained classification error rates for the

considered models. These results correspond to optimal latent

manifold dimensionality selection for the LM2GP, GPDM,

and GPLVM methods, and are means and variances over 10

repetitions of the experiment.

As we observe, our method outperforms the competition.

We also observe that GPDM works better than GPLVM.

Another significant finding from these results is that the state-

of-the-art HMM-SVM approach yields again inferior perfor-

mance compared to the evaluated latent variable models. This

result corroborates our intuition that extracting latent manifold

representations of the modeled data is much more effective for

classification purposes than directly using the observed data

and assuming temporal dynamics in the observations space. In
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Table IV
SUPERVISED SEQUENCE SEGMENTATION: Honeybee. ERROR RATES (%)

FOR OPTIMAL LATENT MANIFOLD DIMENSIONALITY.

Model Mean Performance Error Variance

LM2GP 46.13 0.037

GPDM 47.17 0.041

GPLVM 47.69 0.043

HMM-SVM 51.07 0.021
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Figure 8. Supervised sequence segmentation: Honeybee. Error rate fluctuation
with latent manifold dimensionality.

addition, in Fig. 8 we show how model performance changes

with the number of latent features for the LM2GP, GPDM,

and GPLVM methods. We observe a consistent performance

improvement with latent manifold dimensionality. This is not

unexpected, since we are dealing with models trained on low-

dimensional data using some thousands of training points.

Further, we turn to our deep learning scenario, examining

how model performance changes if we add a second layer

of models (with the same latent dimensionality), fed with the

latent manifold representations generated by the original mod-

els. In Fig. 9, we illustrate the classification error rates of the

resulting models as a function of latent manifold dimension-

ality. As we observe, 2-layer deep learning architectures yield

improved performance for low latent manifold dimensionality

(2-dimensional latent space); however, any performance gains

quickly disappear as latent dimensionality increases, with

GPLVM performance eventually becoming inferior to the

shallow modeling scenario, similar to the previous experiment.
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Figure 9. Supervised sequence segmentation: Honeybee. Error rate fluctuation
with latent manifold dimensionality for 2-layer deep learning architectures.

Finally, the Student’s-t test in this scenario finds that all

pairs of differences are statistically significant, except for

the case of 1-layer vs 2-layer model comparison, where the

assumption of statistical significance is rejected for models

with 4 latent dimensions.

C. Sequence-level classification

1) Learning music-to-dance mappings: Finally, we evalu-

ate our method in sequence-level classification (classification

of whole sequences). Initially, we consider the problem of

learning music-to-dance mappings. In this experiment, the

observed sequences presented to our model constitute the

chroma features extracted from a collection of music clips.

Chroma analysis [29] is an interesting and powerful repre-

sentation for music audio in which the entire spectrum is

projected onto 12 bins representing the 12 distinct semitones

(or chroma) of the musical octave. Since, in music, notes

exactly one octave apart are perceived as particularly similar,

knowing the distribution of chroma even without the absolute

frequency (i.e. the original octave) can give useful musical

information about the audio, and may even reveal perceived

musical similarity that is not apparent in the original spectra

[30].

In our experiments, we use a dataset of 600 music clips;

they are split into sets of 100 clips pertaining to each one of the

dance classes: Waltz, Tango, Foxtrot, Cha Cha, Quickstep, and

Samba1. We preprocess these clips as described above to ob-

tain chroma features; this way, we eventually obtain sequences

of 12-dimensional observations, each one 35K-184K frames

long. The clips are further segmented into approximately 8K

frames long subsequences to form our dataset. We use half

our data for model training, and the rest for testing. We train

one model for each one of the 6 classes we want to recognize.

Classification of our test sequences is conducted by computing

the sequence predictive densities with respect to the model of

each class, and assigning each sequence to the class the model

of which yields the highest predictive density. Apart from our

method, we also evaluate SB-HMMs [13], GPLVMs [4], and

GPDMs [2] under the same experimental setup.

The obtained error rates for optimal latent manifold dimen-

sionality (wherever applicable) are depicted in Table V. These

results are means and variances over 10 repetitions of the

experiment. As we observe, our approach works much better

than the competition. We also observe that, in this experiment,

GPDM does actually work better than GPLVM. In Fig. 10,

we show how average model performance changes with latent

manifold dimensionality. It becomes apparent from this graph

that the modeled data contain a great deal of redundancy, since

all models yield a performance deterioration for high latent

space dimensionality. Finally, the Student’s-t test finds that all

performance differences are statistically significant.

2) Bimanual gesture recognition: Further, we perform eval-

uations considering the problem of bimanual gesture recog-

nition. For this purpose, we experiment with the American

1Music clips were downloaded from:
http://www.ballroomdancers.com/Music/Default.asp?Tab=2; we converted
them to WAV format for our experiments.
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Table V
SEQUENCE-LEVEL CLASSIFICATION: Learning music-to-dance mappings.
ERROR RATES (%) FOR OPTIMAL LATENT MANIFOLD DIMENSIONALITY.

Model SB-HMM GPLVM GPDM LM2GP

Error Rate 35.41 32.73 31.48 29.6

Error Variance 0.091 0.108 0.103 0.095
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Figure 10. Sequence-level classification: Learning music-to-dance mappings.
Error rate fluctuation with latent manifold dimensionality.

Sign Language gestures for the words: against, aim, balloon,

bandit, cake, chair, computer, concentrate, cross, deaf, explore,

hunt, knife, relay, reverse, and role. The used dataset was

obtained from four different persons executing each one of

these gestures and comprises 40 videos per gesture. 30 of these

videos are used for training and the rest for model evaluation.

From this dataset, we extracted several features representing

the relative position of the hands and the face in the images,

as well as the shape of the respective skin regions, by means

of the complex Zernike moments [31], as described in [18].

This way, each used video comprises 1K-4K frames of 12-

dimensional feature vectors used in our experiments.

For each one of these 16 gestures, we fitted one model to

recognize it. The obtained error rates (means and variances

over 10 experiment repetitions) for optimal latent manifold

dimensionality (wherever applicable) are depicted in Table

VI. As we observe, our approach works much better than the

competition. Further, in Fig. 11 we show how average model

performance changes with latent manifold dimensionality. We

observe that all models yield a performance increase for

moderate latent space dimensionality. Finally, the Student’s-

t test finds that all performance differences are statistically

significant.

Table VI
SEQUENCE-LEVEL CLASSIFICATION: Bimanual gesture recognition. ERROR

RATES (%) FOR OPTIMAL LATENT MANIFOLD DIMENSIONALITY.

Model SB-HMM GPLVM GPDM LM2GP

Error Rate 11.44 13.81 6.76 4.97

Error Variance 0.38 0.42 0.46 0.41
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Figure 11. Sequence-level classification: Bimanual gesture recognition. Error
rate fluctuation with latent manifold dimensionality.

V. CONCLUSIONS

In this paper, we proposed a method for sequential data

modeling that leverages the strengths of Gaussian processes,

allowing for more flexibly capturing temporal dynamics com-

pared to existing nonparametric Bayesian approaches. Our

method considers a latent manifold representation of the

modeled data, and chooses to postulate a model of temporal

dependencies on this latent manifold. Temporal dependencies

in our model are captured through consideration of infinite-

state Markovian dynamics, and imposition of stick-breaking

priors over the entailed Markov chain probabilities. Inference

for our model was performed by means of an efficient varia-

tional Bayesian algorithm.

As we showed through experimental evaluations, our ap-

proach is suitable for unsupervised sequence segmentation

(frame-level clustering), supervised sequence segmentation

(frame-level classification), and whole sequence classification

(sequence-level operation). We evaluated our approach in all

these scenarios using real-world datasets, and observed that

our method yields very competitive results, outperforming

popular, recently proposed related approaches, e.g. GPDM and

GPLVM.

Finally, we examined whether our method can be also

employed to obtain a deep learning architecture, by stacking

multiple (layers of) LM2GP models, each one fed with the

latent manifold representations generated from the previous

layer (and the first one fed with the observable data); specif-

ically, we experimented with two-layer architectures. As we

observed, our method seems to yield much more significant

gains in such a scenario than GPDM- or GPLVM-based

models, especially for low-dimensional manifold assumptions.

Our future research endeavors in this line of research mainly

focus on addressing two open questions: The first one concerns

the possibility of sharing the precision matrices between

“close” hidden states. A question that must be answered is

what proximity criterion we could use for this purpose in the

context of our model. Would, e.g., comparing the values of

the latent vectors xn generated from different states provide

a valid proximity criterion? In such a case, what type of

proximity measure would be more effective?
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The second open question we want to investigate is the

possibility of obtaining stacked denoising autoencoders [32]

for sequential data modeling using our LM2GP model as

the main building block. Stacked denoising autoencoders are

deep learning architectures that apart from extracting the most

informative latent subspace representations of observed data

are also capable of denoising the observed data, which are

considered contaminated with noise at each phase of the model

training algorithm. GPLVM models have already been used

as building blocks for obtaining stacked denoising autoen-

coder architectures with great success [33]. However, existing

formulations are not designed for capturing and exploiting

temporal dependencies in the modeled data. In this paper, we

investigated the utility of LM2GP as the main building block

for obtaining simple deep learning architectures, and obtained

some promising results. How would our model perform in the

context of a stacked denoising autoencoder framework? This

is a question that remains to be addressed in our future work.

We shall publish source codes pertaining to our method at:

http://www.cut.ac.cy/eecei/staff/sotirios.chatzis/?languageId=2.

APPENDIX

In this Appendix, we provide (for completeness sake) the

expressions of the derivatives of the variational free energy

L(q) over the kernel hyperparameters, required for hyperpa-

rameter optimization by means of L-BFGS, as well as the

expressions of the derivatives of q(xn) w.r.t. the latent vectors

xn, required for HMC sampling from q(xn).
Regarding the derivatives of L(q) w.r.t. the kernel hyperpa-

rameters, say ϕd, d = 1, . . . , D, we have

∂L(q)
∂ϕd

=− 1

2

(

µ̂dµ̂
T
d +Σd

)

〈

∂Kd(X,X)−1

∂ϕd

〉

q(X)

+
1

2
Kd(X,X)

〈

∂Kd(X,X)−1

∂ϕd

〉

q(X)

(73)

Similar, the derivatives of q(xn) w.r.t. the latent vectors xn

yield

∂logq(xn)

∂xn

=
∑

c

q(znc = 1)
[

ω̃cΦ̃cm̃c − xT
n ω̃cΦ̃c

]

− 1

2

∑

d

(

µ̂dµ̂
T
d +Σd

) ∂Kd(X,X)−1

∂xn

+
1

2

∑

d

Kd(X,X)
∂Kd(X,X)−1

∂xn

(74)
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