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Abstract: The overall objective of this study was to use field spectro-radiometers for finding 

possible spectral regions in which chlorophyll-a (Chl-a) and particulate organic carbon 

(POC) could be identified so as to assist the assessment and monitoring of water quality 

using satellite remote sensing technology. This paper presents the methodology adopted in 

this study which is based on the application of linear regression analysis between the mean 

reflectance values (measured with the GER1500 field spectro-radiometer) across the 

spectrum and the concentrations of chlorophyll-a (µg/L) and POC (µg/L) acquired 

simultaneously on the same day and time in the Lower Thames Valley in West London 

(U.K.) from old campaigns. Each regression model (512 in total) corresponded to a measured 

wavelength of the GER1500 field spectro-radiometer. The achieved correlations presented as 

r2 against wavelength, indicate the regions with high correlation values for both water quality 

variables. Based on the results from this study and by matching the spectral bands of the field 

spectro-radiometer with those of the Landsat TM satellite sensor (or any other sensor), it has 

been found that suitable spectral regions for monitoring water quality in water treatment 

reservoirs are the following: for chlorophyll-a, the spectral region of 0.45–0.52 μm (TM 

band 1), and for POC, the region 0.52–0.60 μm (TM bands 1 and 2). Then 12 atmospheric 

corrected Landsat TM/ETM+ band 1 images acquired from 2001 to 2010 were used for 

validation purposes to retrieve the Chl-a concentrations. 
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1. Introduction  

Field spectroscopy has previously been applied to obtain radiance, irradiance and reflectance values 

of freshwater, sea-water and pure water [1-12]. Spectrometers or spectro-radiometers are widely used 

to collect spectral data [13]. Dekker [14] found that the reflectance spectrum of inland waters is 

centered on the 500 nm–700 nm spectral region [15]. This, therefore, suggests that information about 

the quality of inland waters can be best obtained in the green to near-infrared (NIR) range. 

Most of the published works, in which several satellite image data such as Landsat, SPOT, MODIS 

etc. have been reportedly used for monitoring inland water quality studies, use sampling measurements 

in combination with the digital imagery [16-18] Statistical techniques have been used to investigate the 

correlation between spectral wave bands or waveband combinations and the desired water quality 

parameters [6,8,9,18]. Hence, predictive equations for water quality parameters have been established 

after these correlations have been determined. It has been shown by several other researchers, who 

studied the actual relationship between water properties (i.e., water quality) and satellite data for 

several types of water bodies, that satellite remote sensing techniques show more important advantages 

than traditional sampling [15,18-23]. Indeed, He et al. [18] reported that with the development of 

remote sensing techniques, water quality monitoring based on such remote sensing methods has 

become accessible and very efficient. However, the major difficulty is to find in advance the optimal 

or suitable spectral region in which the water quality parameters should be retrieved [24] so as to avoid 

any errors in the development of predictive equations.  

Previous studies show that the extraction of historic and up-to-date water quality data from Landsat 

TM satellite images, coupled with existing data collection efforts, can facilitate the development of 

comprehensive regional databases that can be used to evaluate water quality trends over time and space 

(e.g., [22]). Although several satellite remote sensing systems have been used for water quality 

assessment and water quality parameter determination, generally the relatively low cost, temporal 

coverage and data availability of the Landsat system make it particularly useful for studies related to 

the monitoring and assessment of water quality in inland water bodies. It has been shown in other 

studies that the retrieval models with Landsat-5 TM data could meet the accuracy requirements of 

routine water quality monitoring on reservoir for algae content, turbidity etc., as they could be 

retrieved within a mean relative error (MRE) of 20% [18]. The accuracies of water quality retrieval 

could be greatly improved under a support of new remote sensing data with higher spectral and spatial 

resolutions than Landsat TM/ETM pixel size [18]. For large water bodies such as dams or water 

treatment reservoirs, the effect of the medium sensor resolution i.e., 30 m × 30 m is not a very 

significant parameter. For pixels of spatial resolution of less than 30 m the assumption of a nearly 

homogeneous water body is reasonable. 

The research objectives of this study are the following:  
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 to identify the spectral region in which chlorophyll-a (Chl-a) and particulate organic carbon (POC) 

can be retrieved using field spectroscopy;  

 to develop a novel methodology to measure the reflectance at the water surface using field 

spectroscopy;  

 to develop regression models based upon the spectral features to monitor the water quality in large 

water treatment reservoirs in West London using satellite imagery acquired during water sampling;  

 to use such regression models for further testing using atmospheric corrected satellite imagery. 

2. Materials and Methods  

2.1. Study Area 

The study area is located to the south and the west of London Heathrow Airport in the UK. It 

includes many inland water bodies such as reservoirs, rivers, lakes and ponds. Emphasis has been 

given to the larger reservoirs in the Lower Thames Valley (see Figure 1). The Lower Thames Valley 

reservoirs are characterized as eutrophic and are used for a number of purposes, such as for storage of 

water, as the first stage of potable water treatment, and for recreational purposes. Despite the fact that 

cloud cover is a major problem in this area [25], restricting the adequate number of satellite remotely 

sensed images that can be obtained in any particular year of study, it has been found that satellite 

remote sensing and especially Landsat TM imagery can be a useful tool for monitoring water quality in 

such reservoirs as well as to assist the managing company to locate new sampling points based on the 

synoptic assessment of satellite images [25,26].  

Figure 1. Partial scene of the Heathrow area and Lower Thames Valley reservoirs 

(Landsat-5 TM image acquired on 2 June 1985 displayed in true color combination with 

key locations and feature labeled). 
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2.2. Resources 

A powered boat, a GER1500 spectro-radiometer with associated equipment and a GPS were used in 

the measurement campaign. The major task of the ground measurements was to determine the 

reflectance of the reservoir at the water surface, i.e., at approximately zero depth.  

2.3. Spectro-Radiometric Measurements 

Spectral reflectance measurements were carried out using a GER1500-spectroradiometer covering 

the UV, visible and near infrared. This spectro-radiometer has a full width half maximum (FWHM) of 

3 nm and covers the spectral range from 350 nm to 1,050 nm.  

In this study the method using a white reference panel described by Milton and McCloy was 

used [27-30]. The GER1500 was used to acquire measurements on the target (water treatment 

reservoir) and on the control panel. By applying the ratio of the reflected radiance from the target to 

the reflected radiance from the panel and by taking into account the control panel correction, the 

reflectance of the target was obtained [4]. 

A new approach for retrieving the water reflectance at the surface was developed based on the 

practical use of the GER1500 field spectro-radiometer mounted with a fiber-optic probe and the 

theoretical formulation of the light attenuation in water medium. This method is based on the 

assumption that the study is concentrated on the surface of the reservoir and any other scattering 

effects are ignored; that was the reason that the diffuser instrument was not used on the GER1500 field 

spectro-radiometer. The first task was to decide the appropriate depths at which to place the fiber-optic 

probe into the water. It was decided after several trial measurements [26] to take data at depths of 0 

(approximately) up to 1 m.  

The collection of spectro-radiometric data was performed at a number of locations during an 

extensive measurement campaign on the Lower Thames Valley water treatment reservoirs. 

The new approach adopted in this study for retrieving the surface reflectance was developed based 

on the use of the basic light attenuation equation. Absorption and scattering reduce the intensity of the 

radiance distribution. Also, scattering processes change the directional distribution of the light 

intensity. Bukata et al. [31] provided the basic theory in which Equation (1) is derived. Any errors 

caused by the volumetric scattering in the water body are ignored since they are found to be 

non-significant for turbid waters and the reflected radiance is considered to be concentrated on the 

surface of the reservoir [18,31].  
For every wavelength, the reflectance (ln Rz ) against depth (z) was plotted based on Equation (1): 

ln ln .R R K zz  0       (1) 

where 

Rz is the reflectance at a depth z 

R0 is the reflectance at zero depth 

K is the irradiance attenuation coefficient or vertical extinction coefficient. 

The intercept, which represents the required surface reflectance, was determined by extrapolation. 

The y-intercept for every plot represents the estimated surface reflectance. For example, Figure 2 
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shows the linear relationship presented in Equation (1) for four different wavelengths. Those readings 

in which the deployment of the probe was not vertical (or due to “rolling” of the boat), did not follow 

the Beer’s Law linearity, were rejected and were not taken into account in further analyses.  

Figure 2. (a) The exponential plot according to Beer’s Law is validated. For example, by 

relating reflectance values (R) acquired on 26 September 1998 at 10:11 GMT with depth at 

490 nm, the results show a general agreement with the theoretical exponential plot; (b) The 

required surface reflectance was found by plotting the ln(R) against depth (for example at 

490 nm and 701 nm). The intercept at the y-axis corresponds to the surface reflectance 

found by extrapolation. A linearity was found. 
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The next task was to calculate the surface reflectance values equivalent to the Landsat-5 TM 

band 1, 2, 3 and 4. Figure 3 shows schematically the simulation of the GER1500 reflectance values 

with the Landsat-5 TM bands 1, 2, 3 and 4. The TM bandwidths used were those given by Markham 

and Barker [32]. To filter the data through the relative spectral response (RSR) values of Landsat-5 

TM, the GER1500 reflectance values were interpolated to obtain the reflectance values at the 

incremental wavelength of the RSR (at 450, 451, 452 nm, etc.). This was done since the GER1500 

reflectance values were given at a different incremental wavelength scale (e.g., 449.81, 451.48, 

453.15 nm). Then, the GER1500 experimental data were filtered through the Landsat-5 TM relative 

spectral response (RSR) functions given by Wilson [33] and averaged within the limits of the first four 

TM bands, to yield the in-band reflectance values (see Table 1). 

Figure 3. Positioning of the GER1500 reflectance values to match the Landsat-5 TM 

bands 1, 2, 3 and 4. The reflectance spectra correspond to Queen Mary reservoir, acquired 

at different water depths on 23 September 1998.  

 
Table 1. Simulated in-band reflectance values and water quality data for samples obtained 

during the spectro-radiometric surveys. chl-a: chlorophyll-a; POC: particulate organic 

carbon. 

Reservoir Date 
Chl-a 
(g/L) 

POC 
(g/L) 

In-band reflectance % 
TM1 TM 2 TM 3 TM 4 

Queen Mary 23-9-1998 12.40 861 2.61 4.26 2.32 0.19 
Wraysbury 23-9-1998 5.58 610 0.50 0.79 0.33 0.02 

Datchet 23-9-1998 11.41 795 0.58 0.86 0.38 0.04 
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Table 1. Cont. 

Reservoir Date 
Chl-a 
(g/L) 

POC 
(g/L) 

In-band reflectance % 
TM1 TM 2 TM 3 TM 4 

Queen Mary 12-10-1998 3.70 404 0.83 1.69 0.68 0.016 
Queen Elizabeth II 12-10-1998 3.70 404 2.87 4.79 2.94 0.27 

King George VI 12-10-1998 9.43 521 1.02 1.55 0.74 0.06 
Queen Mary 14-12-1998 1.72 266 1.88 3.28 1.96 0.08 

2.4. Water Quality 

The water quality parameters that have been monitored by Thames Water Utilities Ltd. are the 

following: turbidity, suspended solids, chl-a, POC, DO, and BOD. The authors categorize the above 

water quality variables into groups as follows:  

 algal biomass (chlorophyll-a and POC), 

 concentration of suspended matter (SS, turbidity) 

 organic matter (BOD) 

 dissolved oxygen (DO) 

Based on their algal biomass, two pairs of parameters fall into associated groups since both deal 

with algal biomass and suspended sediments. The first pair is chlorophyll-a and particulate organic 

carbon and the second is turbidity and suspended solids. The authors concentrate on the first category.  

Due to the fact that algae live primarily near the surface of the reservoir, chlorophyll-a samples are 

typically collected just below the surface and water samples are analysed in the lab. Chlorophyll-a is 

measured by filtering a known amount of sample water through a glass fiber filter [34]. The filter 

paper itself is used for the analysis. The filter is ground up in an acetone solution and either a 

fluorometer or spectrophotometer is used to read the light transmission at a given wavelength, which in 

turn is used to calculate the concentration of chlorophyll-a. For POC determinations, suspended 

particles are collected on filters [34]. Since organic carbon is to be measured, filters must be made of 

inorganic material (for example glass fiber or metal foil). The water sample should be handled and 

transferred between containers as little as possible to avoid contamination during the steps between 

sampling and analysis. Representative samples must be obtained, which during certain circumstances, 

e.g., during heavy algal blooms, can be achieved by shaking the water sampler immediately before 

taking the sub-sample. The homogeneity of the sample may be verified, for example, by separately 

analyzing sub-samples from the upper and lower layers of the bottle [34]. 

2.5. Methodology 

The main steps of the methodology of this project are listed below: 

 Carry out spectro-radiometric measurements as described in Section 2.3 

 Obtain water samples in situ near the sampling stations of each reservoir acquired concurrently 

with the spectro-radiometric measurements.  
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 In order to identify possible regions of the spectrum in which the water quality parameters 

could be identified, the first step was to investigate how the water quality parameters were 

related to each other and to perform a correlation analysis.  

 Provide categorization of the water quality variables into groups based on their properties.  

 Determine the possible predictors for both chlorophyll-a and POC using a linear regression 

analysis between the mean reflectance values across the spectrum measured by the GER1500 

field spectro-radiometer and the concentrations of chlorophyll-a (g/L) and POC (g/L).  

 The wavelength in which a highest correlation coefficient obtained by the linear regression 

analysis applied in the previous step corresponds to the optimal wavelength that chl-a and POC 

can be retrieved. Apply the developed regression models to archived and recent Landsat 

TM/ETM+ image acquisitions for further calibration and validation after applying the darkest 

pixel atmospheric correction algorithm.  

2.6. Atmospheric Correction 

Radiation from the earth’s surface undergoes significant interaction with the atmosphere before it 

reaches the satellite sensor. This interaction with the atmosphere is more severe when the target 

surfaces consist of water bodies. The problem is especially significant when using time series  

multi-spectral satellite data to monitor water quality surveillance in inland waters such as reservoirs 

and lakes, because atmospheric effects constitute the majority of the at-satellite reflectance over water. 

Atmospheric effects contribute significantly to the signal received by a multi-spectral scanner. Over 

water areas, atmospheric effects account for the major proportion of the at-satellite received signal. In 

the literature, it has been reported that these effects range from 38% up to 100% of the received signal 

in the visible bands for inland and ocean water bodies [25,26].  

Mainly, two interaction scattering processes take place when the signal is travelling from the sun to 

the target and target to the sensor that mainly affects visible wavelengths. Rayleigh scattering takes 

place when atmospheric particles have diameters that are small relative to the wavelength of the 

radiation. Since air molecules (oxygen and nitrogen) are small in size (smaller than wavelengths of 

visible light), they scatter more effectively at shorter wavelengths. Molecular scattering is dependent on 

wavelength and it is inversely proportional to the fourth power of the wavelength i.e., shorter 

wavelengths are affected more than longer wavelengths. For example, blue light (wavelength 0.4–0.5 m) 

is more powerfully scattered than red light (0.6–0.7 m). Mie scattering is caused by larger particles 

present in the atmosphere such as dust, smoke or water droplets. Such particles have diameters which 

are approximately equivalent to the wavelength of the scattered radiation. Mie scattering affects 

shorter wavelengths more than longer wavelengths, but to a lesser extent than in molecular scattering.  

Many atmospheric correction methods have been proposed for use with multi-spectral satellite 

imagery [25]. Such methods include image-based methods, methods that use atmospheric modeling 

and, finally, methods that use ground data during the satellite overpass. The Darkest Pixel (DP) 

atmospheric correction method, also known as the histogram minimum method, was applied to the 

existing study. The principle of the DP approach stated that most of the signal reaching a satellite 

sensor from a dark object was contributed by the atmosphere at visible wavelengths. Therefore, the 

pixels from dark targets were indicators of the amount of upwelling path radiance in this band. The 
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atmospheric path radiance was added to the surface radiance of the dark target, thus giving the target 

radiance at the sensor. The surface radiance of the dark target was approximated as having zero surface 

radiance or reflectance. It has been shown by Hadjimitsis et al. [25], who provided an evaluation of the 

effectiveness of several atmospheric correction algorithms over Landsat TM images of water treatment 

reservoirs, that the DP algorithm was the most efficient in the Landsat TM bands 1, 2 and 3 [25,26]. 

The retrieval of the amount of atmospheric effects in short wavelengths such as Landsat TM band 1, 

where the atmospheric impact is very strong, is more effective than the NIR bands, since in short bands 

the effect of the water vapor is negligible and the dominant parameter is only scattering. This is the 

reason why the DP is more effectively applied for water quality applications in the short than in the 

long wavelengths (such as Landsat TM Band 4) [25,26].  

After the Digital Numbers (DN) of the selected dark target are converted to units of radiance using 

calibration offset and gain parameters, the target reflectance at ground level is found using the 

following simplified equation: 

 


tg
ts dsL L

E d




0 0.cos( ).
 (2) 

where 
ρ

tg
 is the target reflectance at the ground 

L
ds

 is the dark object radiance at the sensor 

L
ts
 is the target radiance at the sensor,  

E0  = E0 × d is the solar irradiance at the top of the atmosphere corrected for earth-sun distance 

variation i.e., E0, d 

θ0 is the solar zenith angle 

3. Results and Discussion 

Strong correlation were found within the algal biomass group, i.e., between chlorophyll-a and POC 

measurements. For example, for the Wraysbury reservoir the correlation coefficient (r2) was found to 

be 0.985 with a significance level  0.05. However, very poor correlations were found when 

comparing parameters outside the groups and when comparing suspended solids with turbidity. The 

higher the correlation between chlorophyll-a and POC, the more difficult it is to distinguish the effect 

on reflectance spectrum of either variable [5]. However, in other studies in which laboratory test water 

quality parameters have been compared with measurements of absorption and scattering 

coefficients [5], the separation of reflectance signatures for chlorophyll-a from other parameters could 

be achieved with more accuracy. 

As a starting point, in order to find possible predictors for both chlorophyll-a and POC, the method 

used by [5,14,36] was applied. This method involves applying linear regression analysis between the 

mean reflectance values across the spectrum and the concentrations of chlorophyll-a (g/L) and POC 

(g/L). The GER1500 reflectance values and the chlorophyll-a and POC concentrations measured on 

the same day (23 September 1998) and time and at a depth of 1 m in Wraysbury, Datchet and Queen 

Mary reservoirs were used. Each regression model (512 in total) corresponded to a measured 

wavelength of the GER1500. The highest r2 values for chlorophyll-a and POC corresponded to the 
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wavelengths shown in Table 2. The wavelengths shown in Table 2 indicate possible spectral regions of 

relating water quality data and measured reflectance values. 

Table 2. Highest correlations (expressed as r2) achieved when applying regressions to 

chlorophyll-a and POC against the GER1500 reflectance values. 

Chlorophyll-a POC 
Wavelength (nm) r2 Wavelength (nm) r2 

370.4 0.86 370.4 0.93 
375.07 0.79 375.07 0.88 
381.34 0.79 381.34 0.88 
382.92 0.79 382.92 0.88 
386.09 0.79 386.09 0.99 
387.68 0.86 387.68 0.93 
397.27 0.86 397.27 0.93 
402.11 0.79 402.11 0.93 

  416.75 0.83 

The achieved correlations, presented as r2 against wavelength, indicate the regions with high 

correlation values for both water quality variables (see Figures 4 and 5). Correlations ranging from 

0.60 to 0.80 were found for the following spectral regions as shown in Figures 4 and 5: 

 for chlorophyll-a, 400–450 nm (with r2 0.80–0.60) and 730–735 (with r2  0.60) 

 for POC, 400–530 nm (with r2 0.80–0.60) and 728–735 (with r2  0.60). 

Figure 4. Correlation expressed as r2 between chlorophyll-a concentration and GER1500 

reflectance for Datchet, Wraysbury and Queen Mary reservoirs (23 September 1998). Each 

r2 value was calculated at each wavelength of the GER1500. 
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Figure 5. Correlation expressed as r2 between POC concentration and GER1500 

reflectance for Datchet, Wraysbury and Queen Mary reservoirs (23 September 1998). Each 

r2 value was calculated at each wavelength of the GER1500. 

 
From the findings shown above, it can be concluded that possible Landsat TM spectral regions for 

chlorophyll-a is TM band 1 and for POC are TM bands 1 and 2.  

The GER 1500 experimental data was filtered through the RSR functions and averaged within the 

limits of the first four TM/ETM+ bands, to yield the in-band reflectance values. In order to retrieve the 

statistical relationship between the water quality parameters (e.g., Chl-a and POC) and the in-band 

reflectance measured from the GER1500, regression models have been applied and the outcomes are 

Equations 3 and 4. 

Then, by applying the darkest pixel atmospheric correction [25] to a series of Landsat TM satellite 

images acquired on 5 March 1985, 4 July 1985, 8 October 1985, 13 February 1986 that were available 

during the water sampling of Chl-a and POC, several linear and multiple linear regression models were 

applied. The highest correlations (r2 = 0.835) with the observed significance levels for Fobserved and 

regression coefficients less than 0.005 were the following: 

chl-a = 394.89 TM1 − 2.26       (3) 

where  

chl-a: Chlorophyll-a concentration in g/L 

TM1 is the reflectance from Landsat-5 TM1 (after atmospheric correction) 

For POC, the predictive equation with the highest correlation (after atmospheric correction r2=0.782 

and before correction r2 = 0.024) was the following: 
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POC = 29,924.83 TM2 +146.57      (4) 

where 

POC: Particulate organic carbon concentration in g/L 

TM1 is the reflectance from Landsat-5 TM1 (after atmospheric correction) 

Using the above Equations 3 and 4, an attempt was made to apply the darkest pixel atmospheric 

correction to other archived Landsat TM/ETM+ images acquired on 31 December 2001, 6 April 2002, 

13 September 2002, 07 April 2000, 12 May 2001, 22 December 2001, 28 March 2002, 07 November 

2002, 10 May 2006, 2 November 2006, 20 October 2007, 20 September 2008, 22 June 2010. The 

concentrations in Chl-a, the range was 0.57 to 4.20 g/L and for the POC the range was 367 to 

2,000 g/L. The greatest Chl-a values corresponded to winter period in which there was no re-

circulation and mixing of water in the reservoirs. The retrieved concentrations Chl-a and POC were 

complied with some available water quality measurements acquired from the boat water sampling for 

2001, 2002 and 2006 periods. Based on these direct comparisons between the ‘modeled’ values found 

after applying Equations 3 and 4 with the in situ Chl-a and POC measurements, correlation coefficients 

of 0.9 and 0.92 were found. 

4. Conclusions  

For reaching the first objective in situ, reflectance spectra (i.e., 512 bands) have been used to 

identify optimal spectral regions from which Chl-a and POC can be retrieved. These spectral radiance 

measurements were transformed into relative percent reflectance and then resampled to correspond 

with the band configurations of the Landsat TM sensor that had been used for water quality assessment 

and monitoring. Linear regression analysis was applied to these transformed spectra in order to identify 

which spectral bands were the most useful (i.e., optimal) for retrieving of water quality in the Lower 

Thames Valley reservoirs in West London. This research identified the following optimal Landsat TM 

bands in the visible wavelength region: 

 for chlorophyll-a, TM band 1 (0.45–0.52 µm) 

 for POC, TM bands 1 (0.45–0.52 µm) and 2 (0.52–0.60 µm). 

For retrieving the surface reflectance, which was the second objective of this study, a new method 

has been developed based on the use of the basic light attenuation equation and employment of 

fiber-optic probe and field spectro-radiometer.  

By applying the darkest pixel atmospheric correction to a series of Landsat TM images acquired in 

1985, two regression models were developed with correlation coefficients of 0.835 and 0.782 for Chl-a 

and POC cases. This was the third objective completed. 

For further testing of the developed regression models, 12 Landsat TM/ETM+ band-1 images 

acquired in 2001 to 2010 were used to retrieve the Chl-a concentrations using only image-based data 

after atmospheric correction. 

The developed regression models for Chl-a and POc using Landsat TM bands 1 and 2 can be further 

tested for possible transferability to other studies of water treatment reservoirs in the case where water 

optical characteristics and spectral signatures are considered the same. 
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The results have illustrated the potential of the blue and green band models to estimate chl-a and 

POC concentration in water treatment reservoirs from satellite data. However, challenges still remain 

in broadly applying the models to estimate absolute measures of chl-a and POC concentrations. With 

consideration for the effects of temporal variations of the concentrations of optically active 

constituents and the within-pixel spatial heterogeneity of the water body, it might be possible to have a 

better assessment of the accuracy of the blue and green band models. The application of atmospheric 

correction in any water quality monitoring study using satellite remote sensing is essential prior to any 

post-processing of image data. 

Based on the fact that Landsat TM-5 and TM-7 are facing several problems; Landsat TM-5 is a very 

old sensor, its radiometric accuracy is compromised and, it will very likely end its life shortly; Landsat 

ETM+ has severe acquisition problems, several lines of each swath are systematically replaced by 

simulated values. However, the suitability and availability of such images are still useful in the remote 

sensing community. Moreover, there are not plans to replace these sensors in the forthcoming period. 

Indeed, other sensors such as ASTER, MODIS and MERIS have been widely used for water quality 

assessment studies and there is a great need, for every specific region in which remote sensing 

monitoring scheme is needed, to identify the spectral bands in which water quality parameters will be 

monitored. Indeed, such spectro-radiometric measurements and methods are essential to identify the 

suitable spectral region in which each water quality parameter could be retrieved so as to avoid errors 

or discrepancies during the application of correlation of satellite remotely sensed data and water 

quality parameters.  

Despite the relatively low spectral and radiometric resolution of Landsat TM image data, the revisit 

capability and relatively low price per area make such satellite images useful for water quality 

assessment. The advances of using suitable imaging cameras for systematic monitoring can be assisted 

from the study in which field spectroscopy can be an ideal tool for identifying the suitable spectral 

region in which Chl-a or POC can be retrieved. 
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