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Abstract— Navigation Functions constructed according to the
Koditschek-Rimon construction require the workspace to be
topologically simple, i.e. homeomorphic to a sphere world.
This paper proposes the first provably correct construction of
Navigation Functions in 3D workspaces that are topologically
complex. To achieve this construction, an extension of the
recently introduced Navigation Transformation is proposed,
that can handle any workspace and obstacle topology that can
be categorized under the Classification Theorem of orientable
2-manifolds. The constructed Navigation Function is based
on an underlying harmonic potential, that is guaranteed by
construction to be free of local minima, hence tuning free in
that aspect. In addition to the theoretical guarantees, a case
study is presented along with a non-trivial computer simulation
to demonstrate the effectiveness of the proposed solution.

I. INTRODUCTION

Since the introduction of Navigation Functions in the early
90’s by Koditschek and Rimon [7], [12], many extensions
have appeared in the literature, to capture such features as
systems with second order dynamics [12], non-holonomic
systems [13], centralized multirobot systems [10] as well as
decentralized systems [6] to mention a few.

More recently, an increased interest towards Micro Aerial
Vehicles (MAV) [11], [3], motivated the problem of 3D
Navigation in geometrically and at the same time topolog-
ically complex workspaces as these are encountered e.g.
in indoor environments or in ruin sites in the context of
urban search and rescue missions. Due to the reduced on-
board computational capabilites of those systems, one needs
efficient, closed form, fast feedback based navigation solu-
tions, with guaranteed performance. This would have been
just an appropriate domain for the application of traditional
(i.e. according to Koditschek-Rimon construction) Naviga-
tion Functions, if it were not for the increased topological
complexity encountered in the 3rd dimension. Unfortunately,
except from special cases, 3-dimensional workspaces are not
diffeomorphic to sphere worlds, hence the traditional Navi-
gation Function machinery would have to sacrifice complete-
ness (i.e. bound the non-sphere-diffeomorphic objects with
sphere-diffeomorphic ones and in the process lose solutions)
if it were to be applied. This paper proposes a solution to
this problem by exploiting and appropriately extending the
concept of the Navigation Transformation, proposed by the
author in [8]. In a previous work a solution exploiting the
Navigation Transformation for the 2-dimensional problem
was proposed by the author in [9]; however the extension to

S.G. Loizou is with the Faculty of Mechanical Engineering
and Materials Science and Engineering, Cyprus University of
Technology, 45 Kitiou Kyprianou Str., Limassol 3041, CYPRUS
savvas.loizou@cut.ac.cy

the 3-dimensional case is far from being a trivial task, since
the topology in 3-dimensions is fundamentally different from
the 2-D.

This paper presents the first to the author’s knowledge
provably correct Navigation Functions for 3-dimensional
workspaces that are not homeomorphic to spheres. In a real-
world robotic navigation problem, any possible workspace
entity will occur as the boundary of some smooth solid
object, that is a compact, connected, orientable 2-manifold.
Under the view of the Classification Theorem of orientable
2-manifolds, all these entities are uniquely classified by
their genus - a topological invariant. This paper utilizes this
classification to completely capture any possible workspace
geometry in 3-dimensions. In higher dimensions the problem
becomes essentially more difficult. If fact it was shown that
in 4 dimensions no algorithm classifying compact orientable
manifolds is possible [4]. Hence the results presented in this
paper are applicable assuming a diffeomorphism between
every workspace entity and a model entity exists (something
that is true for smooth solid objects). An appropriate model
world -the NT reference world- is presented as the domain
where the Extended Navigation Transformation maps the
workspace. The motion and path planning problems can
readily be solved with the proposed Extended Navigation
Transformation according to the approach presented in [8]
and are not presented in this paper. In this paper, in order to
establish a dynamically sound and robust solution, a (locally)
harmonic potential is installed on the NT reference world
that is by construction free of local minima due the properties
of harmonic functions. The Navigation Function is then
constructed based on this (locally) harmonic function and
a navigation vector field can be pulled back to the original
workspace. The problem of systematically constructing of
diffeomorphisms from the workspace to the NT reference
world is not dealt with in the current paper. However a case
study is presented.

The rest of the paper is organized as follows: Section II
presents preliminary notions, while section III presents the
Extended Navigation Transformation. Section IV presents the
construction of Navigation Functions on the WNT reference
world. Section V presents simulation results on from a case
study and the paper concludes with section VI.

II. PRELIMINARIES

In the following we will introduce the necessary terminol-
ogy and definitions for the development of the methodology.

Let K be a set. Then
◦
K denotes the interior of the set

while ∂K denotes its boundary. Sn denotes the n-sphere.



The workspace W ⊂ E3 is a compact connected smooth
manifold with boundary.

A smooth version of the definition of a Navigation Func-
tion [7], is provided:

Definition 1: Let W ⊂ En be a compact connected
smooth manifold with boundary. A map ϕ : W → [0, 1],
is a navigation function if it is:

1) Smooth on W .
2) Polar on W , with minimum at qd ∈

◦
W .

3) Morse on W .
4) Admissible on W .
The following Classification Theorem is fundamental for

2-D manifolds:
Theorem 1: [4] Every compact, connected, orientable 2-

manifold is homeomorphic to a sphere with handles added.
Two such manifolds with the same number of handles are
homeomorphic and conversely, so that the number of handles
(called the genus) is the only topological invariant.

III. THE EXTENDED NAVIGATION TRANSFORMATION

A. The NT reference world

In order to define the Extended Navigation Transforma-
tion, we will first define the geometry of the image of a 3-D
workspace under the transformation, the NT reference world
- WNT .

AnWNT world is constructed by the following procedure:
1) The external boundary of WNT : Take a 3-ball

B ⊆ R3 with infinite radius and consider gw non-
intersecting parallel lines L1, . . . Lgw . Define the set

Bgw = B \
gw⋃
i=1

Li. The external boundary of WNT is

then constructed as

WNTb , Bgw\
◦
Bgw

2) Transformed Obstacles: WNTb partitions R3 in two
sets: the external region E+ and the internal region
E−. Obstacles are mapped to subsets of E−. The
obstacle set comprises the following:

a) Point Obstacles: Take Mp discrete points pi in-
side E−. Then the i’th point obstacle is:

Opi , pi

where i = 1, . . .Mp. The set of all point obstacles
is:

Op ,
Mp⋃
i=1

Opi

b) g-Torus Obstacles: Take rj 1-spheres S1i ⊂
◦
Bgw ,

i = 1, . . . rj that form an open chain. For any
k, n ∈ {1, . . . rj}, S1k intersects S1n at most
at one point. Then the j’th g-Torus obstacle is
constructed as

Tg,j =

rj⋃
i=1

S1i

where j = 1, . . .Mg , where Mg the number of g-
Torus obstacles. Hence the boundary of obstacle
Tg,j is a torus of genus g = rj . The set of all
g-Torus obstacles is then:

T ,
Mg⋃
j=1

Tg,j

We can now construct the NT reference world as:

WNT = Bgw \ (Op ∪ T )

An example of an NT reference world is depicted in
Fig. 1.

Fig. 1. An example of an NT reference world with a genus–3 workspace
boundary, 4 point obstacles, one 1-torus obstacle and one 3-torus obstacle

B. Definitions of the Extended Navigation Transformation
and the valid workspace

We can now define the Extended Navigation Transforma-
tion:

Definition 2: The Extended Navigation Transformation is
a diffeomorphism Φx :

◦
W→

◦
WNT that maps the workspace

W to an NT reference world.
The valid workspace can now be defined as follows:
Definition 3: A workspace W is valid if it is diffeomor-

phic to WNT .
Note that a systematic construction of diffeomorphisms

from a 3D worskpace to WNT are beyond the scope of this
paper. However section V presents a case study of such a
transformation.



IV. CONSTRUCTION OF A NAVIGATION FUNCTION ON
WNT BASED ON HARMONIC POTENTIALS

A. Preliminaries

Assuming that the workspace has been diffeomorphically
mapped toWNT , the construction of the navigation function
is performed by first setting up a (locally) harmonic potential
in WNT .

Let h be the robot’s position in the WNT . We will now
construct the harmonic potential contribution for each entity
of WNT .

B. Harmonic Potential of a Line

Assume the i’th line passing from point li that is parallel
to the vector nl. Then the harmonic potential of a line in
3-D is provided as:

Vl,i(h) = − ln ‖(h− li)× n̂l‖

where i = 1 . . . gw and n̂l = [0 0 1].

C. Harmonic Potential of a point

Assume point pi. Then the harmonic potential from that
point is:

Vp,i(h) =
1

‖h− pi‖

where i = 1 . . .Mp

D. Harmonic Potential of a g-Torus obstacle

In order to create the harmonic potential of a g-Torus,
we will assume a homogeneous distribution of harmonic
potentials across its constituting circles.

Assume a circle S1 centered at point tji, lying on a
plane perpendicular to vector ntji, having a radius rji, with
homogeneous harmonic potential distribution dV = 1

d ds
where d is the distance between the infinitesimal potential
distribution on the circle, and the point where the potential
is evaluated.

Let
zji (h) , (h− tji) · ntji

and
ρji (h) , ‖(h− tji)× ntji‖

For notational brevity, indices will be omitted whenever
possible. The potential induced at point h is:

Vc,ji(h) =

2π∫
0

r√
z (h)

2
+ ρ (h)

2
+ r2 − 2rρ (h) cos (φ)

dφ

Substituting φ = π + 2θ and setting:

βji (h) =
4ρji (h) rji

zji (h)
2

+ (ρji (h) + rji)
2

Note that 0 ≤ βji (h) < 1. After some algebraic manipula-
tion (see also [5]), we get:

Vc,ji(h) =
4rji√

zji (h)
2

+ (ρji (h) + rji)
2
K [βji (h)]

where

K[m] =

π/2∫
0

dθ√
1−m sin2 (θ)

with K(m2) = K(m), is the complete elliptic integral of
the first kind. Note the following:

1) K [0] = π
2

2) lim
m→1

K [m] =∞
Since Vc,ji (h) is an integral of a harmonic potential distri-
bution, it will also be harmonic. The potential of the j-th
g-Torus obstacle of genus gj in WNT is given as:

Vt,j(h) =

gj∑
i=1

Vc,ji (h)

where j = 1 . . . NT and NT is the number of g-Torus
obstacles.

E. Locally Harmonic Destination Potential

We note that a strictly increasing radial harmonic potential
Vd (h) with the property that limVd (h)h→+∞ = +∞ is
not possible for dimensions higher than 2. Hence what is
proposed here is a potential that is harmonic harmonic within
a ball of radius dmax.

Without loss of generality, we assume that the desti-
nation configuration is the origin in WNT . Let mL =
arg max

i∈1...gw
‖(hd − li)× nli‖ be the index of the line that

is farthest away from the destination configuration. Then the
distance of this line from the destination configuration is
dl,max = ‖(hd − lmL

)× nlmL
‖.

Let mp = arg max
i∈1...Mp

‖hd − pi‖ be the index of the point

that is farthest away from the destination configuration. Then
the distance of this point from the destination configuration
is dp,max =

∥∥hd − pmp

∥∥
Let mt = arg max

ji
‖h− tji‖ where j ∈ 1, . . . NT and i ∈

1, . . . gj , denote the index of the circle center that is farthest
away from the destination configuration. Also let mr =
arg max

ji
(rji) where j ∈ 1, . . . NT and i ∈ 1, . . . gj , denote

the index of the maximum radius of the circles constituting
the g-Torus obstacles. Then define the indicative distance of
the g-Torus obstacle from the destination configuration, as:
dt,max = ‖h− tmt

‖+ rmr
.

We can now define

dmax , 2 max {dl,max, dp,max, dt,max} (1)

.
Define the following smooth switch function:

σ(x) =
s (x− dmax)

s (x− dmax) + s (ε− x+ dmax)



Where

s(x) ,

{
e−1/t t > 0
0 t ≤ 0

and ε a small positive parameter defining the width of the
transition band. Define the function:

v (x) = −K1

x
(1− σ (x)) +

(
K2x

2 −K3

)
σ (x)

The destination potential is then constructed as follows:

Vd(h) = v (‖h‖) (2)

The choice of the destination potential motivates the follow-
ing partitioning of WNT :
• The harmonic domain, H = {h| ‖h| ≤ dmax}
• The transition band, T = {h|dmax < ‖h| < dmax + ε}
• The radially unbounded domain
R = {h| ‖h| ≥ dmax + ε}

By construction Vd(·) is harmonic in H. We have the
following property for Vd(·):

Lemma 1:

min
h∈{T ∪R}

‖∇Vd(h)‖ > K1

(dmax + ε)
2

Proof: See section A in the Appendix
Select K1 = Gmax (dmax + ε)

2, K2 = K1

2d3max
and K3 =

K2d
2
max. The constants are chosen to match the gradient and

level of potential at dmax. By the choice of K1, Lemma 1
becomes:

min
h∈{T ∪R}

‖∇Vd(h)‖ > Gmax

where Gmax a constant that has to be appropriately
chosen.

F. Construction of the Navigation Function

The (locally) Harmonic potential on WNT is constructed
as

φ (h) = Vd (h)+

gw∑
i=1

Vl,i (h)+

Mp∑
i=1

Vp,i (h)+

NT∑
i=1

Vt,i (h) (3)

Define the switch function

σe(x) ,
1

2
+

1

2

x√
1 + x2

that maps the extended real line to the interval [0, 1]. Define
the following composition:

Θ (·) = σe ◦ φ ◦ Φx (4)

We have the following results:
Lemma 2: There exists a bound G0 > 0, such that all the

critical points of φ lie inside the harmonic domain, H as
long as Gmax ≥ G0.

Proof: See section B in the Appendix.
Corollary 1: There exists a constant G0 > 0, such that

Θ(·) :W → [0, 1] is free of local minima as long as Gmax ≥
G0.

Proof: Using Lemma 2, all the critical points of φ are in
the harmonic domain and since φ is harmonic inH no critical
point is a local minimum. Since Φx is a diffeomorphism, the
result is inherited by Θ, as shown in the proof of Proposition
2.6 in [7].

The main result of the paper is the following:
Proposition 1: There exist a constant k1, such that Θ(·) :

W → [0, 1] is a Navigation Function as long as K1 ≥ k1
Proof: See section D in the Appendix.

V. SIMULATION RESULTS

In order to demostrate the effectiveness of the proposed
solution, a simulation has been setup in the Wolfram Math-
ematica 6.0 software. The workspace is depicted in figure 2.
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Fig. 2. Workspace with a genous-1 external workspace boundary, two
1-Torus obstacles and one spherical obstacle

A. Construction of Φx

In this section we provide an outline of the Extended
Navigation Transformation that has been applied for the
simulation for purposes of presentation completeness. The
proof and the analysis of the implemented transformation
are beyond the scope of this paper.

Define the following:

η(x) =
s(x)

s(x) + s(δ − x)

where δ is the activation distance. Define

σ1(x) =
x

δ
(1 + η(x)) + η(x)

Line transformation: First define the distance to the internal
workspace cylindrical boundary as

bl (q) = ‖(q − pl)× nl‖ − rw



where q is the robot position, pl the cylinder’s center and
rw the cylinder’s radius. The distance to the sphere metric
is defined as

bs(q) = ‖q − ps‖ − rs

where ps the sphere center and rs its radius. The metric
to the torus boundary for a torus centered at the origin is
provided by the following:

bt(q) =
(
Rt −

√
q2x + q2y

)2
+ q2z − r2t

where Rt and rt are the major and minor radii of the torus.
A metric to the distance to the external workspace cylindrical
boundary is provided by:

bx(q) = rx − ‖(q − pl)× nl‖

where rx is the external workspace radius. A metric to the
top and bottom surfaces of the workspace is provided by:

bwt(q) = hw − (q − pl) · nl

Define the following transformations corresponding to the
line, sphere, torus, external workspace cylinder, and top and
bottom workspace bounding surfaces:

Tl (q) = (1− σ1 (bl (q))) ((q − pl)× nl)× nl

Ts (q) = (1− σ1 (bs (q))) (ps − q)

Tt (q) = (1− σ1 (bt (q))) · . . .

·
(
Rt (nt × (q − pt)× nt)
‖nt × (q − pt)× nt‖

+ pt − q
)

Tx (q) = (1− σ1 (bx (q))) (nl × (q − pl)× nl)
δ

bx (q)

Twt (q) = (1− σ1 (bwt (q))) · . . .

· ((q − pl) · nl)nl
δ

hw − ‖q − pl) · nl
Eventually the Extended Navigation Transformation is

constructed as:

Φx (q) = q +
∑

i∈{l,s,t1,t2,x,wt}

Ti (q)

For the simulation we have implemented a system with
dynamics:

ẋ = −∇Θ

.
Figure 3 depicts the trajectory of the system under the

influence of the negated gradient of the navigation function.
As can be seen the trajectory of the system is safe - avoiding
collisions with the obstacles and stable as expected.

Figure 4 offers another view of the same trajectory where
the collision avoidance maneuver dictated by the flows of
the navigation function can be seen.

Fig. 3. Trajectory of a system with first order kinematics under the influence
of the negated gradient of the Navigation Function. The green dot is the
initial location and the red dot is the destination

Fig. 4. Trajectory of a the simulation of the system from a different
viewpoint

VI. CONCLUSIONS

In this paper a solution to the closed loop navigation in
complex 3-D workspaces problem has been presented. The
solution proposes a Navigation Function that is based on
an underlying harmonic potential that is created on a model
world where the Extended Navigation Transformation that is
proposed in this paper has mapped the workspace. This is
the first to the author’s knowledge solution to the problem
of constructing Navigation Functions on a 3-D topologies
that can be categorized under the Classification Theorem of
orientable 2-manifolds. Analytical guarantees are provided
for the correctness of the proposed solution. A simulation of
a case study is presented along with an outline suggestion for
the construction of an Extended Navigation Transformation.
In addition to the theoretical guarantees the simulation result
demostrates the effectiveness of the proposed approach on a
system with first order dynamics.

Further research includes developing a systematic ap-
proach to constructing the Extended Navigation Transfor-
mation, and apply the methodology to various systems, like
aerial vehicles and underwater vehicles.



APPENDIX

A. Proof of Lemma 1

Proof: Assume a function

v0(x) = f1(x)(1− σ(x)) + f2(x)σ(x)

. Its derivative will be:

v′0 = (f ′1(1− σ) + f ′2σ) + σ′(−f1 + f2)

. In our case f1(x) = −K1

x and f2(x) = K2x
2 −K3.

Noting that σ′(x) ≥ 0, all the terms are positive, as-
suming K2d

2
max − K3 ≥ 0. By considering that the first

part is a linear combination between the derivatives of f1
and f2 the value of v′0 is lower bounded by the lower
value of either f1 or f2. However, since f2 is convex, a
conservative lower bound is given by f1 at dmax+ ε. Hence

min
h∈{T ∪R}

‖∇Vd(h)‖ > K1

(dmax+ε)
2

B. Proof of Lemma 2

Proof: Assume that h is a critical point in T ∪R. Then

−∇Vd (h) =

gw∑
i=1

∇Vl,i (h) +

Mp∑
i=1

∇Vp,i (h) +

NT∑
i=1

∇Vt,i (h)

(5)
Let û = ∇Vd

‖∇Vd‖ . Multiplying both sides of eq. (5) with û,
we get:

−‖∇Vd‖ = ûUl + ûUR (6)

where Ul =
gw∑
i=1

∇Vl,i (h) and UR =
Mp∑
i=1

∇Vp,i (h) +

NT∑
i=1

∇Vt,i (h). Then according to Lemma 3:

UR < UR,max = Mpp0 +

Mg∑
j=1

rjt0

Create the following regions:

h : ‖Ul‖ < T1

Then by choosing ‖∇Vd‖min ≥ 2T1 and T1 ≥ UR,max ,
equation (5) will not be satisfied in region 1 hence no critical
points will be created there.
Region 2:

h : ‖Ul‖ ≥ T1

Multiplying both sides of eq. (5) with n̂l we get:

−n̂l∇Vd = n̂lUR (7)

Note that

‖∇Vl,i (h)) =
1

‖(h− li)× nl‖

Hence the cumulative line potential at a distance
√
2
2 dmax

from the n̂l axis will be at most:

Ul,
√
2 =

2gw(√
2− 1

)
dmax

Hence requiring that T1 ≥ Ul,
√
2 and (from equation (7)

that ‖∇Vd‖ ≥
√

2 ‖UR‖max guarantees that equation (5) will
not be satisfied in region 2.

Now in view of Lemma 1, the proof is completed by
selecting Gmax ≥ G0 = 2 max

{
UR,max, Ul,

√
2

}
C. Bounds on ‖∇Vp,i‖ and ‖∇Vt,i‖

Lemma 3: Let h ∈ T ∪R. Then it holds that:

‖∇Vp,i (h)‖ < 4

d2max
= p0 (8)

‖∇Vc,i (h)‖ < 857

dmax
= c0 (9)

Proof:
Case 1: Assume h ∈ T ∪R. According to eq. (1), we have
that

‖∇Vp,i (h)‖ =
1

‖h− pi‖2
<

4

d2max
.

Case 2: For ‖∇Vc,i (h)‖ we have that:

∇Vc,ji = K [βji (h)]∇Aji (h) +Aji (h)∇K [βji (h)]

where

Aji (h) =
4rji√

zji (h)
2

+ (ρji (h) + rji)
2
<

4

3

After some algebraic manipulation, we get:

‖∇Aji (h)‖ =
4rji

z2ji + (ρji + rji)
2 <

8

9

1

dmax

and
βji (h) <

8

9

Now since K[x] is strictly increasing for x ∈ (0, 1), so
will be K[x]. Hence the following bound is obtained:

K[βji(h)] < K[
8

9
]

Writing βji(h) = βji(ρji(h), zji(h)), we get:

∇β(ρ, z) = −
4r
(
−r2 + ρ2 − z2

)
∇ρ+ 8rρz∇z(

(r + ρ)
2

+ z2
)2

where indices have been dropped for notational brevity.
Taking the norm and majorizing the expression, we get:

‖∇βji(h)‖ < 152

dmax

Regarding ∇K[β(h)], we have:

∇K[β(h)] =
E[β]− (1− β)K[β]

2β(1− β)
∇β(h)

where E[x2] = E [x] =
π/2∫
0

√
1− x2 sin2 (θ)dθ is the

complete elliptic integral of the second kind.



From [1], [2] we have that: E[r2]−(1−r2)K[r2]
r2 is strictly

increasing for r ∈ (0, 1). Substituting β = r2 we get that
for β ∈ (0, 1), E[β]−(1−β)K[β]

2β(1−β) will also be increasing as a
product of increasing functions. Hence we have that:

‖∇K[β(h)]‖ < 1539

2

(
E[ 89 ]− 1

9K[ 89 ]
)

dmax
<

641

dmax

Hence we have that:

‖∇Vc,i (h)‖ < 1

dmax

(
8

9
K[

8

9
] +

4

3
641

)
< 857

1

dmax

D. Proof of Proposition 1

Proof: Property 1 of Definition 1 is satisfied since all
involved functions are analytic or smooth on W .

Regarding Property 2, according to Lemma 2 all critical
points will lie inside H, where function φ is harmonic,
by choosing Gmax ≥ G0. Hence no local minima of φ
can be created in the harmonic domain. Then according to
Proposition 2.6 in [7] the composition ϕ = σe◦φ will inherit
the critical point characteristics of the harmonic function
and will hence be free of local minima. φ is undefined
at singular points but ϕ can be continuously extended to
include the singular points where +∞ is mapped to +1 and
−∞ is mapped to 0. So the continuously extended ϕ will
have a minimum at the destination configuration. Since the
destination confiuration is the unique singular point where
φ → −∞ then it will be the unique minimum of the
continuously extended ϕ. Hence ϕ is polar.

Regarding Property 3: Assume that h is a critical point.
Then from eq. (3) we have that at the critical point it will
hold that:

−K1
ĥ

‖h‖2
=

∑
a∈{l,p,c}

∑
b(a)

∇Va,b(h)

where b(l) runs from 1 . . . gw, b(p) from 1 . . .Mp and b(c)
from (1, 1) . . . (NT , gNT

). As K1 increases, the critical point
will be moving towards the boundary of an obstacle. Assume
that this obstacle has potential Vn,m. Then while K1 can
increase arbitrarily, only the norm of ∇Vn,m will increase
whereas the gradients of the rest of the obstacles will remain
bounded. Let us write the critical point condition in the
following form:

−K1
ĥ

‖h‖2
= ∇Vn,m(h) +R (h)

where R(h) contains the bounded contributions. Taking
the Hessian of φ(h), we have that:

Hφ = HVd
+HVn,m +R′(h)

where R′(h) contains the bounded contributions to the Hes-
sian. Note that the Hessian of HVd

of Vd has the following
eigenvalues: λ1 = − 2K1

‖h‖3 , and λ2 = λ3 = K1

‖h‖3 .
We will study each obstacle type case individually:

Case 1: Vn,m is the line potential Vl,i. Then

‖∇Vl,i‖ =
1

‖(h− li)× nl‖

The Hessian HVl,i
of Vl,i has eigenvalues: λ1 = 0, λ2 =

− 1
‖(h−li)×nl‖2

, λ3 = 1
‖(h−li)×nl‖2

and let v1, v2, v3 be the
corresponding orthonormal eigenvectors.

As K1 increases, so will 1
‖(h−li)×nl‖ to maintain the crit-

ical point condition. However λ2 and λ3 will be increasing
much faster (with the square of that rate). Now assume
that for some K1, Hφ becomes degenerate. This implies
that vTi Hφvi = 0 for some i. If i = 2 or 3, then by
increasing K1, the eigenvalues λ2 and λ3 will increase much
faster and dominate, rendering vTi Hφvi 6= 0. If i = 1,
then by increasing K1, vT1 HVd

v1 will dominate rendering
vTi Hφvi 6= 0. Let Kl be the minimum value of K1, above
which the Hessian Hφ is not degenerate.

Case 2: Vn,m is the point potential Vp,i. Then

‖∇Vp,i‖ =
1

‖(h− pi)‖2

The Hessian HVp,i
of Vp,i has eigenvalues: λ1 = λ2 =

− 1
‖h−pi‖3

, and λ3 = 2
‖h−pi‖3

and let v1, v2, v3 be the
corresponding eigenvectors.

As K1 increases, so will 1
‖(h−pi)‖2

to maintain the critical
point condition. However λ1, . . . λ3 will be increasing much
faster. Now assume that for some K1, Hφ becomes degener-
ate. This implies that vTi Hφvi = 0 for some i. By increasing
K1, the eigenvalues λ1 . . . λ3 will increase much faster and
dominate, rendering vTi Hφvi 6= 0. Let Kp be the minimum
value of K1, above which the Hessian Hφ is not degenerate.

Case 3: Vn,m is the circle potential Vc,ji. Then

∇Vc,ji = K [βji]∇Aji +AjiK
′ [βji]∇βji

where Aji is defined in the proof of Lemma 2, and the
Hessian HVc,ji takes the form:

HVc,ji
= K ′ [β]

(
2
(
∇A∇Tβ

)
s

+A∇2β
)

+ . . .

+K [β]∇2A+AK ′′[b]∇β∇Tβ

where (A)s = 1
2 (A + AT ) denotes the symmetric matrix.

As can be seen from the plots in Fig. 5, K ′[x] > K[x] for
x > 0.8 and K ′′[x] > K ′[x] > K[x] for x > 0.5.

As K1 increases, β will be moving closer to 1 to maintain
the critical point condition. Let u = ∇̂β. Now assume that
for some K1, Hφ becomes degenerate. However there is
a lower bound Kc1 of K1, such that for any K1 > Kc1,
we will have that uTHφu 6= 0. This is due to the fact
that the term containing K ′′[β] will dominate. However
this establishes that the rank of Hφ is at least 2 (since φ
is harmonic). To establish that Hφ is full rank, we ne to
show that (u⊥)THφu⊥ 6= 0. Multiplying the critical point
condition with u⊥ we get:

−K1
ĥu⊥

‖h‖2
= K[β]∇Au⊥ +Ru⊥ (10)



0.2 0.4 0.6 0.8 1.0

2

4

6

K''@xD

K'@xD

K@xD

Fig. 5. Plot of the complete elliptic integral of the first kind K[
√
x] and

it’s first and second derivatives

Again as K1 is increasing, β will be approaching to 1 to
satisfy the critical point condition. Multiplying Hφ with u⊥,
we get:

(u⊥)THφu⊥ = (u⊥)T
(
HVd

+K ′[β]A∇2β + . . .

. . .+K[β]∇2A+R
)
u⊥

As K1 increases, so will K[β] to maintain the critical
point condition eq. (10). However K ′[β] will be increasing
much faster. Now assume that for some K1, (u⊥)THφu⊥ =
0. By increasing K1, the term with K ′[β] will dominate1

rendering (u⊥)THφu⊥ 6= 0. Let Kc2 be the lower bound
of K1 that (u⊥)THφu⊥ 6= 0. Then requiring K1 ≥ Kc =
max {Kc1, Kc1}, the Hessian Hφ is guaranteed to be non-
degenerate.

To complete the Morse Property analysis we need to exam-
ine the destination configuration for non-degeneracy. Since
the eigenvalues of HVd

are λρ (HVd
) = K1

‖h‖3 {−2, 1, 1},
we can write

Hφ (h→ 0) =
K1

‖h‖3
(
Hd + ‖h‖3B

)
where Hd and B are O

(
1
‖h‖

)
matrices. Also note that

∇φ (h→ 0) = − K1

‖h‖2
(
Vd0 + ‖h‖2 Vr0

)
where Vd0 and Vr0 are O

(
1
‖h‖

)
vectors. Also

φ (h→ 0) =
K1

‖h‖
(1 + ‖h‖φr0)

where φr0 is a O
(

1
‖h‖

)
variable.

The Hessian of ϕ is

Hϕ = σ′e (φ)Hφ + σ′′e (φ)∇φ∇Tφ

We have that
σ′e (x) =

1

2

1

(1 + φ2)
3/2

1Due to space constraints, linear independence of ∇β and ∇2βu⊥ as
well as the requirement that that ∇2β 6= 0 are placed as assumptions.

and
σ′′e (x) = −3

2

φ

(1 + φ2)
5/2

Taking the limit as h→ 0 we get:

Hϕ (h→ 0) =
1

2K2
1

(
Hd −

3

K1
Vd0V

T
d0

)
However Vd0V Td0 = ĥĥT that is a single eigenvector ma-
trix in the subspace spanned by the same eigenvector that
corresponds to the eigenvalue λ1 = −2 of Hd. Hence the
effect of the last term would be to enhance this eigenvalue
for the matrix Hϕ, that is thus guaranteed to be non-
degenerate at the destination configuration. Choosing K1 ≥
max {Kl, Kp, Kc} = k0 completes the proof of the Morse
Property.

Regarding Property 4: We have that ∂W is mapped to
∂WNT by Φx. By construction φ (h→WNT ) = +∞ and
φ (h→WNT ) = −∞. However function σe (·) maps −∞
to 0 and +∞ to 1, rendering Θ (·) an admissible function.

The proof is completed by setting k1 =
max

{
k0, G0

(
dmax + ε2

)}
.
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