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SUMMARY 

A micromechanical model for 3D composites with an embedded periodic grid of generally 

orthotropic reinforcements is developed and applied to anisotropic structures with cubic, 

conical and diagonal reinforcement orientations to calculate effective elastic coefficients. 

The model allows flexibility in the design of such structures with desirable coefficients by 

changing material and/or geometric parameters. 
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INTRODUCTION 

Recent years have witnessed a considerable increase in the use composite materials in 

various engineering applications such as aerospace, automotive, and marine engineering, 

medical prosthetic devices, sports, and recreational goods. Large-scale introduction of 

composite materials into novel applications can be significantly facilitated if their 

macroscopic behavior can be predicted at the design stage. Accordingly, comprehensive 

micromechanical models must be developed. To obtain more effective micromechanical 

models it is common practice to analyze composite materials using two scales, microscopic 

and macroscopic. The former recognizes the behavior and individual characteristics of the 

various constituents while the later amounts to dealing with the global behavior of 

composite material structure as an individual entity. The presence of the microscopic and 

macroscopic scales in the original problem frequently renders the pertinent partial 

differential equations extremely difficult to solve. To simplify the analysis the two scales 

are decoupled and each one handled independently; one technique that permits us to 

accomplish this is the asymptotic homogenization method. The mathematical structure of 

asymptotic homogenization can be found in Bensoussan et al [1]. Modeling of composites 

made up of inclusions embedded in a matrix has been the focus of interest of many 

researchers in the past half-century. In particular, the asymptotic homogenization method 

has been used to study periodic composite and smart structures, see e.g., Duvaut [2] and 

Caillerie [3]. A wide range of elasticity and thermoelasticity problems are examined by 

Kalamkarov [4] and the effective piezoelastic coefficients of the homogenized structure are 
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calculated by Kalamkarov and Kolpakov [5]. Kalamkarov and Georgiades [6, 7] derived 

expressions for the effective elastic, piezoelectric, and hygrothermal expansion coefficients 

for 3D periodic smart structures. Later on, a 3D micromechanical model is developed and 

applied to thin smart composite plates reinforced with a network of cylindrical 

reinforcements that may exhibit piezoelectric behaviour; see Georgiades et al [8]. 

Challagulla et al [9] developed a comprehensive 3D asymptotic homogenization model 

pertaining to periodic composite structures with isotropic reinforcements. 

This paper proposes a novel micromechanical model for 3D generally orthotropic grid-

reinforced periodic composites, see Fig. 1. 

 

Fig. 1: 3D Grid Reinforced Composite Structure 

ASYMPTPIC HOMOGENIZATION MODEL FOR 3D COMPOSITES  

General Model 

The problem is represented by a periodic structure obtained by repeating a small unit cell Y 

in a composite representing an inhomogeneous solid occupying domain Ω, see Fig. 2. 

 

Fig. 2: (a) 3D composite structure, (b) representative unit cell Y. 

The elastic deformation of this structure can be described by means of the following 

boundary-value problem:  

 
ε

ij, jxσ if   in Ω    and    ε
iu ( 0  x)  on    for  i, j = 1, 2, 3 (1) 
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In Eqs. (1) and (3) as well as in the rest of the paper we use the following short-hand 

notation for the derivatives: 
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In Eqs. (1) and (3) Cijkl is the tensor of elastic coefficients, ekl is the strain tensor which is a 

function of the displacement field ui, and, finally, fi represent body forces. It is assumed that 

the Cijkl coefficients are all periodic with a unit cell Y of dimension characterized by a small 

parameter ε and this small parameter ε is made non-dimensional by dividing the size of the 

unit cell by a certain characteristic dimension of the overall structure. Consequently, the 

periodic composite structure in Fig. 2a is seen to be made up of a large number of unit cells 

periodically arranged within the domain Ω as shown in Fig. 2b. 

Asymptotic Expansions, Governing Equations, and Unit Cell Problems 

We begin by defining the so-called “fast” or microscopic variables according to: 

 i iy x / ε ,  i = 1, 2, 3 (5) 

The boundary value problem and corresponding stress field defined in Eqs. (1) and (2) are 

transformed into the following expressions: 

 ε -1 ε

ij, jx ij, jyσ ε σ = if in    and   ε
iu 0   on  (6) 

where 

 ε
ij ijkl k,lxσ ( , C ( u ( ,x y) y) x y)  (7) 

Asymptotic expansions in terms of ε for the displacement and stress fields are next 

considered: 

 ε (0) (1) 2 (2)( , ( , ε ( , ε ( ,u x y) u x y) u x y) u x y)   (8) 

 ε (0) (1) 2 (2)
ij ij ij ijσ ( , σ ( , εσ ( , ε σ ( ,x y) x y) x y) x y)   (9) 

Substitution of Eqs. (8, 9) into Eqs.(1, 2) results, on account of Eq.(3), into the following: 
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and auxiliary functions kl
mN  are periodic in y and satisfy 
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Eq. (13) is referred to as the unit-cell problem. It depends completely on the fast variable y. 

The next step is the homogenization procedure. This is carried out by substituting (11) into 

(12), and combining the result with (10). The resulting expression is integrated over the 

domain Y of the unit cell (with volume Y ) to obtain: 

 

2 (0)
k

ijkl

j l

u
C

x x
if

x  (14) 

where the following definition is introduced: 
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The coefficients 
ijklC  denote the homogenized or effective elastic coefficients.  

3D GRID-REINFORCED COMPOSITE STRUCTURES 

A general 3D orthotropic composite reinforced with N families of reinforcements will be 

considered, see Fig. 1. It is assumed that the orthotropic reinforcements have significantly 

higher elasticity moduli than the matrix material, so we are justified in ignoring the 

contribution of the matrix phase in the analytical treatment. We first consider a simpler 

form of unit cell made of only a single reinforcement as shown in Fig. 3a. Having solved 

this, the effective elastic coefficients of structures with several families of reinforcements 

can be determined by the superposition of the solution for each of them found separately. 

One must recognize that an error will be incurred at the regions of intersection between the 

reinforcements. Nevertheless, our approximation will be quite accurate since these regions 

of intersection are very much localized and do not add significantly to the integral over the 

whole unit cell domain. To determine the effective coefficients for the simpler arrangement 

in Fig. 3a, unit cell problem in Eq. (13) must be solved and (15) must then be applied. 

Problem Formulation  

We begin with the introduction of the following notation: 

 kl kl

ij ijmn m,ny ijklb C ( N ( Cy) y)  (16) 

We assume perfect bonding conditions at the interface between the reinforcements and the 

matrix. 

 kl kl kl kl

n n ij j ij js s s s
N (r) N (m) and b (r)n b (m)n  (17) 

Here nj denote the components of the unit normal vector at the interface and the suffixes r, 

m, and s refer to the reinforcement, matrix, and reinforcement/matrix interface, 

respectively. 

Since ijmnC m  ≈ 0 and hence kl

ijb m 0 , then the interface condition (17) becomes: 

 kl

ij j s
b (r)n 0  (18) 

The unit cell problem that must be solved in combination with Eq. (17) is given by: 

 kl
ij, jyb 0  (19) 

Coordinate Transformation 

To solve the unit cell problem a coordinate transformation of the microscopic coordinate 

system y1, y2, y3  onto the new coordinate system η1, η2, η3  is performed, see Fig. 3b, 

 ij

j i

q
y η

 (20) 

where ijq  are the components of the direction cosines characterizing the axes rotation.  

Consequently, the problem at hand becomes independent of η1 and the solution order is 

reduced by one. 



  

 

Fig.3 (a) Unit cell in original coordinates, (b) rotated macroscopic coordinates. 

Method for Determining Elastic Coefficients  

Referring to Fig. 3b, Eqs. (16) and (18) are written in terms of the ηi coordinates to obtain: 

  

 kl kl

ij ijkl ijmn pn m,pb C ( ) C q N ( )y + y  (21a) 

 kl ' kl '

ij 2j 2 ij 3j 3
s

b q n (r) b q n (r) 0  (21b) 

Here '

2n , '

3n  are the components of the unit normal vector in the new coordinate system.  

Eqs. (21a) and (21b) can be solved by assuming a linear variation of the auxiliary functions 
kl

mN  with respect to η2 and η3, i.e., 

 kl kl kl kl kl kl kl kl kl

1 1 2 2 3 2 3 2 4 3 3 5 2 6 3N λ η λ η , N λ η λ η , N λ η λ η  (22) 

where kl

iλ  are constants to be determined from the boundary conditions. Accordingly, local 

functions kl
ijb  in (21a) can be written on the basis of Eq. (22) as follows: 

kl kl

1 mm11 21 mm12 22 mm13 23 2 mm11 31 mm12 32 mm13 33

kl kl kl

mm mmkl 3 mm12 21 mm22 22 mm23 23 4 mm12 31 mm22 32 mm23 33

kl kl

5 mm13 21 mm23 22 mm33 23 6 mm13 31 mm23 32 mm33 33

λ C q + C q + C q λ C q + C q + C q

b C +λ C q + C q + C q λ C q + C q + C q

λ C q + C q + C q λ C q + C q + C q

    (23) 

no summation on m 
kl kl
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kl kl kl
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kl kl
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    (24) 

with m ≠  n 

The elastic coefficients in Eqs. (23) and (24) are referenced with respect to the {y1, y2, y3} 

coordinate system and are related to the elastic coefficients 
(p)
rsvwC  associated with the 

principal material coordinate system according to: 
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From Eqs. (21b), (23) and (24) one obtains 6 linear algebraic equations for the solution of 
kl

iλ . They are: 
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m 22 m 29 m 36

A λ A 0, A λ A 0, A λ A = 0

A λ A 0, A λ A 0, A λ A = 0
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Here mA  and kl

iA  are constants which depend on the geometric parameters of the unit cell 

and the material properties of the reinforcement. Once the system of Eq. (26) is solved, the 

determined kl

iλ coefficients are substituted back into Eqs. (23) and (24) to obtain the local 

functions kl
ijb . In turn, these are used to calculate the effective elastic coefficients of the 

structure of Fig. 3b. Before closing this Section, it would not be amiss to mention that if we 

assumed polynomials of a higher order rather than linear variation for kl

mN  with respect to 

η2 and η3, then after following the aforementioned procedure and comparing terms of equal 

powers of η2 and η3, all of the terms would vanish except the linear ones. 

Effective Elastic Coefficients 

The effective elastic coefficients for the 3D grid-reinforced composite with generally 

orthotropic reinforcements are obtained from Eqs. (15) and (16): 

 kl kl
ijkl ij f ijC (AL/V)b V b  (27) 

Here kl
ijb  are elastic constants, L and A  are, repectively, the length and cross-sectional area 

of the reinforcement (in coordinates y1, y2, y3), V is the volume of the unit cell and Vf is the 

volume fraction of the reinforcement within the unit cell. It can be proved that the effective 

elastic coefficients maintain the same symmetry and convexity properites as their actual 

material counterparts, see, e.g., Bakhvalov and Panasenko [11]. Expression (27) pertains to 

grid-reinforced structures with a single family of reinforcements. For structures with more 

than one family of reinforcements the effective moduli can be found by superposition. 

Thus, the effective elastic coefficients of a grid-reinforced structure with N families of 

reinforcements are, 

 
N

(n) (n)kl
ijkl f ij

n 1

C V b  (28) 

where the superscript (n) represents the n-th reinforcement family. 

EXAMPLES OF GRID-REINFORCED STRUCTURES 

The developed micromechanical model is used to study different examples of grid-

reinforced composite structures with orthotropic reinforcements. 

Example 1: Cubic Grid-Reinforced Composite with Orthotropic Reinforcement 

This example pertains to the cubic grid-reinforced structure shown in Fig. 1. This structure 

has three families of generally orthotropic reinforcements, each family oriented along one 

of the coordinate axes. Following the determination of the local functions kl
ijb  from Eqs. 

(23) and (24), the non-vanishing elastic effective coefficients for the composite grid-

structure are given by: 



  

 
j j j

11 1 1 1 22 2 2 1 33 3 3 1C (A L / V)E ; C (A L / V)E ; C (A L / V)E    (29) 

Here, 1

j
E  is the principal Young’s modulus of the reinforcement oriented in the yj 

direction.  

Example 2: 2D Grid-Reinforced Composite 

This example validates the convergence of model for the case of 2D grid-reinforced 

structures whereby reinforcements are isotropic and lie entirely in the y1 – y2 plane. We first 

solve for kl

iλ  from Eq. (26) and then obtain the local functions kl
ijb  from Eqs. (23) and (24). 

Following that, the effective elastic coefficients (in terms of Young’s modulus of the 

reinforcement, E) are given by: 

 

4 4 2 2
11 22 12 66

3 3
16 26 ij ji

C = (AL/V)Ecos θ; C = (AL/V)Esin θ; C = C = (AL/V)Ecos θ sin θ

C = (AL/V)Ecos θ sinθ; C = (AL/V)Ecosθ sin θ; C = C

   

   
(30) 

These results are the same those obtained earlier by Kalamkarov [4], who used asymptotic 

homogenization techniques, and by Pshenichnov [12], who used a different approach based 

on stress-strain relationships in the reinforcements. 

Example 3: Conical Arrangement of Generally Orthotropic Reinforcements 

The unit cell of this structure, S1, is shown in Fig. 4a. Although, the expressions for the 

effective elastic coefficients are too lengthy to be reproduced here, some of these 

coefficients will be plotted vs. Vf  or vs. the inclination of the reinforcements with the y3.  

 

 

Example 4: Diagonally Oriented Generally Orthotropic Reinforcements 

The general unit cell of this example, S2, is formed by orienting three reinforcements as 

shown in Fig. 4b. The effective elastic coefficients can be calculated following the same 

approach as that used in the previous examples. The resulting expressions for some of the 

effective coefficients will be represented graphically in the next section. 

NUMERICAL RESULTS AND DISCUSSION 

The mathematical model and methodology presented can be used in analysis and design to 

tailor the effective elastic coefficients of any 3D composite grid structure by varying the 

Fig. 4a: Conically reinforced structure, S1. Fig. 4b: Diagonally reinforced structure, S2. 



  

material, number, orientation and cross-sectional area of the reinforcements. In this Section 

typical effective elastic coefficients will be computed and plotted. The reinforcements have 

material properties given in Table 1 [10]. 

 

Table 1: Properties of Reinforcement Material [10] 

Elastic Properties 

E1 

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

G12 

(MPa) 

G13 

(MPa) 

G23 

(MPa) 
ν12 ν13 ν23 

173058 33065 5171 9377 8274 3240 0.036 0.25 0.171 

 

Typical effective coefficients of structure S1 are plotted vs. the angle of inclination of the 

reinforcements to the y3 axis. As this angle increases, the reinforcements are oriented 

progressively closer to in the y1–y2 plane, and, consequently, further away from the y3 axis. 

Thus, one anticipates a corresponding increase in the value of 22

~
C  and a decrease in the 

value of 
33

~
C . Fig. 5 illustrates precisely this point. 

 

Fig. 5: 22C
~

, 33C
~

 vs. volume fractions/inclination of reinforcements with the y3 for S1  

We next plot some of the effective coefficients vs. the relative height of the unit cell for 

structure S2 shown in Fig. 4b. The relative height is defined as the ratio of the height to the 

length of the unit cell. Increasing the relative height will decrease the volume fraction of the 

reinforcements and at the same time will decrease the orientation angle between the 

reinforcements and the y3 axis. Both of these factors tend to reduce the stiffnesses in the y1 

and y2 directions. Fig. 6 demonstrates this point for the cases of 11C , 22C . 66C .The stiffness 

in y3 direction however increases. This is because the decrease in the angle of inclination of 

the reinforcements to the y3 axis (which increases the value of 33C
~

) dominates the decrease 

in the volume fraction.  

Volume fraction of reinforcements 

Angle of inclination (degrees) of reinforcements with y3 axis 

(0.05) 22
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Fig. 6: 11C
~

, 22C
~

, 33C
~

, and 
66C  effective coefficient vs. relative height of the unit cell for S2. 

We will also compare a typical effective coefficient of structures S1 and S2 by varying the 

overall volume fraction of the reinforcements. For S1 we do so by varying the cross-

sectional area of the reinforcements and for S2 we do so by changing the relative height of 

the unit cell. The results are shown in Fig. 7. The general trends depicted in the plot are 

logical on account of the different ways in which the volume fraction is varied. For S1 we 

increase the volume fraction by increasing the cross-sectional area of the reinforcements 

and hence we predict a corresponding increase in 33C
~

. Pertinent to S2 however, by 

decreasing the relative height of the unit cell (in order to increase the overall reinforcement 

volume ratio) we, at the same time, increase the angle of inclination of the reinforcements 

with y3. Since the reinforcements are now oriented further away from the y3 the value of 

33C
~

 is expected to decrease. Furthermore, this decrease dominates the increase in the 

stiffness value due to the volume fraction increasing. Hence, the net effect is an overall 

decrease in 33C
~

 albeit in a non-linear mode. Thus, it is seen that beyond a certain volume 

fraction, S1 is stiffer than S2 under these circumstances. This trend can of course be easily 

changed. For example, had we increased the volume fraction of S2 by simply changing the 

cross-sectional area of the reinforcements and leaving the relative height of the unit cell the 

same, then a higher volume fraction would naturally translate into larger 33C
~

 values. 

 

Fig. 7: Plot of 33C
~

 vs. total volume fraction for structures S1 (Fig. 4a) and S2 (Fig. 4b). 
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CONCLUSIONS 

The asymptotic homogenization method is used to develop a comprehensive 3D 

micromechanical model pertaining to globally anisotropic periodic composite structures 

reinforced with an embedded grid of generally orthotropic reinforcements. The general 

orthotropy of the material of reinforcements which is very significant from practical point 

of view renders the problem much more complex. The model developed transforms the 

original boundary-value problem into a much simpler one characterized by the effective 

elastic coefficients. These effective coefficients are shown to depend only on the geometric 

and material parameters of the unit cell and are free from the inhomogeneity complications 

that characterize their original material counterparts. As a consequence, they can be used to 

study a wide variety of boundary value problems associated with the composite of a given 

microstructure. The developed model is applied to different examples of orthotropic 

composite structures. 
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