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ABSTRACT 
 
In this paper, artificial neural networks (ANNs) and genetic 
algorithms (GAs) are used for the design of solar flat-plate 
collectors. It is proved in this paper that by using the 
Taguchi method for selecting the data required for training 
the ANN is very effective in allowing the network to learn 
the behavior of the system satisfactorily. The parameters on 
which the flat-plate collector design depends are the 
collector tube material, the type of collector absorbing plate 
material, the number of collector riser tubes, the collector 
riser tube diameter, the type of absorber coating and the 
thickness of the bottom insulating material. By using the 
method of Taguchi experiments three levels of six variables 
were used together with three levels of available solar 
radiation intensity (Gt) and collector inlet minus ambient 
temperature difference to estimate the collector thermal 
efficiency. Thus a total of 162 patterns were collected from 
these combinations from which 130 were used for the 
training of the ANN and the rest 32, selected randomly, 
were used to validate the training accuracy. The input 
parameters are the factors on which the collector 
performance depends, listed above, and the output 
parameters are the collector optical efficiency and the loss 
coefficient. The trained ANN was then used with a genetic 
algorithm to find the optimum combination of the values of 
the input parameters, which maximizes the collector 
efficiency estimated from the optical efficiency and the loss 
coefficient. The results obtained are very similar to the 
results achieved by other researchers using much 
complicated optimization methods, whereas the present 
method not only is very accurate but it is also very quick.  
 
 

1. INTRODUCTION 
 
The use of artificial neural networks (ANNs) and genetic 
algorithms (GAs) for the design of solar collectors is well 
known [1, 2]. In order to apply this method a number of 
collector parameters need to be used for the training of the 
ANN. These parameters must vary for a variety of sizes so 
as to allow the ANN to learn the behavior of the system 
well in order to be able to perform predictions with 
satisfactory accuracy. Subsequently, genetic algorithms are 
used to obtain the optimum combination of these parameter, 
which maximize the collector efficiency. In this paper 
instead of choosing the combination of the actual values of 
the parameters randomly, these are selected according to the 
procedures set up by using the Taguchi method. A number 
of researchers have used genetic algorithms as an 
optimisation tool for solar energy systems. 
 
Genetic algorithms have been used as a design support tool 
by Loomans and Visser [3] for the optimization of large hot 
water systems. The tool calculates the yield and the costs of 
solar hot water systems based on technical and financial 
data of the system components. The genetic algorithm 
allows for the optimization of separate variables as the 
collector type, the number of collectors, the heat storage 
capacity and the collector heat exchanger area. 
 
Kalogirou [4] also used genetic algorithms together with a 
neural network for the optimization of the design of solar 
energy systems. The method is presented using an example 
referring to an industrial process heat system. The genetic 
algorithm is used to determine the optimum values of 
collector area and the storage tank size of the system which 
minimize the solar energy price. According to the author the 
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solution reached is more accurate than the traditional trial 
and error method and the design time is reduced 
substantially. 
 
Krause et al. [5] presented a study in which two solar 
domestic hot water systems in Germany have been 
optimized by employing validated TRNSYS models in 
combination with genetic algorithms. Three different 
optimization procedures are presented. The first concerns 
the planning phase while the second concerns the operation 
of the systems and should be carried out after about one 
year of data is collected. The third procedure examines the 
daily performance considering predictions of weather and 
hot water consumption and actual temperature level in the 
storage tank. 
 
The objective of the present work is to use a genetic 
algorithm for the design of a flat-plate collector and for the 
selection of the right materials for the construction of the 
collector. The genetic algorithm is used to maximize the 
thermal efficiency of the collector estimated by the collector 
optical efficiency and the slope of the standard collector 
performance curve (heat loss coefficient) by determining 
the optimum combination of the collector tube material, the 
type of collector absorbing plate material, the number of 
collector riser tubes, the collector riser tube diameter, the 
type of absorber coating and the thickness of the bottom 
insulating material. For this purpose an evolution strategy 
based on genetic algorithms is used to determine the 
optimum solution. 
 
2. ANALYSIS 
    
In this section various relations that are required to 
determine the useful energy collected and the interaction of 
the various constructional parameters on the performance of 
a collector are presented. 
 
The useful energy collected from a collector can be 
obtained from the following formula [6]: 
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where FR is the heat removal factor given by [6]: 
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A physical interpretation of  the heat removal factor is that 
it represents the ratio of the actual useful energy gain that 
would result if the collector-absorbing surface had been at 
the local fluid temperature  
 
In Eq. (2) F΄ is the collector efficiency factor which is 
calculated by considering the temperature distribution 
between two pipes of the collector absorber and by 
assuming that the temperature gradient in the flow direction 
is negligible [6]. This analysis can be performed by 
considering a sheet tube configuration, shown in Fig. 1, 
where the distance between the tubes is W, the tube 
diameter is D and the sheet thickness is δ. As the sheet 
metal is usually made from copper or aluminum which are 
good conductors of heat, the temperature gradient through 
the sheet is negligible, therefore the region between the 
centerline separating the tubes and the tube base can be 
considered as a classical fin problem. By following this 
analysis the equation to estimate F΄ can be derived [6], 
given by: 
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A physical interpretation of F΄is that it represents the ratio 
of the actual useful energy gain to the useful energy gain 
that would result if the collector absorbing surface had been 
at the local fluid temperature.  
 
 
 

 
Fig. 1: Flat plate fin and tube configuration.

δ 
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In Equation (3), Cb is the bond conductance between the 
riser tube and absorbing plate (see Fig. 1), which can be 
estimated from knowledge of the bond thermal 
conductivity, the average bond thickness, and the bond 
width. The bond conductance can be very important in 
accurately describing the collector performance and 
generally it is necessary to have good metal-to-metal 
contact so that the bond conductance is greater that 30 
W/m-K and preferably the tube should be welded to the fin. 
 
Factor F in Eq. (3) is the standard fin efficiency for straight 
fins with rectangular profile, obtained from: 
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where n is given by: 
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The collector efficiency factor is essentially a constant 
factor for any collector design and fluid flow rate. The ratio 
of UL to Cb, the ratio of UL to hfi, and the fin efficiency F are 
the only variables appearing in Eq. (3) that may be 
functions of temperature. For most collector designs F is the 
most important of these variables in determining F΄. The 
factor F΄ is a function of UL and hfi, each of which has some 
temperature dependence, but it is not a strong function of 
temperature. Additionally, the collector efficiency factor 
decreases with increased tube center-to-center distances and 
increases with an increase in both material thicknesses and 
thermal conductivity. Increasing the overall loss coefficient, 
UL, decreases F΄ while increasing the fluid-tube heat 
transfer coefficient, hfi, increases F΄. 
 
Therefore it is obvious from the analysis presented above 
that by increasing F΄ more energy can be intercepted by the 
collector. By keeping all other factors constant an increase 
of F΄ can be obtained by decreasing W. However, decrease 
in W means increased number of tubes and therefore extra 
cost would be required for the construction of the collector.  
 
The collector efficiency is found by dividing Qu by the 
incident radiation AGt. By doing so the following Equation 
is obtained: 
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By plotting η against ∆Τ/Gt a straight line is obtained with 
the slope equal to FRUL, called the loss coefficient and the 

intercept on the y-axis, equal to FR(τα), called optical 
efficiency.  
 
3. METHOD DESCRIPTION 
 
As can be understood from the above analysis the 
parameters on which the flat-plate collector design depends 
are the collector tube material, the type of collector 
absorbing plate material, the number of collector riser tubes, 
the collector riser tube diameter, the type of absorber 
coating and the thickness of the bottom insulating material, 
which affects the heat losses from the back of the collector. 
The magnitude of the parameters applied in this work is 
shown in Table 1 in three levels except collector tube 
material for which two levels are used. Each of these levels 
carries a number of characteristics as the thermal 
conductivity for the materials and optical properties for the 
absorber coatings. 
 
The collector performance depends also on the solar 
radiation intensity and the temperature difference between 
the collector inlet and ambient temperature. For these 
parameters again three levels of data were used as shown in 
Table 2.  
 
When a full-functional orthogonal array is considered with 
the data shown in Tables 1 and 2, a total of 21x37 (4374) 
experiments are required to cover all possible combinations. 
By using the method of Taguchi experiments however, only 
18 experiments are required as shown in Table 3.  
 
Thus by applying this method, a total of 162 patterns were 
collected from the combinations shown in Table 3. i.e., for 
each row of the vertical columns (18 data) they were 9 
combinations of the horizontal data of radiation and 
temperature (18x9=162). All estimations were performed 
using CoDePro (collector design program) software. The 
actual data used here were obtained from Ref. [7]. From 
these patterns, 130 were used for the training of the ANN 
and the rest 32, selected randomly, were used to validate the 
training accuracy. The input parameters are the factors on 
which the collector performance depends, listed in Tables 1 
and 2, and the output parameters are the collector optical 
efficiency, FR(τα) (intercept on the y-axis of the collector 
performance curve) and the loss coefficient, FRUL (slope of 
the collector performance curve). A sample of the training 
data set is shown in Table 4. 
 
ANN models represent a new method in system prediction. 
An ANN operates like a “black box” model, requiring no 
detailed information about the system. Instead, they learn 
the relationship between the input parameters and the 
controlled and uncontrolled variables by studying 
previously recorded data, similar to the way in which a non-
linear regression might perform. [8]. 
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TABLE 1: PARAMETERS ON WHICH THE FLAT-PLATE COLLECTOR PERFORMANCE DEPEND 
 

Parameter Level 1 Level 2 Level 3 
A. Collector tube material  
B. Collector absorbing plate material  
C. Number of collector riser tubes 
D. Collector riser tube diameter 
E. Type of absorber coating  
F. Thickness of bottom insulation 

Copper 
Aluminum 

8 
3 

Tinox 
2.5 

Stainless steel 
Copper 

11 
4 

Vacuum spattering 
3.8 

- 
Stainless steel 

14 
5 

Spray painting 
5 

 
TABLE 2: COLLECTOR OPERATING CONDITIONS 

 
Parameter Level 1 Level 2 Level 3 
P. Solar radiation intensity (W/m2) 
Q. Temperature [=Ti-Ta] (°C) 

800 
10 

900 
20 

1000 
30 

 
TABLE 3: EXPERIMENTAL FACTORS OF THE COLLECTOR AS OBTAINED BY THE TAGUCHI METHOD 

 
      P 1 1 1 2 2 2 3 3 3 
      Q 1 2 3 1 2 3 1 2 3 
No. A B C D E F 1 2 3 4 5 6 7 8 9 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
2 
3 
1 
2 
3 
2 
3 
1 
3 
1 
2 
2 
3 
1 
3 
1 
2 

1 
2 
3 
2 
3 
1 
1 
2 
3 
3 
1 
2 
3 
1 
2 
2 
3 
1 

1 
2 
3 
2 
3 
1 
3 
1 
2 
2 
3 
1 
1 
2 
3 
3 
1 
2 

  
 
 
 
The numbers in the various parameters represent the 
level of the parameter according to Tables 1 and 2. 

 
TABLE 4: A SAMPLE OF THE TRAINING DATA SET 

 
Input parameters Output parameters 

A B C D E F P Q FR(τα) FRUL 
1 
1 
1 
1 
1 
1 
1 
1 
1 

…. 

1 
1 
1 
1 
1 
1 
1 
1 
1 

…. 

8 
8 
8 
8 
8 
8 
8 
8 
8 

… 

3 
3 
3 
3 
3 
3 
3 
3 
3 

… 

1 
1 
1 
1 
1 
1 
1 
1 
1 

…. 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
…. 

800 
800 
800 
900 
900 
900 
1000 
1000 
1000 
… 

10 
20 
30 
10 
20 
30 
10 
20 
30 
… 

0.7584 
0.7586 
0.7595 
0.7578 
0.7581 
0.7589 
0.7572 
0.7576 
0.7383 

….. 

4.679 
4.658 
4.636 
4.677 
4.660 
4.638 
4.678 
4.661 
4.639 
…. 
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Fig. 2: The employed neural network architecture. 
 
Various network architectures have been investigated to 
find the one that could provide the best overall performance. 
The architecture, among those tested, that gave the best 
results and was adopted for the present work, is a multilayer 
back-propagation ANN, shown in Fig. 2. This architecture 
has been used in a number of engineering problems for 
modeling and prediction, with very good results, and it is a 
feedforward architecture composed of five slabs, three of 
which are hidden [8]. There are different activation 
functions in each slab so as to detect different featureds in a 
pattern processed through the network. Eight element inputs 
have been used corresponding to the values of the input 
parameters listed above. The learning procedure was 
implemented by using the back-propagation algorithm. The 
learning rate was set to a constant value of 0.1 and the 
momentum factor to 0.3. The weights were initialized to a 
value of 0.3. The back-propagation learning algorithm and 
the architecture employed are described in [9]. 
 
It should be noted that as shown in Table 4 numbers are 
used to differentiate the different inputs for parameters A, 
B, D and E, whereas for the other parameters actual input 

data were used. The training was performed with a 
satisfactory accuracy with correlation coefficients equal to 
0.9914 and 0.9886 for the two parameters respectively, 
which are very satisfactory as they are very close to unity. 
The results also show that 94% of the data are within 5% 
error, which is also very satisfactory. As this accuracy is 
based to a large extent on the data used to train the ANN, 
the selection of the training data with the Taguchi method 
seems to be very effective. 
 
4. GENETIC ALGORITHM 
 
The genetic algorithm (GA) is a model of machine learning, 
which derives its behavior from a representation of the 
processes of evolution in nature. This is done by the 
creation within a machine/computer of a population of 
individuals represented by chromosomes. Essentially these 
are a set of character strings that are analogous to the 
chromosomes that we see in the DNA of human beings. The 
individuals in the population then go through a process of 
evolution. 
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In an over simplified consideration, at the molecular level 
what happens is that a pair of chromosomes bump into one 
another, exchange chunks of genetic information and drift 
apart. This is the recombination operation, which in GAs is 
generally referred to as crossover because of the way that 
genetic material crosses over from one chromosome to 
another. 
 
The crossover operation happens in an environment where 
the selection of who gets to mate is a function of the fitness 
of the individual, i.e. how good the individual is at 
competing in its environment. Some GAs use a simple 
function of the fitness measure to select individuals 
(probabilistically) to undergo genetic operations such as 
crossover or asexual reproduction, i.e., the propagation of 
genetic material remains unaltered. This is fitness - 
proportionate selection. Other implementations use a model 
in which certain randomly selected individuals in a 
subgroup compete and the fittest is selected. This is called 
tournament selection. The two processes that most 
contribute to evolution are crossover and fitness based 
selection/reproduction. Mutation also plays a role in this 
process.  
 
GAs are used for a number of different application areas. 
An example of this would be multidimensional optimization 
problems in which the character string of the chromosome 
can be used to encode the values for the different 
parameters being optimized. In practice, therefore, this 
genetic model of computation can be implemented by 
having arrays of bits or characters to represent the 
chromosomes. Simple bit manipulation operations allow the 
implementation of crossover, mutation and other operations.  
 
When the GA is executed, it is usually done in a manner 
that involves the following cycle [10]. Evaluate the fitness 
of all of the individuals in the population. Create a new 
population by performing operations such as crossover, 
fitness-proportionate reproduction and mutation on the 
individuals whose fitness has just been measured. Discard 
the old population and iterate using the new population. One 
iteration of this loop is referred to as a generation. More 
details on genetic algorithms can be found in Goldberg [11]. 
 
Genetic algorithms (GA) are suitable for finding the 
optimum solution in problems were a fitness function is 
present. Genetic algorithms use a “fitness” measure to 
determine which of the individuals in the population survive 
and reproduce. Thus, survival of the fittest causes good 
solutions to progress. A genetic algorithm works by 
selective breeding of a population of “individuals”, each of 
which could be a potential solution to the problem. The 
genetic algorithm is seeking to breed an individual, which 
either maximizes, minimizes or it is focused on a particular 
solution of a problem. In this case, the genetic algorithm is 

seeking to breed an individual that maximizes the collector 
efficiency. 
 
The larger the breeding pool size, the greater the potential 
of it producing a better individual.  However, the fitness 
value produced by every individual must be compared with 
all other fitness values of all the other individuals on every 
reproductive cycle, so larger breeding pools take longer 
time. After testing all of the individuals in the pool, a new 
“generation” of individuals is produced.  
 
During the setting up of the GA the user has to specify the 
adjustable chromosomes, i.e. the parameters that would be 
modified during evolution to obtain the maximum or 
minimum values of the fitness functions. In this work, the 
fitness function used was the collector efficiency. 
Additionally the user has to specify the range of the input 
parameters called constraints.  
 
The genetic algorithm parameters used in the present work 
are: 
 

 Population size=50 
Population size is the size of the genetic breeding pool, i.e., 
the number of individuals contained in the pool. If this 
parameter is set to a small value, there would not be enough 
different kinds of individuals to solve the problem 
satisfactorily. On the other hand, if there are too many in the 
population, a good solution will take longer to be found 
because the fitness function must be calculated for every 
individual in every generation. 
 

 Crossover rate=90% 
Crossover rate determines the probability that the crossover 
operator will be applied to a particular chromosome during 
a generation. 
 

 Mutation rate=1% 
Mutation rate determines the probability that the mutation 
operator will be applied to a particular chromosome during 
a generation. 
 

 Generation gap=96% 
Generation gap determines the fraction of those individuals 
that do not go into the next generation. It is sometimes 
desirable that individuals in the population be allowed to go 
into next generation. This is especially important if 
individuals selected are the most fit ones in the population. 
 

 Chromosome type=continuous 
Populations are composed of individuals, and individuals 
are composed of chromosomes, which are equivalent to 
variables. Chromosomes are composed of smaller units 
called genes. There are two types of chromosomes, 
continuous and enumerated. Continuous are implemented in 
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the computer as binary bits.  The two distinct values of a 
gene, 0 and 1, are called alleles. Multiple chromosomes 
make up the individual. Each partition is one chromosome, 
each binary bit is a gene, and the value of each bit (e.g., 1, 
0, 0, 1, 1, 0) is an allele. Enumerated chromosomes consist 
of genes, which can have more allele values than just 0 and 
1. There are two different types of enumerated 
chromosomes; ‘repeating genes’ and ‘unique genes’. 
Unique genes have to be used in cases that each gene is 
used only once and repeating genes where chromosomes 
can have repeating genes. 
 
The genetic algorithm is usually stopped after the best 
fitness remained unchanged for a number of generations or 
when the optimum solution is reached. In this work the 
genetic algorithm was stopped after the best fitness 
remained unchanged for 75 generations. 
 
5. RESULTS 
 
The input parameters (adjustable chromosomes) were used 
in combination with a genetic algorithm program to find the 
values that maximize collector efficiency, estimated from 
the collector optical efficiency and the collector loss 
coefficient. These parameters were constrained to move 
within the values shown in Tables 1 and 2. The whole 
model was set – up in a spreadsheet program in which the 
various parameters are entered into different cells. The 
estimated values of collector optical efficiency (intercept on 
the y-axis of the collector performance curve [=FR(τα)]) and 
loss coefficient (slope of the collector performance curve [= 
FRUL]) were used in Eq. (6) to estimate the collector 
efficiency which is the fitness function that needs to be 
maximized. 
 
The optimum combination of parameters obtained from the 
GA are shown in Table 5. 
 
TABLE 5: OPTIMUM COMBINATION OF 
PARAMETERS OBTAINED FROM THE GA 
 

Parameter Value 
A. Collector tube material  
B. Collector absorbing plate material  
C. Number of collector riser tubes 
D. Collector riser tube diameter 
E. Type of absorber coating  
F. Thickness of bottom insulation 

Copper 
Copper 
11 
9mm 
Tinox 
50mm 

 
These parameters result in an optimum efficiency that 
depends on the magnitude of the solar radiation available. 
For the three values of solar radiation considered the results 
shown in Table 6 are obtained. It should be noted that for 
each run of the program the optimum solution was reached 

in less than 5 seconds on a Pentium 3.2 GHz machine, 
which is very fast. 
 
TABLE 6: COLLECTOR EFFICIENCY AT VARIOUS 
VALUES OF SOLAR RADIATION 
 

Solar radiation (W/m2) Efficiency 
800 
900 
1000 

0.7536 
0.7581 
0.7614 

 
6. CONCLUSIONS 
 
It is proved that this way of selecting the variety of training 
parameters with the Taguchi method is very effective in 
allowing the ANN to learn the behavior of the system 
satisfactorily. 
 
To find the optimum parameters a genetic algorithm is used. 
The results showed that the optimum parameters are copper 
for the collector riser tube and absorbing plate material, 11 
riser tubes, 9 mm riser tube diameter, Tinox absorber 
coating and 50 mm bottom insulating material. The results 
obtained are very similar to the results obtained by other 
researchers using much complicated optimization methods, 
like the grey relational analysis, whereas the present method 
not only is very accurate but it is also very quick.  
 
7. NOMENCLATURE 
 
A Collector area, m2 
cp  Specific heat capacity, J/kg-K 
D  Riser tube outside diameter, m 
Di  Riser tube inside diameter, m 
F΄ Collector efficiency factor 
F Fin efficiency 
FR Heat removal factor 
Gt  Solar radiation, W/m2 
hfi  Heat transfer coefficient inside absorber tube, 

W/m2-K 
k  Absorber thermal conductivity, W/m-K 
m  Mass flow rate, kg/s 
N Number of riser tubes 
Qu Rate of useful energy collected, W 
Ta Ambient temperature, K 
Ti Collector inlet temperature, K 
UL  Overall heat loss coefficient, W/m2-K 
W  Distance between riser tubes, m  
 
Greek 
δ  Absorber (fin) thickness, m 
∆T  Temperature difference [=Ti-Ta], K 
τα  Transmittance-absorptance product  
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