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Abstract 

The Attentional Blink refers to the finding that the perception of a target stimulus is often 

impaired when it is presented within a temporal window of 200-500 ms following another 

successfully-perceived stimulus. This interesting phenomenon has attracted much research in the 

fields of attention and perception but has also inspired the implementation of several 

computational models. In the present study we have implemented a model of selective attention 

that is capable of modelling a variety of findings related to the Attentional Blink. Importantly, 

the model produces synchronization of neural activity to simulate the interaction between a low-

level visual system and a high-level goal-maintenance system during the deployment of 

attention. Synchronization of neural activity within and across brain areas is typically observed 

when carrying out various tasks that involve the attentional processing of information. Thus, the 

model provides a neurally and computationally plausible account for the Attentional Blink and 

potentially other attentional tasks.   

Keywords: Neural Network, coincidence detector neurons, visual selective attention, Attentional 

Blink. 
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1. Introduction 

Performing the various tasks of daily life entails selecting from the vast amount of 

information registered by our sensory systems only what is relevant to the task at hand and 

discarding the rest.  The mechanism that allows us to do so is generally known as selective 

attention. Selective attention is often portrayed as a gatekeeper responsible for selecting which 

stimuli will gain access to a capacity-limited memory store known as working memory (Awh, et 

al. 2006).  Information represented in working memory is used to control behavior, e.g., to 

prepare and execute motor responses, produce verbal responses etc. Attention can be guided on 

the basis of both top-down and bottom-up information reflecting the interplay of external 

stimulation with internal motivations.  Buschman and Miller (2007) have shown that volitional 

shifts of attention are associated with neural signals in the prefrontal cortex while the exogenous 

orienting of attention correlates with activity in the visual cortex of the brain. 

A number of recent neurophysiological studies have shown that synchronization of neural 

activity in the brain occurs during the deployment of selective attention (Gruber et al., 1999; 

Steinmetz et al., 2000). For example, Fries et al. (2001) found increased gamma frequency 

synchronization (i.e., synchronized activity at around 40Hz) of neurons in area V4 of the brain of 

macaque monkeys when they attended target stimuli.  Increased synchronization of neural 

activity is also observed across brain areas, reflecting possibly top-down influences on the 

control of attention. For example, Saalmann et al. (2007) recorded neural activity simultaneously 

from the posterior parietal cortex as well as an earlier area in the visual pathway of the brain of 

macaques during the execution of a visual matching task. Findings revealed synchronization of 
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the activity in the two regions when the monkeys selectively attended a location. More recently, 

Gregoriou et al. (2009) have provided evidence for enhanced oscillatory coupling between area 

V4 and an area in the prefrontal cortex known as the frontal eye field (FEF) when attending a 

stimulus.   These findings are compatible with Grossberg´s (1999) conjecture that the temporal 

patterning of activities could be ideally suited to achieve matching of top–down predictions with 

bottom–up inputs.  Synchronization is typically found in the gamma frequency range (30-80Hz) 

and reflects oscillatory bursts that are loosely locked to the stimulus (i.e., their latency varies 

from trial to trial).  This synchronization, also known as the induced-gamma response, may more 

generally underlie the construction of object representations by binding activity from different 

areas of the brain (Tallon-Baudry & Bertrand, 1999).  

In the present study we have developed and implemented through appropriate simulations a 

model of selective attention that produces synchronization of neural activity to model the 

interaction between a low-level visual system and a high-level goal-maintenance system. The 

model is used to simulate the main findings from a well known phenomenon in the field of 

selective attention, known as the Attentional Blink (AB), (Raymond, et al. 1992).  

The AB occurs when the Rapid Serial Visual Presentation (RSVP) is used to present stimuli at 

a speeded rate of about 100ms. Participants are asked for example to identify letter targets among 

number distractors within the sequence of presented stimuli (Figure 1; Chun & Potter, 1995).  

 

[Insert FIGURE 1 here] 

 

The AB refers to the findings that when 2 targets are presented among a sequence of 

distractors, the correct identification of the 1st target (T1) impairs the identification of the 2nd 
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target (T2), provided that T2 appears within a brief temporal window 200-500 ms following T1. 

In the cases where T2 is presented outside this temporal window, it is normally identified. 

Remarkably, when T2 follows T1 immediately, no AB is observed; this finding is known as Lag-

1 Sparing. Figure 2 depicts the percentage of correct T2 reports as a function of the Stimulus 

Onset Asynchrony (SOA; i.e., the temporal interval between T1 and T2). 

 

[Insert FIGURE 2 here] 

 

Several theories as well as computational models have been formulated to account for both 

the AB and Lag-1 sparing. Although a comprehensive review is beyond the scope of this paper, 

the most popular models are reviewed next. 

 

2. Previous theoretical accounts for the Attentional Blink 

Raymond et al. (1992) initially proposed an inhibition model to explain the AB phenomenon. 

According to this model, while T1 is being processed any further visual processing is inhibited. 

This inhibition prevents confusion of T1 with other stimuli. In essence, the model suggests that 

all stimuli that are presented during the period of inhibition are not processed at all. However, 

this suggestion is not supported by empirical research. As Isaak et al. (1999) pointed out; several 

studies provide evidence that stimuli following T1 are semantically processed. For example, in a 

study recording Event-Related Potentials (ERPs), Luck et al. (1996) had participants report 

whether T2 matched semantically a word stimulus that was presented before the RSVP sequence. 

Although identification of T2 was reduced when it followed T1 by 250 ms, an N400 ERP 

component for T2 was still observed. As the N400 is generally considered an index of semantic 
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mismatch, its presence suggests that T2, despite not being detected, was nevertheless 

semantically processed.  

Isaak, et al. (1999) proposed an alternative model to account for empirical findings on the 

AB. This model, which is based on the interference between the neural activities of stimuli, 

assumes that representations of presented stimuli are created and compared to internal templates 

that define the features of the targets. When a match occurs between a stimulus and a template, 

the perceptual and conceptual characteristics of the stimulus receive further processing for which 

a pool of limited resources is engaged. This processing is assumed to take about 500 ms and has 

been termed by Ward et al. (1996) as the attentional dwell time. According to Isaak et al. (1999), 

all items that are presented within this dwell time compete for access to short-term memory.  

Therefore, T2 has to overcome strong interference from the distractors that precede it as well as 

any distractors that follow it within the dwell time. As a result of this interference, an incorrect 

item may often be selected for report in lieu of T2.  

Chun and Potter (1995) proposed a two-stage model for the AB. During the first stage of 

rapid detection all stimuli are processed and their features are analyzed. Transient conceptual 

representations are thus constructed in this stage for all stimuli and potential targets are selected. 

The second stage of the model involves additional limited-capacity processing that is required to 

build a more enduring representation of the target. An important assumption for this model is 

that this second-stage processing cannot begin unless the first-stage processing is concluded. As 

a result, when T2 is presented within the 200-500 ms temporal window, it can be detected by the 

first-stage but its second-stage processing is delayed until T1 is fully processed. This delay, 

however, increases the probability that T2´s representation fades from the system. Thus, Chun 
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and Potter (1995) attribute the AB deficit to the processing that is needed to consolidate T1 in 

memory.  

It is noted that there is a similarity between the models of both Isaak et al. (1999) and Chun 

and Potter (1995) in that they both explain the AB on the basis of resource depletion. That is, 

they assume that a limited processing resource is allocated to T1 with spare resources spreading 

towards other stimuli only when available. However, as pointed out by Di Lollo et al. (2005) 

resource depletion models predict a monotonic decrease of the AB effect as lags progress instead 

of the non-monotonic U-shaped functions that are typically reported by RSVP experiments. That 

is, these models cannot account for Lag-1 Sparing, at least without any additional assumptions. 

Lag-1 Sparing can be accounted by these models by allowing for the simultaneous (or near-

simultaneous) processing of T1 and T2. In the case of the Isaak et al.´s (1999) model this is 

achieved by postulating the presence of an attentional gate that opens rapidly when T1 is 

presented but closes rather sluggishly allowing thus the stimulus at Lag 2 to enter.  

Di Lollo et al (2005) proposed an alternative model to explain for the AB. The model 

attributes AB to the temporary loss of control (TLC). Specifically, Di Lollo et al. suggested that 

in the RSVP paradigm the system responsible for processing visual input is initially configured 

based on endogenous signals to anticipate the features of T1. Once T1 is presented, the system is 

involved in stimulus processing and cannot therefore issue endogenous control signals in order to 

reconfigure its filter to the features of the T2. However, during this time, exogenous information 

can modify the filter. If T2 has similar features with T1 and is presented at Lag 1 then it can be 

processed based on the filter´s initial configuration. However, if a distractor is presented at Lag 1 

then the filter is altered exogenously, so if T2 is presented at Lag 2 it will no longer be detected. 

In a series of behaviour experiments Di Lollo et al. (2005) provided evidence for the TLC 
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hypothesis.  An aspect of this model that is important for the goals of the computational model 

we have implemented here, is the fact that it explains the AB effect and Lag-1 Sparing by 

proposing an interaction between bottom-up information contained in the visual input and 

higher-order endogenous signals representing expectations. These signals presumably originate 

at higher brain regions such as the prefrontal cortex. 

 

3. Computational models for the AB 

In addition to the various theoretical accounts for the AB, several computational models have 

been implemented to simulate the AB findings.  

One such model is the CODAM model which was proposed by Taylor (2002) and was used 

to simulate findings from the AB by Fragopanagos, Kockelkoren, and Taylor (2005). An 

important assumption in the CODAM model is that attention functions in the brain as a general 

control system; therefore, a control engineering approach is followed in the model. The model in 

its initial form is composed by several modules on the basis of neurobiological theories of 

attention. First, the Input Module represents the neural activity at very early stages of visual 

hierarchy and it has its output directly connected to the Object Map, where the specific neural 

activity representing information is registered.  The Input Module also activates the Goals 

Module which guides the top-down deployment of attention. An Inverse Model Controller (IMC) 

is also included to generate an attention control signal for the amplification of the attended 

stimulus activity based on the activity in the Goals Module.  The model contains also a Working 

Memory buffer whose contents define what information is available for report as well as a 

Corollary Discharge buffer which uses a copy of the attention control signal in order to predict 

forthcoming input by pre-activating the buffer working memory site.  Finally, a Monitor Module 
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provides a measure of the error occurring during an attention movement by comparing actual and 

desired attentional movements. 

The CODAM model simulates the AB effect by allowing inhibitory signals towards the 

Corollary Discharge nodes during the time the Working Memory module is occupied.  As a 

result, when T1 is active in working memory, all Corollary Discharge nodes are turned off. 

This prevents other stimuli getting through and interfering with the processing of the first target. 

Therefore, if T2  appears within the specific time window when the Corollary Discharge nodes 

are ineffective, there will be no Working Memory pre-activation for the second target and thus it 

will not be able to reach awareness. 

Another influential AB model is the Simultaneous Type/Serial Token model (ST2) proposed 

by Bowman and Wyble (2007).  The model consists of two processing stages of neural activity 

representing visual stimuli. The first stage includes parallel visual processing while the second 

stage encodes information into working memory in a serial manner.  In order to encode the 

visual stimuli the model employs two factors referred to as types. These types provide 

information about the feature properties of an item as well as tokens to mark the occurrence of 

visual stimuli. In the ST2 model the first stage is responsible for implementing the standard 

visual processing. That is, during this stage the visual features of stimuli are extracted and each 

stimulus is semantically categorized.  As processing during the first stage takes place in a parallel 

manner, it allows the system to process simultaneously multiple items with little interference 

between them. However, a durable representation and thus access to working memory is only 

created when an item makes it to the second stage. Thus, the second stage can be considered as 

the entrance to working memory and in contrast to the first stage, it imposes sequentially 

constraints. These constrains arise due to the fact that the system attempts to associate items with 
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discrete episodic contexts. Between the first and the second stage there is a salience filter which 

can be seen as an intermediate component responsible for enhancing task-relevant items and 

enabling them to progress into the second stage. Additionally, the saliency filter ensures that 

task-irrelevant items do not reach Stage 2. However, despite the amplification of the neural 

activity of a salient item by the salience filter, the authors of the model suggest an additional 

mechanism similar to the control signal suggested by the CODAM model. More precisely, when 

an item passes the salience filter in a strongly active form, a separate mechanism represented by 

the Transient Attentional Enhancement (TAE) will provide a temporally brief (but spatially 

specific) enhancement. This helps the item to proceed into a later level of Stage 1 and 

subsequently to encode into Working Memory. The TAE in the model is realized with a 

mechanism that the authors termed the blaster. For the simulations of the AB, the first target 

initially triggers the blaster. The blaster will then enhance the first target (T1) as well as a 

subsequent item before it is held offline as long as it is necessary for T1 to be encoded. This 

takes place so that the second target (T2) is prevented from interfering with T1.  Thus, if T2 

arrives during this time it will not get benefit of the blaster enhancement, with a result to not 

reach awareness. 

A model that uses a slightly different approach than the CODAM and the ST2 models is the 

Global Workspace Model of Dehaene, Sergent and Changeux (2003).  This model is biologically 

detailed and anatomically prescribed. The general functionality of the model is based on the 

competition between stimuli to engage a global workspace access. However, stimuli first need to 

pass through neural processing pathways that originate from early sensory regions to higher 

association areas of the temporal, parietal, frontal, and cingulated cortex. The authors suggest 

that when a stimulus accesses a sufficient number of workspace neurons, the activity of the 
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neurons becomes self-sustained. Thus, it can be broadcasted via long-distance connections to 

different areas and create therefore a global and exclusive availability for a specific stimulus. At 

this point, the stimulus is considered as having reached consciousness.  Another important 

characteristic of the model is the inhibition that is exerted by neurons which process a stimulus 

that has accessed workspace towards other surrounding workspace neurons, which makes the 

latter unavailable for processing other stimuli. Unlike the CODAM and the ST2 models, the 

Global Workspace Model has no control signal to amplify neural activity. Instead, when intrinsic 

fluctuations are in phase with stimulus presentation, the total activation is enhanced. This results 

in biasing neurons of adjacent areas and therefore increasing the probability for the entire 

network to fall in a global active state. Furthermore, global activity can be more easily achieved 

when there is ‘‘resonance’’ between bottom-up sensory information and top-down signals.  

Recently, Taatgen (2009) implemented using the ACT-R cognitive architecture a model for 

the AB that attributes the effect to an overexertion of cognitive control. ACT-R includes a 

procedural memory store that contains production rules in the form of “if....then” statements. 

According to this model, while a target is being consolidated in memory, a production rule fires 

to inhibit target detection. As a result, no target can be detected while other information is being 

consolidated.  The model of Taatgen (2009) is thus similar to other models of AB (e.g., the 

CODAM model) in that it includes a mechanism that postpones the processing of other 

information while T1 is processed. A similar mechanism is included in the present model which 

is described next. 

 

4. The proposed synchronization model of the AB 

4.1 Overview 
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In line with Global Workspace Model of Dehaene et al. (2003), the proposed model is 

constructed with the assumption that the resonance of incoming stimuli with spontaneous or top-

down brain activity is essential to create a perception. In contrast with the Global Workspace 

Model, our model generates a control signal for amplifying the neural activity of the stimulus 

that is to be selected, similar with the provisions of the CODAM (Fragopanos et al., 2005) and 

ST2 (Bowman & Wyble, 2007) models. In addition, our model provides a mechanism that allows 

the temporary suppression of target detection while working memory is occupied; such a 

mechanism is included in both the CODAM model and the threaded cognition model of Taatgen 

(2009). The novelty of the proposed model is that it models various empirical findings related to 

the AB while producing synchronization of neural activity during the deployment of attention. 

As discussed in the introduction, the presence of synchronization is reported by many 

neurophysiological studies and it have even been proposed as the activity underlying the 

construction of object representations (Tallon-Baudry & Bertrand, 1999). Thus, the present 

model relies on previous accounts for the AB but also on what is currently known about the 

processing of visual stimuli by the brain, to provide biologically-plausible explanation for the 

main findings on the AB. The model is presented schematically in Figure 3. 

 

[Insert FIGURE 3 here] 

 

The model comprises of two processing stages. The first stage is responsible for the initial 

processing of visual stimuli based on the saliency filters in the primary visual cortices while the 

second stage of processing is more related to top-down interference. Stimuli are represented as 

spike trains whose bins are marked with 1´s and 0´s representing the presence or absence of an 
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action potential (see section 3.2.2). The saliency of stimuli determines the firing rates (i.e., the 

frequency of spikes) of the spike trains that represent the stimuli. To that respect, the primary 

visual cortices can be regarded as a saliency map for incoming stimuli (Zhaoping 1999). 

Encoded stimuli compete for access to working memory with forward and lateral inhibition 

among stimuli influencing the strength of the neural response.  In the second stage of processing, 

information from the first stage passes through the semantic correlation control module. In this 

stage of processing, a network comprised of integrate and fire neurons combined with 

coincidence detection neurons measures the degree of correlation between the neural activity 

representing visual stimuli and that of a module that maintains the current goals.  Based on the 

degree of correlation a control signal is generated in this module which can be linked to the 

combined firing of a neural network.  Therefore, an amplification or attenuation of the neural 

activity that corresponds to each incoming stimulus could take place depending on the control 

signal.  Subsequently, a specific working memory node will be excited causing inhibition to 

other working memory nodes. After a specific threshold is passed, the working memory node 

will fire an action potential to represent the perceptual awareness of a specific visual stimulus 

and the preparation of a response.  

 

4.2 Detailed description of the model 

The two systems of the model correspond to the early visual areas at the occipital regions of 

the brain (e.g.,V1) and the more high-order fronto-parietal network responsible for maintaining 

goal-directed activity. The interaction of these two systems is accompanied by synchronization 

of neural activity and results to the selection of particular stimuli for further processing. Thus, 

selective attention is modelled as the interaction between the processing of low-level information 
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and the maintenance of endogenous expectations.  We now discuss the main aspects of the 

model. 

 

3.2.1. Neural elements of the model 

The basic computational units used in the model are simple graded response neurons with a 

membrane equation 

 

      Eq.1 

 

where V is the membrane potential of each neuron and τm is the time constant.  

 

The membrane potential can be seen as a measure of the extent to which a node is excited.  

In equation 1,  corresponds to a leak current that drives the node’s membrane potential 

towards the resting potential. The total current I  is a simple combination of excitation and bias 

currents that cause increase of the membrane potential as well as inhibition currents that reduce 

the  membrane  potential  of the node. The total summation of the excitatory and inhibitory 

currents influences (based on the corresponding weight) the actual membrane potential at each 

time instance.   is the total membrane resistance of the neuron.   

The generation of a spike, is described by a single rule:  whenever V exceeds a specific 

threshold ( ), a spike is emitted and V resets to its initial condition or resting potential . 

After that, V evolves according to the solution of the differential equation 5.1 which is shown in 

equation 2 below.    

       Eq.2 
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For the present simulations, the following values have been used: 

  

  

  

  

 

Additionally, an absolute refractory period of 2 ms was applied at each time a neuron fired a 

spike. 

In the second stage of processing the model contains coincidence detection neurons. 

Coincidence detection is a very simplified model of neuron, which fires only if it receives two or 

more simultaneous inputs. In the traditional view, coincidence detector neurons can be modelled 

with a very short membrane time constant τm so that the membrane potential can change rapidly. 

Another way to model coincidence detection can be based on separate inputs converging on a 

common target. For example let´s consider a basic neural circuit of two input neurons with 

excitatory synaptic terminals, A and B converging on a single output neuron, C (Figure 4). If we 

assume that each spike is represented by a pulse with amplitude equal to1 then the coincidence 

detector neuron C will only fire if its input is greater than 1.  

 

[Insert Figure 4 here] 

  

3.2.2. Temporal coding of input 
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Each stimulus that enters the visual field is represented by a stream of binary events (called spike 

trains) that represent the occurrence of an action potential or a spike, with 1s and 0s signifying 

respectively the presence or the absence of a potential. Two important factors determine the 

pattern of spike trains. First, the firing rate or the frequency of spikes is determined based on the 

saliency of the stimulus. Second, the exact timing with which each spike appears is produced by 

representing each visual stimulus as a 10 ms sequence of 1s (spike) or a 0s (no-spike) occurring 

at every millisecond (Figure 5).  

 

[Insert Figure 5 here] 

 

As the correlation control module of the second stage of processing relies on the consequences of 

this temporal coding, it is important for the simulations to generate sets of synthetic spike trains 

with controlled rates and cross-correlations. The methodology used for the generation of the 

spike trains to represent each incoming stimulus follows the algorithm proposed by Niebur 

(2007) and Mikula and Niebur (2008). This algorithm generates spike trains whose mean rates as 

well as the cross-correlations of pairs of spike trains are free parameters that can be selected 

independently. The cross-correlation between any two of these spike trains can be selected to be 

minimal indicating completely independent spike trains or maximal representing identical spike 

trains. More specifically, it is assumed that all time bins (or firing times) are independent and 

that each spike train consists of a series of 0s and 1s. If for example we consider two spike trains 

A and B those can be seen as a Bernoulli processes, with the probability pA = <A> for spike 

train A to have the value 1 in each time bin (0 ≤ pA ≤ 1) and 0 occurring with probability 1−pA. 

In the same manner, spike train B can be generated. If now it is desired that these two spike 
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trains have a specific degree of correlation between them, the state of spike train A can be 

switched (with a probability q) to that of B. That is, each bin in spike train A has a probability q 

to have the same state as the spike train B.  

 

3.2.3. Representation at the Primary visual cortices (First stage of processing).  

The spike trains that represent each incoming stimulus were generated based on a certain 

probability as explained in the previous section, defining thus their initial firing rate.  Both 

targets and distractors were generated with the same probability to have a spike at each time bin, 

since both have the same saliency (i.e., they have the same brightness, intensity etc.).  

In the first stage of processing, every stimulus that enters the visual receptive field, will try to 

“win” the race to access working memory. Therefore it acts in an inhibitory manner towards all 

the other competing stimuli. In the RSVP paradigm used for the AB experiments each incoming 

stimulus will receive inhibition from the stimuli that appeared before it as well as those that 

follow. This assumption is consistent with several studies of single cell recordings (e.g., Keysers 

& Perrett, 2002, Rolls et al. 1999) that show the effect of masking on the firing rate of neurons 

(that correspond to visual stimulus) in the temporal cortex of monkeys. Masking in visual 

perception tasks occurs when the perception of one stimulus (i.e the target) is influenced by the 

presence of another stimulus. Masking can be either forward or backward depending on whether 

the mask precedes or follows the target (Moore, 1998). According to Seiffert and Di Lollo 

(1997) backward masking causes stronger inhibition than forward masking. This finding is again 

consistent with the inhibitory interactions between the neurons in the first stage of processing 

due to the fact that feed-forward inhibition causes stronger suppression to the already presented 

stimulus. On the other hand, lateral inhibition between the neurons of the already presented 
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stimulus with the corresponding neurons of the proceeded stimulus is relatively lower. Thus, 

during this stage, competition between the RSVP items, represented by lateral and feed-forward 

inhibition, will have the first impact on each of the neural responses. 

 

3.2.4. Top-down influence and synchronization of neural activity 

In selective attention tasks such as those that employ visual search or the RSVP paradigm, 

the observer knows beforehand what the target is. As suggested by the interference model of 

Isaak et al. (1999), the present model creates templates containing the features of the targets and 

uses them to evaluate visual input. In our model, these target representations are maintained in 

the endogenous goals module. Therefore, spike trains that represent the target letters are initially 

generated and saved in the endogenous goals module.  

After the first stage of processing and the modulation of the firing rate from the competitive 

inhibition, the spike trains are adjusted again by the saliency filters, based on their 

characteristics. For example let’s consider a spike train A corresponding to a target letter. The 

specific spike train should have strong correlation with the temporal patterns of the spike trains 

that describe a target letter in the endogenous goals module. Thus the states of the spike train A 

will switch to the states of the spike train stored in the endogenous goals with a certain 

probability q. The probability q can actually be seen as the degree of resemblance to a specific 

stimulus. Note, however, that this procedure modulates the timing of spikes within the spike train 

while the firing rate of the spike train remains unchanged.  

The basic component of the second stage of processing is the Correlation Control Module 

(CCM) which is mainly comprised by a network of coincidence detector nodes combined with 

basic integrate and fire neurons. Therefore, the CCM is able to capture the correlation between 
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spike trains coming from the visual input and spike trains originating from the internal goals and 

thus to produce a relevant control signal (Figure 6).  

 

[Insert Figure 6 here] 

 

For example, if a visual stimulus has strong correlation with the template of the target letter 

then its neural activity is amplified. This amplification is a result of a multiplicative process 

between the signal generated by the CCM and the neural activity of the corresponding stimulus.   

The control signal is generated by a node of the CCM that represents the combined firing of a 

neural network. For this reason a relative refractory period exists after the firing of the CCM 

specific node.  

The strength of the generated control signal may have many variations which are mainly 

based on the total firing of the coincidence detector neurons of the CCM. That is, if the two 

signals are correlated then the coincidence detector neurons will fire more frequently and 

consequently will cause a stronger control signal. However, if a stimulus has very little 

correlation with the endogenous spike trains, the node responsible for firing the control signal in 

the CCM will fire with reduced strength. Furthermore, in the case where the presented stimulus 

is a target letter, then the strong correlation between the two streams of neural activity will 

subsequently cause a significant synchronous firing of the coincidence detector nodes.  

Finally, after the handling of the neural activity of each incoming stimulus, a specific 

working memory node will be excited. After a specified threshold is passed, the working 

memory node will fire an action potential indicating perceptual awareness for the visual 

stimulus. At the same time the corresponding signal will act in an inhibitory manner towards the 



20 
 

node that generates the control signal in the Correlation Control Module (Figure 7). This can be 

seen as a safety mechanism to prevent multiple stimuli from entering working memory while it is 

occupied with the processing of the previous stimulus.  

 

[Insert Figure 7 here] 

 

 

4. Simulations and Results 

The model was run under three conditions. One was the typical AB condition in which T2 

follows the T1 after a fixed delay (SOA of T2) while distracting numbers are presented in-

between the two targets as well as after T2. We will call this condition the no-blanks condition as 

all positions in the RSVP sequence were occupied by stimuli. In another condition, termed Lag 1 

blank, neither a target nor a distractor was presented at Lag 1.  Previous research has shown that 

the AB is eliminated when T1 is not followed by a distractor (Giesbrect & DiLollo, 1996; 

Seiffert & DiLollo, 1997). Including this condition enables us to examine whether the model is 

able to capture this finding. In a third condition, Lag 2 blank, a blank was presented 200ms after 

T1 (i.e., after a distractor was presented at Lag 1). This condition predicts the presence of AB.  

For the simulations, T1 was always presented at time t=0 and T2 at each of the subsequent 

time lags. For each lag that T2 was presented, the simulations where run for 50 times. Results 

revealed a clear match between simulations (Figure 8a) and the patterns of finding obtained from 

previous studies (Figure 8b).  

 

[Insert Figures 8a and 8b here] 



21 
 

 

 

As predicted by the literature, an AB effect was observed in the no-blanks condition 

when T2 was presented at Lags 2, 3, and 4 (i.e., the temporal window of 200-400ms).  In 

addition, Lag 1 Sparing was observed when T2 was presented either at Lag 1 or after lag 4. As 

expected based on the findings of Giesbrect and DiLollo (1996) and Seiffert and DiLollo(1997), 

the AB effect was eliminated in the Lag 1 blank condition. In contrast, a normal AB effect was 

obtained in the Lag 2 blank condition. 

Different features of the model are responsible for simulating the AB effects found in the 

literature. The first is the competitive inhibition between incoming stimuli during the whole 

process. Specifically during the first stage of processing, the inhibition caused by the masking 

stimuli towards the target modulates its neural activity. The inhibition in the first stage of 

processing is important because it actually happens at very early stages of visual processing, 

before any top-down interference and thus makes no distinction between distractors and targets.   

The second feature and perhaps the most important component of the model is the 

Correlation Control Module (CCM) that generates the appropriate control signal. However, one 

important mechanism of the model that has a key role in the reproduction of the typical U-shape 

curve of AB experiments is the interaction between the signals generated by the working 

memory node (that represents perceptual awareness) with the control signal generated by the 

CCM.  

For the case where a blank is presented at Lag 1, two mechanisms contribute to the 

attenuation of the blink. As it has been mentioned previously, the specific node of the CCM that 

fires the control signal represents the combined firing of a neural network and is thus influenced 
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by a relative refractory period. However, the specific node fires an analogous signal for all 

incoming stimuli regardless of whether they are within the target or the distractor set. The effect 

of the refractory period in the strength of the following signal combined with the inhibitory 

interaction between the incoming stimuli in the first stage of processing are the basic features of 

the model that cause this attenuation. 

 

5. Discussion 

As seen in the previous section, the model was capable of simulating a range of findings 

from the AB literature including the basic AB effect, Lag 1 Sparing, and the elimination of the 

AB effect with a blank is inserted at an appropriate location.  Importantly, the model accounted 

for these empirical findings using mechanisms that are at present popular among neuroscientists 

and cognitive scientists.  

First, the model incorporates temporal coding of input. This is an idea proposed by Crick and 

Koch (1990) and it allows selecting stimuli on the basis of synchrony across neurons. According 

to Crick and Koch, the change of the structure of spike trains that fall within the focus of 

attention represents selective attention at the neural level. As discussed by Niebur et al.(2002) 

selecting stimuli by adjusting the temporal structure of attended stimuli is a powerful mechanism 

at it allows selection without altering the firing rates of neurons. Although selection through 

modifying firing rates would also be a powerful mechanism, it is criticized for interfering with 

information that is presumably maintained in the firing rates (Niebur, Hsiao, & Johnson, 2002).  

Specifically, Niebur and Koch (1994) suggested that attentional modulation by the saliency map 

in the first stage of processing influences the timing of the spikes and thus neurons within the 

focus of attention tend to fire synchronously.  
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As the presence of synchronization of neural activity within and across brain is well 

documented in the area of selective attention, we have adopted the idea of temporal coding for 

the present model. As the model was capable to simulate the AB findings quite well, we can 

argue that temporal coding is a plausible mechanism for the encoding of visual information.   

Second, the model involves a first stage of processing in which incoming stimuli are allowed 

to interfere with one other. Competitive inhibition, such as the one incorporated in the model, is 

known to take place at various levels of visual processing including the pyramidal cells of V1 

(Zhaoping, 1999).  

Third, neural activity at the bottom-up first stage of processing is allowed to receive 

influence from the endogenous goals module. This way the model incorporates the well-known 

interaction between low-level information contained in incoming stimuli with high-level 

cognitive operations. Within the neuroscience literature there is indeed evidence that neural 

activity is affected by top-down attention in a rather later stage of processing, mostly in the area 

V4 of the brain which is considered an intermediate stage of visual object-processing pathway in 

the occipital cortex (Moran & Desimone, 1985; Reynolds et al. 2000).  

The model initially encodes all visual input with selection occurring gradually within the 

information processing stream. What gets selected is influenced by the result of the inhibitory 

interactions among visual input at the first-stage of processing and is determined after the 

influence – facilitatory or inhibitory – of internal volitions at a subsequent stage. This interaction 

between bottom-up and top-down signals may occur in area V4 of the visual cortex (Ogawa and 

Komatsu 2004). 

Several aspects of the model can be linked directly with findings from electrophysiological 

studies of attention. The first distinguishable signals in these studies are obtained around 130-150 
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ms post stimulus and are known as the P1/N1 signals. It is generally believed that these signals 

correspond to the initial processing that takes place in the visual cortex and the early activation 

of the incoming visual stimuli. At about 180-240 ms post-stimulus the P2/N2 signals are 

observed. These signals which more easily obtained using Magnetoencephalography (MEG), 

( Ioannides and Taylor, 2003), have been proposed to represent control signals for the movement 

of attention (Hopf et al., 2000 ; Taylor 2002). In fact, several computational models for the AB 

contain mechanisms that are linked to these signals. For example, the CODAM model of Taylor 

(2002) uses the N2 signal as the signal from the controller that modulates the direction of the 

focus of attention. Moreover, in their Simultaneous Type Serial Token (ST2) model Bowman 

and Wyble (2007) argue that when the visual system detects a task-relevant item, a spatially 

specific Transient Attentional Enhancement (TAE) called the blaster is triggered. This blaster is 

also linked to the P2/N2 component. In addition to P1/N1 and P2/N2, the P300 component which 

is present at about 350–600 ms post-stimulus is often regarded as an index of the availability for 

report of the attention-amplified input arriving from earlier sensory cortices to the associated 

working memory sensory buffer site. Finally, the N400 signal which is related to semantic 

processing is observed at around 400ms. In the present model, the spike trains generated for each 

stimulus during encoding can be linked to the early P1/N1 signals. The output of the Correlation 

Control Module can associated with the N2/P2 signal and even more specifically with the N2pc 

component. The N2pc component has been considered by previous research as an index of 

distractor suppression in attentional tasks (Eimer 1999). Finally, the P300 which represents 

perceptual awareness of a stimulus can be associated with the activation of the working memory 

node in the model. The activation of this node also suppresses the firing of the Correlation 

Control Module.  
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Studies recording Event-Related Potentials (ERPs) with the RSVP paradigm have revealed 

important findings for the AB effect.  For example, they have shown that even when T2 is not 

correctly identified, the P1/N1 and the N400 can be still obtained. On the other hand, the N2 and 

P300 components are no longer present (Sergent et al, 2005). This suggests that in spite of 

having no perceptual awareness of the presence of T2, people do process it semantically to at 

least some extent. The present model accounts for these findings by allowing all input to be 

semantic processed at the CCM. Thus, a T2 which is not available to perceptual awareness can 

still elicit an N400 in the event that is mismatches the semantic context.   

In addition to documenting the presence of absence of ERP components, eletrophysiological 

studies have revealed important findings regarding induced gamma activity when the RSVP 

paradigm is used. For example, Nakatani et al. (2005) have provided evidence that synchrony of 

neural activity in the 40-Hz range was substantially increased throughout the scalp for trials in 

which the T2 was detected compared to those trials that it did not.  This finding is compatible 

with previous studies documenting an association between gamma-induced activity and selective 

attention. Furthermore, it also agrees with Tallon-Baudry and Bertrand´s (1999) claim that 

induced-gamma activity is the neural basis of the construction of object representations by 

binding activity from different areas of the brain. In line with this empirical finding, the model 

implemented here is able to produce synchronization of activity across brain areas in order to 

select stimuli for attention. As with the empirical results, increased synchronization for T2 is 

obtained in the model when T2 is detected that when it is not. 

In closing, it should be noted that although the model here was implemented to model the AB 

effect, it can be viewed as a more general model of selective attention as none of the mechanisms 

it contains is specific to the AB. The model was successful in simulating several findings from 



26 
 

the AB literature. However, a more critical evaluation of the model can be made by examining 

whether the model can account, without modification, for other findings in the attention 

literature.  
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Figure1. The use of the RSVP paradigm in attentional blink studies 
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Figure 2.The basic curve from attentional blink studies. The plot is based on the data of  “A Two-
Stage Model for Multiple Target Detection in Rapid Serial Visual Presentation,” by 
M. M. Chun and M. C. Potter, 1995, Journal of Experimental Psychology: Human Perception 
and Performance, 21, p. 114, Figure 4. 
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Figure 3. The proposed computational model.  
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Figure 4. Simple representation of a coincidence detector mechanism. 
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Figure 5. Coding of the incoming visual stimuli.  
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Figure 6. The functioning of the Correlation Control Module 
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Figure 7. Working memory inhibition towards the Correlation Control Module 
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Figure 8a. Simulation Data from the proposed model 
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Figure 8b. Typical behavioral data from Attentional Blink studies. The plot is based on the data 
of  “A Two-Stage Model for Multiple Target Detection in Rapid Serial Visual Presentation,” by 
M. M. Chun and M. C. Potter, 1995, Journal of Experimental Psychology: Human Perception 
and Performance, 21, p. 114, Figure 4. 
 

 

 

 

 

 

 

 

 

 

 

 


