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Abstract 

A systematic approach has been done, to investigate different neural network struc-
tures for the appraisal of the significance of the free b-human chorionic gonadotro-
phin (b-hCG) and the pregnancy associated plasma protein-A (PAPP-A) as important 
parameters for the prediction of the existence of chromosomal abnormalities in fetuses.  

The database that has been used was highly unbalanced. It was composed of 35,687 
cases of pregnant women. In the vast majority of cases (35,058) there had not been any 
chromosomal abnormalities, while in the remaining 629 (1.76%) some kind of chromo-
somal defect had been confirmed. 8,181 cases were kept as a totally unknown database 
that was used only for the verification of the predictability of each network, and for 
evaluating the importance of PAPP-A and b-hCG as significant predicting factors. 
In this unknown data set, there were 76 cases of chromosomal defects. 

The system was trained by using 8 input parameters that were considered to be the most 
influential at characterizing the risk of occurrence of these types of chromosomal anoma-
lies. Then, the PAPP-A and the b-hCG were removed from the in-puts in order to ascer-
tain their contributory effects. 

The best results were obtained when using a multilayer neural structure having an input, 
an output and two hidden layers. It was found that both of PAPP-A and b-hCG are 
needed in order to achieve high correct classifications and high sensitivity of 88.2% 
in the totally unknown verification data set. When both the b-hCG and PAPP-A were 
excluded from the training, the diagnostic yield dropped down to 65%. 
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INTRODUCTION 
An effective first-trimester screening for fetal chromosomal abnormalities may be 
achieved by exploiting a combination of certain maternal as well as fetoplacental pa-
rameters.  
 
It is well known that the risk for aneuploidies increases with maternal age, it is higher in 
women that had previously affected pregnancies, and it increases with the fetal nuchal 
translucency (NT) thickness. It is also higher in the cases where there is an absence of the 
fetal nasal bone and also when there is abnormal flow through the ductus venosus and 
across the tricuspid valve. Furthermore, it is also related to the maternal serum concentra-
tion of the placental products free ß-human chorionic gonadotrophin (b-hCG) and the 
pregnancy associated plasma protein-A (PAPP-A) (Nicolaides, 2004a). 
 
The traditional approach to screening for each aneuploidy is to use some form of statisti-
cal techniques to estimate the patient-specific risk for each aneuploidy. These are usually 
implemented in suitable proprietary packages. 
 
In our study, artificial neural networks (ANN) had been constructed, trained and 
verified with a large unknown data set. The diagnostic results for each network were 
compared with the rest, so that ultimately a good diagnostic tool will be obtained. 
 
A large number of different neural network structures have been constructed and trained 
to the large data base of pregnant women, aiming at producing a neural classi-
fier/predictor for the risk of presence of chromosomal abnormalities in fetuses. The neural 
structures that were attempted were mainly of the feedforward type, both of standard 
multi-layer, as well as of multi-slab topologies. 
 

DATA 
The database that was used had 35,687 cases of pregnant women. The vast majority of 
these cases (35,058) were normal as far as the chromosomal abnormalities are concerned. 
The remaining 629 cases (1.76%) were confirmed as having some kind of chromosomal 
defect (Trisomy 21 (Down syn-drome), Trisomy 18 (Edwards syndrome), Trisomy 13 
(Patau syndrome), Turner syndrome, Triploidy). That is, there is a prevalence of 1.76%.  
 
This is a highly unbalanced data set, that makes it difficult to exercise exhaustive vali-
dation techniques other than the “split-sample method” (also known as “hold-out 
method”). 
 
The data were provided by the Fetal Medicine Foundation of London. They were ob-
tained from the greater London area and South-East England for pregnant women attend-
ing routine clinical and ultrasound assessment for the risk of chromosomal abnormalities. 
 
For the present study, for each pregnant woman, a number of relevant parameters were 



                                                                                        
 

collected, encoded/converted into appropriate numbers, and suitably used for the training 
of the neural networks. These parameters are shown in Table 1. 
 

 
 
Out of the total of 35,687 cases, 629 cases (1.76%) were confirmed as having some form 
of chromosomal anomaly of T21, T18, T13, Triploidy or of the Turner Syndrome. The 
remaining 35,058 cases (98.2%) did not show any chromosomal abnormality. Thus, the 
data set is highly unbalanced as far as the distribution of the various classes. This makes 
the potential for building an effective neural network predictor to be a difficult task. 
 
A subset of 8,181 cases (23%) were isolated and kept aside to be used as a totally un-
known database in order to check the predictability of each attempted neural network, and 
later for the evaluation of the importance of PAPP-A and b-hCG as important parameters 
that contribute to an accurate prediction of the risk of occurrence of the genetic abnormal-
ity of interest. In this unknown data set, there were 76 cases (0.93%) of chromosomal de-
fects. Namely, there were 20 cases of Down syndrome (0.06%), 28 cases of the Edwards 
syndrome (0.08%), 10 of Patau syndrome (0.03%), 5 of Triploidy (0.01%), and the re-
maining 13 of the Turner syndrome (0.04%).  
 
It is emphasized that these cases were never used during the learning procedures of train-
ing of the neural networks, and thus, they were a reliable way for ascertaining the predict-
ability of each network. Because the number of anomalous cases is very small, and such 
cases cannot be artificially generated, the anomalous cases in the verification set were 
confined to only a small, but substantial, percentage. 
 

 
 

TABLE I 
INPUT PARAMETERS 

1 MA, Maternal age 

2 Information on previous occurrence of trisomy 21 

3 Information on previous occurrence of trisomy 18 

4 Information on previous occurrence of trisomy 13 

5 CRL, Crown Rump Length (mm) 

6 NT, Nuchal Translucency (mm) 

7 Serum marker PAPP-A 

8 β-hCG, Human Chorionic Gonadotropin 



                                                                                        
 

THE NEURAL PREDICTOR 
A number of feedforward neural structures of standard multilayer type, having different 
number of layers and activations, as well as different neurons per layer were systemati-
cally built, trained and tested. Also, multi-slab topologies of different structures, sizes, 
and activation functions, were systematically built, trained and verified, in order to find 
the best performing structure to be used for the prediction of the totally unknown verifica-
tion data set. This was done in a planned and systematic manner so that the best perform-
ing architecture would be obtained and finally used. 
 
Table 2 shows a summary of the attempted structures and of the performances achieved 
for the totally unknown verification data set of the 8,181 cases. 
 

 
 
The various abbreviations are explained by example cases as follows: 
 
The input parameter notation 8:MA,Prev,CRL,NT,PAPP-A,b_hCG in the network in-
put means that there are 8 input parameters. These are the mother’s age, the existence of 
previous trisomies (T13, T18, T21), the crown rump length, the nuchal translucency, and 
the biomarkers PAPP-A and b_hCG. 
 

TABLE 2 
ATTEMPTED NETWORK TOPOLOGIES AND SUMMARY OF RESULTS 

 

 
 



                                                                                        
 

The topology notation FF:8lin-15log-20tanh-1log means that the network is feedforward 
(FF) of four layers. The first layer has 8 neuronal units of linear activation, the second 
layer has 15 units of logistic sigmoid activation, the third layer has 20 units of hyperbolic 
tangent activation, and the output layer is of one unit having logistic sigmoid activation. 
 
Ultimately, the best performing feedforward multilayer neural structure had four layers. 
The particulars of this neural structure are depicted in Figure 1.  
 

 

Figure 1. The network structure 
 

Based on extensive previous experience of the authors, all the weights were initialized to 
0.1. The learning rate was the same for all connections, having a value of 0.1. Similarly, 
the momentum rate was 0.4, and all these settings were applied to all the links. The learn-
ing scheme that was used was the standard backpropagation with momentum. 
 
A guidance test set composed of very few representative test cases (31) was applied to 
each attempted network at the end of each epoch. This was done in order to test the pro-
gress of training, and thus to keep the best performing weight distribution. If the results of 
the testing at the end of a particular epoch were better than those at the previous epoch, 



                                                                                        
 

the weights were saved as a better performing network set. Thus, at the end of each train-
ing procedure, for each network topology, the weight distribution found was the one that 
resulted in the best performance in this guidance test set. 
 

RESULTS AND CONCLUSIONS 
A summary of the results of the performance of each attempted neural network, for the to-
tally unknown verification set, is depicted in Table 2, where the sensitivity and specificity 
are also presented. These are used in their usual definitions shown below: 
 

TRUE POSITIVESENSITIVITY
TRUE POSITIVE + FALSE NEGATIVE

≡  
 

TRUE NEGATIVESPECIFICITY
FALSE POSITIVE + TRUE NEGATIVE

≡  
 
where, 

 
The threshold that was used in order to consider the network output as true was 50%. 
  

 
 
 

Classification 
Known presence of a  

chromosomal anomaly  
in the patient 

Network output  
prediction on the  

risk of chromosomal  
anomaly in the patient 

True Positive YES YES 
False Positive NO YES 
False Negative YES NO 
True Negative NO NO 

TABLE 3 
FALSE NEGATIVE RESULTS. 

NEURAL ESTIMATIONS FOR A CHROMOSOMAL DEFECT 

 



                                                                                        
 

The results of the best neural network, for the 9 cases (out of 76 abnormal cases in the 
verification set) that gave FALSE NEGATIVE are shown in Table 3.  
 
These are considered FALSE if the output neuron activation, which is an indication of the 
risk of a chromosomal defect, was less than 50%. The results are for a standard feedfor-
ward neural network of 8 inputs, 15 neurons in the first hidden layer and 15 neurons in a 
second hidden layer. In all the layers but the input one, the activations were of the logis-
tic-sigmoid growth function. 
 
Similarly, in Figure 2 the distribution of the risk predictions for the 168 cases of FALSE 
POSITIVE are shown. 
 

 
 
Figure 2. Distribution of the network outputs for the 168 cases of FALSE POSITIVE. 
 
When the PAPP-A was excluded from the input layer, and thus not used for training, the 
best diagnostic yield for the abnormal cases dropped down to 65.8% for all the neural to-
pologies that were tried, as is shown in Table 2. 
 
Similarly, when the b-hCG was excluded from the input layer, the best diagnostic yield 
for the abnormal cases dropped down to 84.2% for a three-layer neural topology of 7 in-
puts and 30 neurons in the hidden layer (Table 2). All but the input layer had logistic-
sigmoid growth activation functions. 
 
When both PAPP-A and the b-hCG were excluded, the best diagnostic yield for the ab-
normal cases was 67.1% (Table 2). 
 
From Figure 2, it is noted that in 43 cases out of the 168 that have been classified as False 
Positive, the risk for chromosomal anomalies is in the range from 50% to 60%. That is 
they are quite close to predicting them well if the 50% threshold is used.  
 



                                                                                        
 

From the previous comments it is noted that the pregnancy associated plasma protein-A is 
a highly important diagnostic factor, which is necessary for proper chromosomal anomaly 
diagnosis through the use of artificial neural networks. 
 
The results shown in Table 3 and Figure 2 are very encouraging, because they give a high 
screening/diagnostic yield for the totally unknown data set. 
 
Currently, experiments are being done in order to improve the diagnostic yield, by using 
smaller number of input parameters. Also, to identify the problematic cases, and to re-
examine them together with the specialist medical doctors, aiming at making better train-
ing and verification data samples. 
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