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Abstract. One challenging application for Neural Networks would be to try and 
actually mimic the behaviour of the system that has inspired their creation as 
computational algorithms. That is to use Neural Networks in order to simulate 
important brain functions. In this report we attempt to do so, by proposing a Neural 
Network computational model for simulating visual selective attention, a specific 
aspect of human attention. The internal operation of the model is based on recent 
neurophysiologic evidence emphasizing the importance of neural synchronization 
between different areas of the brain.  Synchronization of neuronal activity has been 
shown to be involved in several fundamental functions in the brain especially in 
attention. We investigate this theory by applying in the model a correlation control 
module comprised by basic integrate and fire model neurons combined with 
coincidence detector neurons. Thus providing the ability to the model to capture the 
correlation between spike trains originating from endogenous or internal goals and 
spike trains generated by the saliency of a stimulus such as in tasks that involve top – 
down attention (Cobetta and Shulman, 2002). The theoretical structure of this model 
is based on the temporal correlation of neural activity as initially proposed by Niebur 
and Koch (1994). More specifically; visual stimuli are represented by the rate and 
temporal coding of spiking neurons. The rate is mainly based on the saliency of each 
stimuli (i.e. brightness intensity etc.) while the temporal correlation of neural activity 
plays a critical role in a later stage of processing were neural activity passes through 
the correlation control system and based on the correlation, the corresponding neural 
activity is either enhanced or suppressed. In this way, attended stimulus will cause an 
increase in the synchronization as well as additional reinforcement of the 
corresponding neural activity and therefore it will “win” a place in working memory. 
We have successfully tested the model by simulating behavioural data from the 
“attentional blink” paradigm (Raymond and Sapiro, 1992). 
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1   Introduction 

Due to the great number of sensory stimuli that a person experiences at any given 
point of conscious life, it is practically impossible to integrate available information 
into a single perceptual event. This implies that a selective mechanism must be 
present in the brain to effectively focus its resources on specific stimuli; otherwise we 
would have been in constant distraction by irrelevant information. Attention can be 
guided by top-down or via bottom-up processing as cognition can be regarded as a 
balance between internal motivations and external stimulations. Volitional shifts of 
attention or endogenous attention results from "top-down" signals originating in the 
prefrontal cortex while exogenous attention is guided by salient stimuli from "bottom-
up" signals in the visual cortex  (Corbetta and Shulman, 2002). In this paper we 
emphasize and try to simulate the behaviour of selective attention, especially in top-
down tasks, mostly based on the theoretical background behind neural mechanisms of 
attention as it is explained by the field of neuroscience.   

The underlying mechanisms of the neuronal basis of attention are supported by two 
main hypotheses. The first is known as “biased competition” (Moran and Desimone, 
1985) and it originated from studies with single-cell recordings. These studies have 
shown that attention enhances the firing rates of the neurons that represent the 
attended stimuli and suppresses the firing rates of the neurons encoding unattended 
stimuli. The second more recent hypothesis, places emphasis on the synchronization 
of neural activity during the process of attention. The second hypothesis stems from 
experiments showing that neurons selected by the attention mechanism have 
enhanced gamma-frequency synchronization (Steinmetz et al., 2000; Fries et al., 
2001). More specifically, Fries et al. (2001) measured activity in area V4 of the brain 
of macaque monkeys while they were attending behaviorally relevant stimuli and 
observed increased gamma frequency synchronization of attended stimuli compared 
to the activity elicited by distractors.  

The proposed computational model for endogenous and exogenous visual attention 
is based on the second hypothesis for the neural mechanisms behind attention. The 
basic functionality of the model is based on the assumption that the incoming visual 
stimulus will be manipulated by the model based on its rate and temporal coding. The 
rate of the visual stimuli will have important role in the case of exogenous attention 
since this type of attention is mainly affected by the different features of the visual 
stimuli.  More salient stimuli will have an advantage to pass in a further stage of 
processing and finally to access working memory. On the other hand, endogenous or 
top-down attention is mainly affected by the synchronization of the corresponding 
neural activity that represents the incoming stimuli with the neural activity initiated 
by internal goals that are setup when the individual is requested to carry out a specific 
task. These goals are possibly maintained in the prefrontal cortex of the brain. The 
direct connection of top-down attention with synchronization is supported by many 
recent studies (Niebur et al 2002, Gross et al 2004). For example, Saalmann et al 
(2007) recorded neural activity simultaneously from the posterior parietal cortex and 
an earlier area in the visual pathway of the brain of macaques while they were 
performing a visual matching task. Their findings revealed that there was 
synchronization of the timing activities of the two regions when the monkeys 
selectively attended to a location. Thus, it seems that parietal neurons which 



presumably represent neural activity of the endogenous goals may selectively increase 
activity in earlier sensory areas. Additionally, the adaptive resonance theory by 
Grossberg (1999) implies that temporal patterning of activities could be ideally suited 
to achieve matching of top–down predictions with bottom–up inputs, while Engel et 
al in their review (2001, p.714) have noted that “If top–down effects induce a 
particular pattern of subthreshold fluctuations in dendrites of the target population, 
these could be ‘compared’ with temporal patterns arising from peripheral input”.  

2   Proposed Computational Model of Visual selective attention  

Therefore, based on the above theories for visual selective attention, we suggest 
that a correlation control module responsible for comparing temporal patterns arising 
from top-down information and spike trains initiated by the characteristics of each 
incoming stimuli could be applied in the proposed computational model. If we extend 
this assumption based on relevant anatomical areas of the brain then the possible 
existence of such a correlation control module, would more ideally fit somewhere in 
the area V4 of the visual cortex were synchronization of neural activity has mostly 
been observed as can be seen in figure 1 below.  
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Fig. 1. Neural activity that corresponds to a specific visual input propagates along the 
visual cortex and initially to area V1. Furthermore, the corresponding neural activity 
continues into the visual hierarch and specifically to area V4. Additionally, top-down 
signals originate from “higher” brain areas such as parietal and frontal lobe were 
possibly interact with the neural activity from the incoming stimuli. Correlation 
between these two streams of information could be examined in area V4 of the visual 
cortex. 



The schematic representation of the proposed computational model is depicted in 
Figure 2 below. Specifically, each stimulus that enters the visual field is represented 
by a stream of binary events. Part of the stream represents no action potential 
occurrence ('zeros') and an isolated '1' that represents an action potential or spike. 
These binary waveforms are generated in order to represent the different spike trains 
initiated by each incoming stimulus.  However, two important factors define the 
generation of these spike trains. The first is the firing rate or the frequency of spikes 
which is mainly based on the saliency of each stimulus, and the second factor is the 
exact timing that each spike appears. This means that in the race between the different 
visual stimuli to access working memory, both of their characteristics will contribute 
(Niebur and Koch 1994). The model can be seen as a two stage model were in the 
first stage, spike-trains representing each incoming stimulus enters into a network 
comprised by integrate and fire neurons. As a result, the corresponding neural activity 
will propagate along the network with the task to access a working memory node. 
Based on the firing rate of each incoming stimulus, a different neural activation will 
reach the working memory node and if the corresponding neural activity is strong 
enough to cause the working memory node to fire, then what can be inferred is that 
the specific stimulus that caused this activation has accessed working memory and 
thus it has been attended.  However, in a later stage of processing, top- down signals 
coming from parietal and frontal lobes enter the network and try to influence the 
selection based on internal goals. For example, suppose that a person is asked to 
identify and respond if the letter A appears in the visual field. Then, information 
represented by spike trains that encode how letter A is stored in long term memory 
will enter the network as top – down signals. As a result, if a visual stimulus enters 
the visual field and has strong correlations with the corresponding top-down 
information, it will be aided in its attempt to access working memory. 

 The interaction between top-down information and the neural activity generated 
by each incoming stimulus is performed in the correlation control module which is the 
major component of the model (Figure 2). 

 
 

 
Fig. 2. A schematic representation of the proposed computational mode of visual 
selective attention. 
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One possible explanation of the mechanism behind the correlation control theory 

proposed in this report can be made based on coincidence detector neurons. 
 

3. Coincidence Detector Neurons and the correlation control 
module 

Coincidence detection is a very simplified model of neuron, however there is 
considerable experimental evidence signifying that under certain conditions, such as 
high background synaptic activity, neurons can function as coincidence detectors 
(Niebur, & Koch, 1994; Kempter, Gerstner, & van Hemmen, 1998). 

Specifically as far as the neurophysiology of vision is concern, the main neurons 
found in several layers of the visual cortex are the Pyramidal cells. More importantly 
though is a recent theory about the function of pyramidal neurons which implies that 
the neurons responds best to coincident activation of multiple dendritic compartments. 
An interesting review about coincidence detection in pyramidal neurons is presented 
by Spruston (2008). 

A plausible way to model coincidence detection can be based on separate inputs 
converging on a common target. For example let consider a basic neural circuit of two 
input neurons with excitatory synaptic terminals, A and B converging on a single 
output neuron, C (Figure 3). The output target neuron C will only fire if the two input 
neurons fire synchronously. Thus it can be inferred that a coincidence detector is a 
neuron model that can detect synchronization of pulses from distinct connections. 

 
 

 
 
 

Fig. 3. A coincidence detector neuron C will fire only if the two input neurons A and 
B fire synchronously. 

 
In Figure 4 is shown with a simple representation, how the correlation control 

module adjusts the neural activation of each incoming stimuli. 
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Fig. 4. Correlation control mechanism between the endogenous goals and the 
incoming stimuli.  

4. Simulations and Evaluation of the model 

In order to examine the models validity we have attempted to reproduce behavioral 
data from a famous attention related task named the attentional blink which it is 
explained with more detail in the next section.  

 

4.1 Attentional Blink Explanation –Theory  

Attentional blink (AB) is a phenomenon observed in the rapid serial visual 
presentation (RSVP) paradigm and refers to the finding that when 2 targets are 
presented among distractors in the same spatial location, correct identification of the 
1st target, usually results in a deficit for identification of a 2nd target if it appears 
within a brief temporal window of 200-500 ms. When the 2nd target appears before or 
after this time window it is identified normally (Figure 5.b). More specifically, in the 
original experiment by Raymond and Sapiro (1992), participants were requested to 
identify two letter targets T1 and T2 among digit distractors while every visual 
stimulus appeared for about 100ms as shown in Figure 1.a. 
 

Another important finding from the AB paradigm is that if T1 is not followed by a 
mask (distractor), the AB impairment is significantly reduced. That is if lag 2 
(t=100ms) and/or lag 3 (t=300ms) are replaced by a blank then the AB curve takes the 
form shown in Figure 5 by the green and black series.   
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Fig. 5. Presentation of the RSVP for the “attentional blink” experiment (Figure5.a) 
and the attentional blink basic curve with no blanks (red series), with blank at lag 1 
(green series) and blank at lag 2 (black series) based on the behavioral data of 
Raymond and Sapiro (1992) (Figure5.b). 

 
One possible explanation for the classic U-shaped curve of Figure 5.b (red series) 

is based on Electroencephalography (EEG) measurements and more importantly on 
two attention related Event Related Potentials (ERPs). The first ERPs appear at about 
180-240 ms post-stimulus and are referred to as the P2/N2 signals. These signals have 
been proposed as control signals for the movement of attention (Hopf et al., 2000, 
Taylor 2002).  The second component is the P300 signal at about 350–600 ms post-
stimulus which is associated with the working memory sensory buffer site and is 
taken to be the signal of the availability for report. Therefore the explanation for the 
U- shaped curve lies in the assumption that the P300 signal generated by the first 
target falls into the time window that the P2/N2 component of the second target was 
about to be generated. However due to this interaction, the P2/N2 component of the 
second target is inhibited.   

The explanation behind the curves of figure 5.b (with blank at lag 1 (green series) 
and blank at lag 2 (black series)) is based on the neural mechanisms behind selection 
at attentional tasks. Mostly is based in the competition process between various 
stimuli in order to access working memory. This competition is reflected through 
relevant inhibition between the neural activities that corresponds to each stimulus.   

The proposed computational model has been implemented in the Matlab-Simulink 
environment. Each of the visual stimuli has been represented by a 10 ms sequence of 
spikes and in each ms there is a one (spike) or a zero (no-spike) as seen in Figure 6. 
For coding both the distractors and the targets, the same firing rate has been used 
since both (targets and distractors) have the same effect from the salience filters (same 
brightness, intensity etc.). However, the difference between the spike trains generated 
by the targets and the spike trains generated by distractors is in the temporal patterns. 
Therefore, it is possible through the coincidence detector module to capture the 
correlation between the spike trains generated by the targets and spike trains initiated 
by internal goals if those two sources have similar temporal patterns in their spike 
trains. Based on the degree of correlation between the incoming stimulus and the 
internal goals, a relevant control signal is generated that could be associated with the 
N2/P2 component explained in the previous section. Additionally, once a specific 
working memory node that corresponds to a specific stimulus fires, then another 
signal is generated that inhibits at that timing any attempt for the coincidence control 



module to generate a new control signal. 

      
Fig. 6. Coding of the incoming visual stimuli.  
 
As a consequence, three important features of the model that rely on 

neurophysiologic evidence have given the ability to reproduce the behavioural data 
from the attentional blink experiment as shown in Figure 7 below. These important 
features of the model are: a) The correlation control module that generates a control 
signal relevant to the degree of correlation b) the interaction between the signals 
related to identification and respond (P300) with the control signal and c) the 
competitive inhibition between each incoming stimuli. 

 

 
Fig. 7.. Comparison between simulation data (7.a) and experimental data (7.b).  
 

5. Discussion 

The main advantages of the implementation of a computational model of specific 
brain functions can be seen in a twofold manner. First, a biologically plausible model 
will give the ability to perform appropriate and detailed simulations in order to study 
the most important aspects of the specific brain function as well as to magnify or 
weaken related theories. On the other hand, the detailed study of the psychological 
and neurophsiological approach will aim into an improved understanding of the 
specific functionality in the brain. This, combined with knowledge from computer 
science, will provide the potentials to advance in neurally inspired computing and 
information processing. Robots and other engineered systems that mimic biological 



capabilities as well as brain-computer interfaces are some of the potential applications 
that can be benefit and improved by this knowledge.  
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