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Abstract— Optimised sensor selection for control design is a
non-trivial task to perform especially if the selection is done
with respect to complex control requirements like reliability,
optimised performance, robustness and fault tolerance. In this
paper, a proposed framework is presented aiming to tackle the
aforementioned problem. In this context, a Linear Quadratic
Gaussian (LQG) controller is presented and applied to an
Electro-Magnetic Suspension (EMS) system. Furthermore, the
LQG solution is compared to a Multi-Objective (M.O.) H∞
and H∞ controller design via loop-shaping method using
realistic simulations. A particular contribution is the use of
Sensor Fault Accommodation Ratio (SFAR) in the LQG scheme
providing useful conclusions on the optimised sensor selection
for the EMS system. It is concluded that the framework can
be extended to other industrial applications.

I. INTRODUCTION

An optimised sensor selection framework under different
Modern Control Methods (MCM) is presented. The problem
of optimised sensor selection with respect to optimised and
robust performance, sensor fault tolerance with the minimum
number of sensors and minimum control system complexity
is a hard task to do in control system design. In particular,
when a number of sensors exist, usually for a particular
application under consideration, the question posed is given
as: what is the best sensor set that could be used in order
to ensure the required properties of a control system?. A
number of studies on the input/output selection has been done
the last years [1] but non of them considers both control and
reliability properties of a control system. This attempt is done
by the authors with the aim of a systematic framework that
is described in this paper. The aforementioned question can
be answered using the proposed framework which combines
fields from MCM, multiobjective optimisation and Fault
Tolerant Control (FTC) provided that the model of the plant
is known, to an extend. The proposed systematic framework
combines MCM [2], FTC [3] and multiobjective optimisation
[4]. The Multiobjective optimisation is based on heuristic
methods that have been extensively used in engineering
optimisation [5]. Particularly, the Genetic Algorithms (GA)
[6] which have been extensively used in control systems
[7] are successfully merged into the framework. There are
different types of GAs that can be used for addressing
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the multiobjective constrained optimisation nature of the
problem but in this paper, the Non-dominated Sorting of
Genetic Algorithm II (NSGAII) in [8] in combination with
penalty functions to handle the control constraints [9] is
employed. It is shown that using the proposed framework
is possible to offer a level of simplicity in the sensor
selection process. A general diagram of the framework is
illustrated in Fig.1. The proposed framework has been tested
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Fig. 1. Schematic of the proposed optimised sensor selection framework.

under various MCM including Linear Quadratic Gaussian
(LQG) control [10], Multi-Objective (M.O.) H∞ robust
control [11] and the H∞ Loop-Shaping Design Procedure
(LSDP) [12]. A detailed comparison of the results is done in
the paper, illustrating issues of simplification and flexibility
in the framework. However, required computational power
can be a drawback, this being based on how complex the
constraints, system and control design may be. The EMS is
used for testing purposes of the framework. It is a rather
simple nonlinear system, but is inherently unstable and with
a set of non-trivial requirements to achieve [13].
This paper is organised as follows: SectionII gives a general
description of the framework, Section III describes the EMS
model, Section IV describes the modern control methods
combined with the framework. In Section V the simulation
results are presented and the efficacy of the proposed frame-
work is assessed. The paper concludes by summarizing the
advantages in Section VI.

II. THE GENERALISED FRAMEWORK
The generalised flowchart of the framework is given in

Fig. 2. The particular points include the use of MCM and
the heuristic multiobjective optimisation using GAs, with
the optimization performed for every feasible sensor sensor
set. Prior to running the algorithm (initialization phase),
some parameters are assigned including the GA parameters,
control objective functions ϕi and controller selection criteria
(fci) and (fk). fci and fk ensure that the selected controller,
ko, results in a desired closed-loop requirements. Starting the
optimisation procedure, the first sensor set is selected and the



evolutionary algorithm seeks the Pareto-optimality between
the objective functions ϕi subject to control constraints.
In the sequence, the algorithm seeks to find the optimised
controller by using the overall constraint violation function,Ω
and fci and fk. Ω is the sum of the constraint violations
which is well described in [11].

Ω(k(m), f (p)) =
M∑

m=1

ωm(k(m)) +
P∑

p=1

ψp(f
(p)) (1)

where, ωm is the mth soft constraint violation for the
corresponding mth quantity to be constrained, k, and M is
the total number of soft constraints. Similarly, ψ is the hard
constraint violation for the pth quantity to be constrained, f .
Next, the SFAR is evaluated if for the corresponding sensor
set there is no constraint violation i.e.Ω = 0. The SFAR is
given as

SFAR ∼=
NYoh

NYof

100(%) (2)

where Yoh and Yof are the healthy and faulty sensor sets re-
spectively and NYoh

and NYof
are the number of sensor sets

in Yoh and Yof respectively. The particular sensor set with
the corresponding controller, ko provides optimised nominal
performance under certain fault tolerance. These are saved
together with other useful data about the response of the
system and the algorithm moves to the next feasible sensor
set. The optimisation algorithm iterates until all feasible
sensor sets are optimised and finally the optimised sensor
set selection is done using the data from the report.
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Fig. 2. General algorithm flowchart of the proposed framework.

III. THE EMS SYSTEM

A. Modelling

The single-stage EMS system model represents one quar-
ter of a typical MAGLEV vehicle and is seen as a useful case
study to demonstrating the proposed framework. For details

on the particular modelling exercise, the reader is referred to
[14]. The non-linear model of the EMS and is given as

dI

dt
=
Vc − IRc +

NcApKb

G2 (dztdt − dZ
dt )

NcApKb

G + Lc

(3)

d2Z

d2t
= g − Kf

Ms

I2

G2
,B = Kb

I

G
(4)

F = KfB
2,
dG

dt
=
dzt
dt

− dZ

dt
(5)

where Vc is the coil’s voltage, F the vertical force, I the
coil’s current, B, the flux density, Ms the total carriage
mass, G the airgap, Z the electromagnet’s and zt the track’s
position. Constants Kb, Kf and g are the flux, force and
gravity constants with values equal to 0.0015, 0.0221 and
9.81m/s2 respectively. Rc is the Coil’s Resistance, Lc Coil’s
inductance, Nc Number of turns and Ap Pole face area.
The linearisation of the non-linear model is based on small
perturbations around the operating point. i.e. the airgap is
taken as G = Go + (zt − z) with lower case letter defining
the small variation around the operating point and subscript
’o’ referring to the operating point. Similar approach is done
for B, F , I , Vc and Z. The linearized state space description
of the EMS is given in (6) with states x = [i ż (zt −
z)]T and output equation corresponding to the following
five measurements: i the coil’s current, b the flux density,
(zt − z) the airgap, ż the vertical velocity and z̈ the vertical
acceleration. Given a total carriage mass of Ms = 1000kg,
the practical operating point values for the EMS system
are Go = 0.015m,Bo = 1T , Io = 10A,Vo = 100V and
Fo = 9810N . Based on the operating point that the EMS
should operate, the parameters of the electromagnets can
be calculated as: Rc = 10Ω,Lc = 0.1H ,Nc = 2000 and
Ap = 0.01m2. Details on suspension’s electromagnet design
are given in [15].

ẋ = Ax+Bucuc +Bżt żt (6)
y = Cx

B. Disturbance Inputs and Control Requirements

Stochastic Inputs: These are random variations of the rail
position as the vehicle moves along the track. Considering
the vertical direction, the velocity variations (żt) can be
approximated by a double-sided power spectrum density
(PSD) and the corresponding autocorrelation function assum-
ing a vehicle velocity, Vv of 15m/s and track roughness,
Ar = 1× 10−7 [14].
Deterministic Input: The main deterministic input to the
suspension in the vertical direction is due to the transition
onto a gradient. In this work, the deterministic input is a rail
gradient of 5% at a vehicle speed of 15m/s, an acceleration
of 0.5m/s2 and a jerk of 1m/s3 [14].
EMS Control Properties:The design requirements for an
EMS system depend on the type and operating velocity of
the train [16]. The EMS system should support the payload
while reject the stochastic inputs (from track roughness)



and follow the deterministic ones (track gradients. Funda-
mentally, there is a trade-off between the deterministic and
stochastic features and there are some limitations that they
are allowed to operate tabulated in Table I. The optimised

TABLE I
CONTROL CONSTRAINTS FOR THE ELECTRO-MAGNETIC SUSPENSION.

Response requirements Value
Stochastic RMS acceleration,z̈rms ≤ 0.5ms−2

Track RMS airgap variation,(zt − z)rms ≤ 5mm
Profile RMS control effort,ucrms ≤ 300V

Deterministic Maximum airgap deviation,(zt − z)p ≤ 7.5mm
Track Maximum control effort,ucp ≤ 300V
Profile Settling time, ts ≤ 3s

Airgap steady state error,e(zt−z)ss = 0

TABLE II
CONTROL OBJECTIVE FUNCTIONS FOR EACH CONTROL METHOD.

LQG M.O. H∞ H∞ LSDP
ϕi LQR KBE
ϕ1 irms

∫ t
0 = |xo − xa|dt irms irms

ϕ2 z̈rms RMS(xo − xa) γ γ
ϕ3 - unrms z̈rms z̈rms

ϕ4 - - unrms unrms

sensor selection problem of the EMS is defined as the best
sensor set selection subject to optimised performance and
sensor fault tolerance. Particularly, the objective functions
to be minimized and control constraints listed on Table II
and Table I (for each of the control methods described in
Section IV while ensuring performance under sensor faults.
The sensor sets can be obtained by using the corresponding
rows of the output matrix, C. The total number of sensor
sets, Ns is given based on the number of sensors ns as
Ns = 2ns − 1.

IV. MCM AND FTC IN THE CONTEXT OF
OPTIMISED SENSOR SELECTION FRAMEWORK

APPLIED TO THE EMS

A brief encounter of MCM and the sensor FTC in the
context of the proposed framework for optimised sensor
selection is given here while rigorous description can be
found in [10], [11] and [12].

A. Modern control methods

1) Multiobjective LQG Control for the EMS: The LQG
controller design is done according to the separation prin-
ciple, as given in [2]. Only a brief description is included
here, while for more details the reader is referred by [10].
The design is done in two steps: (i) The state feedback
gains (LQR design), −Klqr, are designed and appropriately
selected in order to achieve the desirable control properties
while the Kalman-Bucy Estimator (KBE) is merged into the
loop at the second step, in order to provide appropriate state
estimation. The LQG control problem is to find the a control
u which minimizes the performance index in (7) considering

output regulation. This index has to be calculated for every
feasible sensor set used to control the EMS system.

J = E

{
lim

T→∞

∫ T

0

[
yTQy + uTRu

]
dt

}
(7)

LQR control for the suspension: The state feedback vector
is selected as x = [i, ż, (zt − z),

∫
zt − z]T which includes

an extra state, the integral action on airgap forming a
Proportional plus Integral (P+I) state regulator. The response
of this stage is used as reference (or ‘ideal’) for the next
stage.
The Kalman-Bucy Estimator design: The linear time-
invariant KBE has a state space form formally written as

˙̂x = Ax̂+Buc
uc +Klqg(y − Cx̂), ŷ = Cx̂ (8)

where Klqg is the observer gain matrix that minimizes
E{[x − x̂]T [x − x̂]}. Minimization can be achieved by ap-
propriately tuning the measurement noise covariance matrix
V , and process noise covariance matrix W . During the
execution of the framework, the errors between the estimated
and the ‘ideal’ states are minimized i.e. the comparison
between the closed-loop response with the LQR and the
response with the KBE in the loop. The minimization of
the errors is performed by the NSGA-II for each sensor set.
Therefore the objective functions to be minimized are: (i) the
Integral Absolute Error (IAE) for the closed-loop response
with deterministic disturbance and (ii) the Root Mean Square
Error (RMSE) for the stochastic closed-loop response both
given on Table II. An extra objective function is also added
which is the RMS value of the noise that appears on the
uc caused from the sensor noise. This makes a total of 7
individual objective functions, where xo is the vector of the
monitored states of interest of the closed-loop with the LQR
state feedback (i.e. ‘ideal’ closed-loop response) and xa are
the monitored states of interest of the closed-loop with the
KBE, e.g. actual closed-loop (prior to adding sensor noise).
After the optimised tuning of the LQG controller for each
sensor set, there is a large number of controllers. Hence the
Ω in (1), is used to assist with the best controller selection
as explained in Section II. However, for a given sensor set
there could be many controllers that satisfy the constraints
and thus another criterion is needed to make the selection of
the best controller. In this context, the following criterion is
introduced (given as the sum of the aforementioned objective
functions noting the error for deterministic and stochastic
responses with and without the KBE)

Sf =

nx∑
i=1

ϕdi +

nx∑
j=1

ϕsj (9)

where ϕdi and ϕsj are the objective functions for determin-
istic and stochastic responses (Three objective functions for
each of the responses). nx is the number of estimated states
(nx = 3). In that way it is ensured that the selected con-
troller for the corresponding sensor set satisfies the control
constraints and the state estimation is as accurate as possible.



2) M.O.H∞ Robust Control for the EMS: The M.O.
H∞ Robust control design is well documented in the control
literature, i.e. see [2]. The aim is to design a controller
with which the disturbances mentioned in Section III-B are
sufficiently rejected. The problem setup in the context of
sensor optimisation is described in [11] where the state space
model of the EMS system in (6) is transformed into the
following generalised form

ẋ = Ax+Bżtw +Buuc

z∞ = C∞x+D∞1w +D∞2uc

y = Cyx+Dy1w +Dy2uc (10)

where w are the exogenous inputs (zt for the EMS), uc is the
EMS input, z∞ is the regulated outputs (i.e., uc the control
effort and (zt − z) the airgap) and y is the corresponding
sensor set. Each sensor set is selected by manipulating the
output matrix (Cy). The controller is designed in such a way
that the infinity norm of the closed-loop transfer function
from the exogenous inputs to the regulated outputs is min-
imised subject to the EMS control requirements mentioned
in Section III-B i.e. ∥ Tz∞w ∥∞< γopt.
It is worth noting that the controller is stabilizing, thus if
necessary another check of controller stability itself might be
added. Unstable controllers are not favourable in switching
schemes therefore the algorithm rejects all unstable stabi-
lizing controllers. For each sensor set ∥ Tz∞w ∥∞< γopt
is solved in MATLAB for each random pair of weighting
functions that are produced by the GA using linear matrix
inequalities. The weights Wp and Wuc are appropriately se-
lected low and high pass filters (11) to adjust the performance
of the controller with parameters tuned using NSGAII. There
is no generic procedure to select weighting filters usually
being application dependent but some guidelines are given
in [2].

Wp =

 s

M
1/np
p

+ ωb

s+ ωbA
1/np
p

np

Wuc =

(
τs+A

1/nu
u

τ

M
1/nu
u

s+ 1

)nu

(11)

In the performance weighting (Wp), Mp is the high fre-
quency gain, Ap the low frequency gain and ωb the crossover
frequency. For the control effort weight (Wuc), τ determines
the crossover frequency, Au is the low frequency gain and
Mu is the high frequency gain. Both np and nu control
the roll-off rates of the filters, equal to 1 in this case i.e.
first order filters. The controller output is fixed, as this is
only the applied voltage to the EMS system. The controller
inputs, however, vary based upon the utilised sensor set. i.e.,
Single-Input-Single-Output controller for 1 sensor; Multiple-
Input-Single-Output controllers for more sensor combina-
tions. Moreover, the order of the controller is fixed to the
order of the plant plus the order of the chosen filters i.e.
3 + 2 = 5th order controller. Although the order of the
controller is low if higher order controllers are necessary
then controller reduction techniques can be easily adopted
to the proposed framework as shown in [17].

3) Multiobjective H∞ LSDP control for the EMS:
The design of the controller is based on the normalised
coprime-factor plant description, proposed by [18], which
incorporates the simple performance - robustness trade-off
obtained in loop shaping, with the normalised Left Coprime
Factorization (LCF) robust stabilization method as a means
of guaranteeing closed-loop stability. The design method
proceeds by shaping the open-loop characteristics of the
plant using the weighting functions W1 and W2. The plant
is temporarily redefined as Ĝ(s) = W2GW1 and the H∞
controller K̂(s) is calculated. In the final stage, the weighting
functions are merged with the controller by defining the
overall controller K(s) = W1K̂W2. The size of model
uncertainty is quantified by the stability radius ϵ , i.e. the
stability margin. For values of ϵ ≥ 0.25, 25% coprime factor
uncertainty is allowable. However, in this paper a relaxed
constraint is used to have ϵ ≥ 0.15 instead (refer to [2] for
more details). A typical approach would aim to keep the
filters and thus controller as simple as possible. Thus, the
W1 pre-compensator, is chosen as a single scalar weighting
function set to unity. For the W2 post-compensators there
can be five weighting functions that are used depending on
the selected sensor set. The airgap, (zt − z), measurement
is a compulsory measurement required for proper maglev
control of the magnet distance from the rail and thus a
low pass filter (W(zt−z) = Wp) is chosen with integral
action allowing zero steady state airgap error (for the nominal
performance). The weighting functions are given as W1 = 1
and W2 = diag(Wi,Wb,W(zt−z),Wż,Wz̈).

B. Sensor Fault Tolerance Scheme

Fault tolerance is a subject that has been a main point
of research in the last years [3]. In this paper the aim is to
recover the stability and performance under multiple sensor
failures. In this context, the Active Fault Tolerant Control
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Fig. 3. AFTC diagram for multiple sensor failures.

(AFTC) concept is used. The AFTC concept is composed
from a Fault Detection and Isolation (FDI) mechanism and
a bank of pre-designed controllers. When multiple sensor
faults happen remedial actions are taken by controller re-
configuration. The recovery of the performance is aimed by
using the remaining healthy sensors (sub-set of the selected
sensor set) as depicted in Fig. 3. An FDI mechanism is
included in order to detect and isolate the faulty sensors and



produce the controller reconfiguration signal. It is assumed
that the switching is fast enough not to affect stability or
cause large delays in the system. Typically, a common way
to detect a fault is to monitor the residual of two signals.
The residuals for each output is typically produced by means
of dedicated observers. A bank of dedicated observers (i.e.
Ko1 ,Ko2 ....Kon ) is used to monitor the condition of each
sensor as depicted in Fig. 3. Isolating the faulty sensors is
done by taking the sensor out of the loop in such a way
that the faulty signal is not fed to the new controller (i.e.
switching). Sensor faults modelling can be done in three
ways: abrupt fault, incipient fault and intermittent fault.

V. RESULTS
Simulations were performed in MATLAB without Java

functions. This helps reducing the necessary computational
power for the completion of the algorithm. The computer
used is a typical PC with 2.93GHz clock speed. The con-
troller selection criteria fci and fk in each control method
are listed in Table III.
The controller selection criteria are set as follows:

1) LQG: The controller selection criteria aim to select a
controller that results to the best ride quality and an
input current of 2Arms.

2) M.O. H∞: The controller selection criteria, seeks for
controller that results to a reasonable ride quality with a
noise level less than 10Vrms and maximized robustness
margin.

3) H∞ LSDP: The controller with reasonable ride quality,
the minimum noise level and maximum robustness
margin is aimed to be selected.

TABLE III
OBJECTIVE FUNCTIONS FOR EACH CONTROL METHOD

LQG M.O. H∞ H∞ LSDP
fc1 z̈rms ≤ 0.5m/s2 z̈rms ≤ 0.5m/s2 z̈rms ≤ 0.5m/s2

fc2 irms ≤ 2A ucrms ≤ 10V ucrms ≤ 10V
fk min(z̈rms) min(γ) max(ϵ)

Given that the optimisation of the control system is done
via GAs the framework requires significant computational
power, which depends on issues such as the number of
constraints required, the control design method, the number
of variables and the heuristic type of optimisation. In Table V
the time taken for the completion of the algorithm, tt, is
given with a typical PC. In terms of notation, tt is the total
time required for the optimisation of each sensor set for the
EMS system having a total of Ns sensor sets. The largest
tt is 152 hours for the M.O. H∞ and for the other two
controller design methods 54 and 45. However, note that
the H∞ LSDP total number of sensor sets is 16 while for
the other two methods 31. Therefore, it can be concluded
that the LQG method requires less computational power.
Additionally, the framework was able to identify the total
number of sensors that satisfy Ω, NYΩ=0 for each control
method. There are 24 for the LQG, 20 for the M.O H∞ and
11 for the H∞ LSDP. This is another interesting point, i.e.

the LQG method needs less computational effort and gives
the higher number of sensor sets that satisfy Ω, i.e. NYΩ=0 .
Some of the results obtained from the framework are listed

TABLE V
COMPARISON FOR EACH CONTROL METHOD.

LQG M.O. H∞ H∞ LSDP
Ns 31 31 16

NYΩ=0
24 20 11

tt(hrs) 54 150 45

on Table IV. The corresponding columns list the Ω and SFAR
values for each controller design method. The Ω is marked,
X, if the control constraints are satisfied otherwise is marked
‘x’. As for the H∞ LSDP controller design the airgap is a
standard measurement, symbol ‘*’ indicates the sensor sets
that do not include the airgap measurement and hence not
optimised. Moreover, the framework aim to find stable and
stabilising controllers, hence ‘-’ indicates cases where no
stable controller could be found. Additionally, the SFAR is
given a value of zero in two cases: (i) Ω is not satisfied
and/or (ii) the sensor set contains only one sensor. Referring
to the Ω columns, the first point one can notice is that the
performance of the EMS system not significantly changed
remains unchangeable even if more sensors are added in the
loop e.g. idLQG : 1 has one sensor while idLQG : 15 has 5
sensors. It is also worth mentioning that adding more sensors
could actually degrade the performance of the system e.g.
refer to idLSDP : 10.

1) Optimised sensor selection for control: If one needs
to consider only the control of the EMS system the LQG
control method is the only that works satisfactorily with
single measurements. On one hand the M.O H∞ does not
give sufficient performance with single measurements and
on the other hand the H∞ LSDP only the id:2 satisfy Ω
but not the fci . however it could be used for fault tolerance
purposes. In conclusion the sensor sets with idLQG : 1 or 3
results to adequate performance of the EMS system.

2) Optimised sensor selection for fault-tolerant control:
Looking the simulation results from the optimised sensor
selection for FTC, the SFAR metric is introduced to simplify
the selection. The SFAR as explained in Section II indicates
the capacity of the sensor set to offer fallback options. The
SFAR values are varied between 28% and 100%. The highest
values of the SFAR are evaluated for the idLQG : 6, and
idH∞LSDP : 4, 7. The SFAR is evaluated with different
values independent from the number of the sensor sets and
the following points are emphasised:

• For the id : 4 SFARLQG=50%, SFARM.O.H∞ = 0%
and SFARH∞LSDP = 100%

• For the id : 6 the SFAR with LQG is 100% but for the
other control methods zero.

• For the id : 7 the SFARH∞LSDP = 100% but for
the other two control methods zero. Note that fci is not
satisfied.

• for the id : 8 the SFAR is is given as 83%, 28% and is
not evaluated for the LSDP method because it does not



TABLE IV
COMPARISON OF THE PROPOSED FRAMEWORK USING VARIOUS MODERN CONTROL METHODS.

id Sensor Set LQG M.O.H∞ H∞ LSDP
ΩLQG SFARLQG ΩH∞ fci fk SFARH∞ ΩLSDP fci fk SFARLSDP

1 b X 0 - - - - * * * *
2 (zt − z) x 0 x x x 0 X x X 0
3 ż x 0 - - - - * * * *
4 z̈ X 0 - - - - * * * *
5 b, (zt − z) X 50 X x X 0 X X X 100
6 b, z̈ X 100 - - - - * * * *
7 (zt − z), ż x 0 X X X 0 X x X 100
8 i, b, z̈ X 83 X X X 28 * * * *
9 i, (zt − z), z̈ X 50 X x X 28 X X X 33
10 b, (zt − z), z̈ X 83 X X X 28 x x x 0
11 i, b, (zt − z), ż X 42 X X X 46 X X X 71
12 i, (zt − z), ż, z̈ X 50 X X X 53 X X X 71
13 i, b, (zt − z), ż, z̈ X 73 X X X 61 X X X 66

includes the airgap sensor.
• Looking at sensor set id : 10 the SFAR for the LQG and

the H∞ are 83% and 28% respectively but for the other
control method is zero as the SFAR is not evaluated.

• The SFAR values for the LQG, the M.O H∞ and the
H∞ are similar 73%, 61% and 66%.

With respect to the above considerations in mind the two
sensor sets that give optimised performance with the highest
SFAR are the idH∞LSDP : 4 and idLQG : 6. Hence, the
practical engineer could consider the above two sets of sensor
configuration as a starting point providing a good level of
control and fault tolerance. Finally, reliability of the proposed
sensor selection method can be tested using the proposed
AFTC method presented in Section IV-B. Results for the
tests of the three MCM are presented and analysed in [10],
[11] and [12].

VI. CONCLUSIONS

A comparison between three different MCM in the context
of the proposed sensor optimisation framework is presented
in this paper. The framework is applied to an EMS sys-
tem and the results show that the framework is capable
of identifying sensor sets that could be used to control
the EMS ensuring properties like optimised performance,
robustness and reliability of such safety-critical system. The
proposed scheme aims to alleviate complexity in the design
for control and fault tolerance. With increasing complexity of
the system under consideration and the required constraints
in the design, computational power requirements in finding
the solution may be a drawback. However, the procedure
is an off-line process and attempts to introduce a level of
simplification in the choice of the sensor sets for the practical
engineer.
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