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Abstract

The paper presents a method to recover the performance of an electromagnetic suspension under faulty
airgap sensor. The proposed control scheme is a combination of classical control loops, a Kalman Estimator
and analytical redundancy (for the airgap signal). In this way redundant airgap sensors are not essential
for reliable operation of this system. When the airgap sensor fails the required signal is recovered using
a combination of a Kalman estimator and analytical redundancy. The performance of the suspension is
optimised using genetic algorithms and some preliminary robustness issues to load and operating airgap
variations are discussed. Simulations on a realistic model of such type of suspension illustrate the efficacy
of the proposed sensor tolerant control method.
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1. Introduction

MAGnetic LEVitation (MAGLEV) trains have been attractive to the transport industry due to a num-
ber of advantages they offer compared to conventional wheel-on-rail equivalents. In particular, MAGLEV
trains have no mechanical contacts with the rail thus reducing maintenance costs, although in general
building MAGLEV rail infrastructure is more expensive than conventional rail infrastructure [18].

MAGLEV suspensions offer high performance with desirable levels of ride quality, they are inherently
unstable systems thus stabilised by appropriate control solutions while they can be very sensitive to sen-
sor faults with high probability of instability developing under such failures. MAGLEV suspensions are
typically separated into two types. One is the Electro-Dynamic Suspension and the second, which is con-
sidered in this paper, is the Electro-Magnetic Suspension (EMS). If the EMS system becomes unstable
it can either fall off or stick to the rail causing series of undesirable effects to the train and its passen-
gers. Hence, being a critical-safety system substantially increases costs as it is requires a Fault Tolerant
Control (FTC) structure [3]. Typically, two types of FTC exits [23], one is the passive type where the
controller is designed to be insensitive to faults, while the second type, the active where the controller
changes structure (sort of remedial action or reconfiguration) when a fault occurs [16, 29]. Safety-critical
systems employ either active or a combination of active-passive FTC.

Previous studies on active fault tolerant control for EMS systems aimed to increase the reliability while
keeping hardware redundancy to a minimum. Work from other authors related to detect and accommodate
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sensor faults, controller or even electromagnet failures, i.e. (i) state feedback control where the authors
targeted recovering from current or acceleration sensor failures [15], (ii) fault tolerant control using clas-
sical PID with tracking differentiators for acceleration sensor failure[31], (iii) LMI-based H∞ approach
where the authors aimed to recover from airgap or accelerometer sensor faults as well as accommodate
actuator (electromagnet) faults [26], (iv) simultaneous stabilisation-based fault tolerant control against
electromagnet failures is also considered in [30], (v) sensor fault diagnosis using a bank of Kalman estima-
tors has been considered for detection and location of sensor faults in [28] and (vi) redundant controllers
to offer some form of hardware redundancy [17, 19] for possible controller failures.

The particular contribution of this paper lies in a fault tolerant control approach aiming to reduce
hardware sensor redundancy while maintaining appropriate maglev suspensions performance for both de-
terministic and stochastic inputs under parametric uncertainties. In particular, the paper extends concepts
presented in [9] and [11] as well as airgap estimation using Kalman Estimator (KE) attempting to offer
simplicity in the solutions, i.e. minimize airgap sensor redundancy (noting that airgap measurement is
a compulsory element in the control of a maglev suspension, [21]) while avoiding the need for controller
reconfiguration by estimating/calculating equivalent airgap information via low cost sensors. The method-
ology utilises a combination of robust classical control with inner loop control, a KE and complementary
analytical airgap signal calculation via alternative low cost sensors. The proposed approach has the ad-
vantage of avoiding multiple instances of airgap sensor equipment (i.e. minimise cost), taking in account
that airgap sensors are rather expensive in maglev train suspensions. A similar approach, but for a ship
propulsion system is seen in [27] for estimating the pitch and the shaft speed under sensor faults, however
the authors did not consider the issue of sensor configuration.

Effective control of the maglev suspension requires satisfying a number of control constraints while
ensuring acceptable passenger’s comfort (stochastic response) and that the vehicle follows rail gradients
(deterministic response). Clearly, this is a multiobjective constrained optimisation problem with complex
specifications to achieve where evolutionary algorithms can be employed in the tuning of classical-designed
controllers and KE for the airgap estimation signal [6]. Although the controllers and Kalman estimator
are designed based on the linearised model of the maglev suspension, the control implementation refers
to the non-linear model (in order to take in account realistic issues of operating condition).
The performance of the EMS is optimised via Genetic Algorithm (GA). Among the different types of GAs
the recently developed Non-dominated Sorting Genetic Algorithm-II (NSGA-II) based on non-dominated
sorting of the individuals in the chromosome [5] is used. NSGAII has very good distribution of solutions
on the optimum Pareto front hence it proves to be powerful optimisation tool.

The paper is organised as follows: In Section 2 the linearised quarter car model of the maglev suspension
is presented along with possible disturbance inputs to the suspension followed by the control requirements
and objectives. Section 3 gives a short description of the genetic algorithm that is used for the performance
optimisation. Section 4 explains the proposed optimised fault tolerant control scheme that is based on the
combination of classical controllers, kalman estimator. Section 5 illustrates the efficacy of the proposed
FTC approach via simulations for 20 sensor fault scenario. Conclusions are included in Section 6.

2. Maglev suspension model and control requirements

The end-view schematic diagram of a MAGLEV vehicle and it’s electromagnet suspension system are
illustrated in Fig.1. The EMS system represents a one degree of freedom motion, hence labelled as
“quarter-car” maglev model. The suspension consists of an electromagnet, with a ferromagnetic core and
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a coil which is attracted to the rail that is made out of ferromagnetic material. The mass of the carriage
is attached to the electromagnet with zt being the rail position and z the vehicle position. The difference
between the two, (zt − z) is the airgap. The aim is to control the airgap thus providing appropriate
suspension performance to both deterministic and stochastic rail inputs. Assuming that the positive
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Figure 1: Diagram of a MAGLEV vehicle and the single-stage EMS system.

direction is downwards the equation of motion that stems from Newton’s second law is given as

MZ̈ = Mg − F (1)

Where M is the mass of the carriage, Z̈ is the vertical acceleration of the vehicle, g is the gravity
acceleration constant equal to 9.81m/s2 and F is the vertical force produced by the electromagnet to
maintain the carriage at the operating position.

The electrical circuit of the electromagnet is given by

V = RI + L
dI

dt
+NA

dB

dt
(2)

where, V is the input voltage, R is the coil’s resistance, L is the leakage inductance, N the number of turns
of the coil and A is the pole face area. I is the coil current and B is the flux density. The linearization
takes into account the flux density, the force and the airgap equations in (3) and (4) respectively.

B = Kb

I

G
, F = KfB

2 (3)

dG

dt
=

dZt

dt
−

dZ

dt
(4)

As indicated by Goodall (2008) [13] the four important variables in the electromagnetic suspension are the
force F , the flux density B, the airgap G and the coil current I. The relationships between those variables,
are shown in Fig. 2. At constant airgap, the flux density is proportional to the coil current and at constant
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Figure 2: Maglev single-stage suspension non-linearities (Straight lines for theoretical and dotted lines for a practical elec-
tromagnet including leakage and saturation).

current is inversely proportional to the airgap. The force is proportional to the square of the flux density.
The MAGLEV suspension is non-linear (although no hard nonlinearity appears) but linear controllers can
still perform as it is illustrated in Section 5. To derive the LTI state space model, linearisation is done
around the operating point using (5)-(7). The ‘o’ subscript defines the operating point and small letters
the perturbation around the operating point. The linerization around the operating point is derived in
Michail (2009) [20].

F = Fo + f, B = Bo + b (5)

I = Io + i, G = Go + (zt − z) (6)

V = Vo + u Z = Zo + z (7)

The linearised state-space model of the suspension is given in (8)

ẋ = Agx+Buu+Bżt żt
y = Cmx

(8)

and the (linear) state vector is: x = [i, ż, (zt − z)]T .
The matrices of the state and output equations are given as:

Ag =







− R
L+KiNA

−
K(zt−z)NA

L+KiNA
0

KbKi

M
0 −

KbK(zt−z)

M

0 −1 0






(9)

Bu =





1
L+KiNA

0
0



 Bżt =







K(zt−z)NA

L+NAKi

0
1






(10)

Cm =















1 0 0
Kb

Go
0 −KbIo

G2
o

0 0 1
0 1 0

−2Kf
Io

MG2
o

0 2Kf
I2o

MG3
o















(11)
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It is worth noting that the output matrix Cm is shown here to represent all possible measurement
quantities, i.e. the current, the flux density, the airgap, and the vertical velocity and acceleration
([i, b, (zt − z), ż, z̈]T ). The parameter values for the quarter car model used are given on Table 1. The
constants are given as Ki = Bo/Io,K(zt−z) = Bo/Go and Kb = 2Fo/Bo.

Table 1: Parameters of the EMS system.

Parameter Value Parameter Value

Operating airgap,Go 0.015m Carriage Mass,M 1000kg
Operating flux density,Bo 1T Coil’s Resistance,Rc 10Ω
Operating current,Io 10A Coil’s Inductance,Lc 0.1H
Operating voltage,Vo 100V Number of turns,Nc 2000
Operating force,Fo 9810N Pole face area,Ap 0.01m2

2.1. Disturbance Inputs and Control Requirements for the Suspension

Two types of disturbance inputs affect the performance of the suspension in the vertical direction. One
is of stochastic nature which affect the ride quality of the vehicle and the other is of deterministic which
affects the position of the electromagnet on the rail.

2.1.1. Stochastic Inputs

The stochastic input is due to random variations of the rail position as the vehicle moves along the rail.
These arise due to rail-laying inaccuracies, steel rail discrepancies as well as due to unevenness during the
installation of the rails. Considering the vertical direction, the velocity variations can be approximated
by a double-sided power spectrum density (PSD) expressed as:

Sżt = πArVv (12)

where Vv is the vehicle speed (taken as 15m/s in this case) and Ar represents the roughness and is assigned
a value of 1× 10−7m for high quality rail. The corresponding autocorrelation function is then given as:

R(τ) = 2π2ArVvδ(τ) (13)

Since a non-linear model is used for the simulations, the rms values of the variables (eg. flux density, coil
current etc) are calculated from the values of the time history.

2.1.2. Deterministic input

The main deterministic input to the suspension in the vertical direction comes from the transition onto
the rail’s gradients. In this work, the deterministic input shown in Fig.3 is used which represents a gradient
of 5% at a vehicle speed of 15m/s, an acceleration of 0.5m/s2 and a jerk of 1m/s3.
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Figure 3: Deterministic input to the suspension with 5% gradient at a vehicle speed of 15ms−1.

2.1.3. Control design requirements

Fundamentally, there is a trade-off between the deterministic (rail gradient) and the stochastic response
(ride quality) of the suspension. For low speed vehicles, performance requirements are described in [10]
and [12]. In this paper, the control requirements adhere to the Birmingham MAGLEV vehicle that was
operating at Birmingham airport in the United Kingdom for during the nineties [24].

The objective is to minimize both the vertical acceleration, z̈, (improve ride quality) and the excitation
of the electromagnets by minimizing the RMS value of the current variations (irms) about the operating
point. Therefore, the objective functions to be minimized are given as:

φ1 = irms φ2 = z̈rms (14)

Classical control with inner loop flux feedback offers an advantageous approach to controlling a MAGLEV
vehicle [11]. Using a Proportional-Integral controller for the inner loop and Phase advance controller
for the outer loop, the suspension can perform satisfactorily with sufficient robustness (the latter due to
the inner loop). The robustness characteristics come from the frequency response methods as listed on
Table 2.

In any real application sensor equipment is affected by noise. For the controlled MAGLEV suspension,
noise from sensors can be amplified by the controller and appears on the control signal (the driving signal
of the suspension). Particularly, if the controller has high gains, then the amplitude of the noise can
become very large. Figure 4 shows the open-loop frequency responses from the control input (u) to the
airgap (mm) and also the current (i). It can be seen that the open-loop frequency response has low-pass
filter characteristics and therefore the noise is filtered and is expected to have limited effect on the outputs.
However, for completeness we introduce a third objective in the optimization to minimize noise effects in
the designed system, i.e. (15).

φ3 = unrms (15)

The required control constraints of the suspension are listed in Table 2.
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Figure 4: Frequency response from the control input to the airgap/current outputs.

3. Multiobjective constrained optimisation using NSGAII

Genetic Algorithms are heuristic type of optmisation algorithms inspired from nature, see Holland(1975)
[14] and introduced by Goldberg(1989) [8]. Since then, GAs have gained serious attention from the sci-
entific community and they have evolved rapidly with a wide range of application in engineering and
many other fields taking advantage of their optimisation properties. Among the various versions of GAs,
the Non-dominated Sorting Genetic Algorithm II (NSGAII) [5] is used in this paper. Optimisation is
done in two cases (i) for the optimisation of the classical controllers: The aim of the NSGAII is to find
the Pareto-Optimality (i.e. trade-off) between the control objectives (φ1, φ2, φ3) subject to the control
constraints listed on Table 2 (eg. both in time and frequency domains). (ii) Kalman-Estimator tuning:
In this case, the KE is optimally tuned in order to adequately estimate the redundant airgap signal using
the information from the velocity and acceleration sensors.
In order to make sure that the closed-loop control constraints of the suspension listed on Table 2 are
satisfied, a constraint handling technique based on penalty function approach is used [4]. An extensive
analysis of the NSGAII combined with the penalty functions is given in [22].

The basic parameters used for the NSGAII optimisation process are given next. The crossover proba-
bility is generally selected to be large in order to have a good mixing of genetic material. The mutation
probability is defined as 1/nv, where nv is the number of variables involved in the optimisation. For the
simulated binary crossover parameter (SBX) and the mutation parameter it was decided to use the default
values of 20 and 20 since they provide good distribution of solutions for the algorithm operations. Since
the NSGAII is used for both the classical controllers and the KE tuning the parameters are different in
each case. The number of variables nv for the classical controller’s tuning is five and for the KE only one.
The number of chromosomes in the population (Pn) and the maximum generation (Gn) are given for the
classical controller tuning, Pn = 70 and Gn = 300 and for the KE tuning, Pn = 20 and Gn = 70.
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Table 2: Closed-loop Control Constraints Required for the Suspension.

Control Constraints Value

Stochastic response
RMS acceleration(' 5%′g′),(z̈rms) ≤ 0.5ms−2

RMS air-gap variation, (zt − z)rms ≤ 5mm
Deterministic response
Max airgap deviation,(zt − z)p ≤ 7.5mm
Control effort,up ≤ 300V (3IoRo)
Settling time,ts ≤ 3s
Frequency response characteristics
Phase margin,(PM) 35o ≤ PM ≤ 45o

Outer bandwidth,fbin fbin{
≤100Hz
≥50Hz

Inner bandwidth,fbout ≤ 10Hz

4. The proposed control scheme for airgap sensor failure

The problem considered in this paper is to recover the performance of the MAGLEV suspension in
case of a faulty airgap measurement using redundant still less expensive sensors. The proposed scheme is
illustrated on Fig. 5. The suspension has 5 outputs defined in Section 2. Although the control design is
based on the linearised model of the EMS, the actual solutions are validated on the nonlinear model [7].

In order to detect a faulty airgap sensor, three airgap signals are compared in between them:

• The measured airgap signal, (zt − z)m: This signal is the normal measurement as taken from the
airgap sensor. It is given directly to the Fault Detection, Isolation and Decision Unit (FDIDU) as
if it passes from a proportional gain equal to one, Km = 1.

• estimated airgap signal, (zt− z)e: This is the airgap signal as estimated from the KE, Ke, using the
velocity and acceleration measurements.

• the calculated airgap signal, (zt − z)c: This signal is calculated using the current and flux density
measurements based on the flux in (3) given as (zt−z)c = Kb

I
B
−Go. This is similar to a proportional

gain, Kc, added in the loop.

Additionally, throughout the paper the real airgap signal, (zt − z)r, is given which is the actual position
between the vehicle and the rail i.e. without taking into account airgap sensor dynamics.

Fault Detection and Isolation mechanisms compare the three aforementioned signals and the residuals
indicate whether the airgap sensor or one of the other sensors i, b or z̈ are healthy or faulty. In a healthy
situation the airgap signal, (zt − z), is given by

(zt − z) = [(zt − z)m + (zt − z)e + (zt − z)c] /3 (16)

When the airgap sensor is isolated and the airgap signal (zt − z) is calculated by

(zt − z) = [(zt − z)c + (zt − z)e] /2 (17)
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Consequently, if the calculated or estimated airgap signals are ‘faulty’, the airgap signal (zt − z) is
calculated accordingly based on (17) using the ‘healthy’ signals. In order to implement the control scheme
of Fig. 5 the classical controllers have to be optimally tuned for optimum1 performance together with the
KE.
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Figure 5: Fallback options for airgap sensor failure of the MAGLEV suspension.

4.1. Sensor Fault Scenarios

A sensor can fail unexpectedly and its behaviour may not be predicted exactly. Faults can be added or
multiplied to sensor’s output as depicted in Fig. 6, i.e. faults are categorised as additive or multiplicative,
with the former been considered here. Given the same figure, faults are separated into three types: (i)
abrupt or step-wise fault, (ii) incipient or soft fault and (iii) indeterminate fault.

The performance of the proposed scheme is tested under a number of sensor fault scenaria, with both
deterministic and stochastic related simulations. We assume single sensor failure each time. The fault
profiles considered fall in the abrupt category both multiplicative and additive type. We consider a total
of 5 sensors in the design, i.e. (i, b, (zt − z)m, ż, z̈), each possible to individually fail. An example of the
fault introduction (in the deterministic case) can be seen in Figs. 7(a) and 7(b), i.e. the former depicts
a multiplicative airgap sensor fault (when fault occurs the sensor amplitude is doubled) while the latter
represents an additive fault of random signal profile with very low frequency drift. This type of fault
profiles are used for the stochastic response of the suspension and it is assumed to happen on all five
sensors. Overall 20 sensor fault tests are considered, with one sensor failing per scenario.

1optimum in the sense of “optimized subject to the given constraints” in the application presented in this paper
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Figure 7: Airgap sensor (multiplicative and additive) abrupt fault profiles for a deterministic input to the suspension.

4.2. Classical controller with inner loop design

In order to achieve fault-free optimum performance a similar scheme to the one illustrated in Fig. 5
is used. Particularly, only the airgap ((zt − z)m) and flux density (b) are fed to the controllers. For
the best possible rejection of the disturbance żt and minimisation of the objectives while maintaining
suspension performance within safe (see Table 2), the parameters of the controllers are optimally tuned
using the NSGAII. The control strategy uses a Proportional-Integral controller (PI) for the inner loop with
a bandwidth in the range 50Hz− 100Hz while the outer loop is aimed at less than 10Hz using the Phase
Advance controller (PA). The PA controller in (18), with k the advance ratio and τ the time constant, is
used to provide adequate phase margin in the range of 35o − 45o [11].The controllers’ structure are given
as

PI = Gi
tis+1
tis

PA = Go
kτs+1
τs+1 (18)

The controller parameters are tuned simultaneously using the NSGAII and the Pareto-Optimality be-
tween the objective functions (φ1, φ2 and φ3) is found accordingly. From those controllers that satisfy the
predefined constraints, the desired closed-loop response is selected.
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4.3. Kalman Estimator (KE) tuning

The airgap measurement is included as a state in the linearised model of the MAGLEV system (refer
to (8)) and therefore a KE can be used estimate it. Note, we consider the design of a continuous-time
Kalman estimator.

Consider the following state space expression relating to the linearised MAGLEV model

ẋ = Agx+Buu+Bwωd

y = Cmx+ ωn
(19)

where, ωd and ωn are process and measurement noises respectively. These are assumed to be uncorrelated
zero-mean Gaussian stochastic processes with constant power spectral densities W and V respectively.

The KE has the structure of an ordinary state-estimator with a state equation as

˙̂x = Ax̂+Bu+Kf (y − Cx̂) (20)

where in this case, A = Ag, B = Bu and C = Cm.
The optimal choice of Kf via W and V is found via minimizing E{[x− x̂]T [x− x̂]} [25]. The optimum

choice of W and V eventually control the accuracy of the state estimation. Genetic algorithms are used to
tune W in order to minimise the error between the estimated and the measured one for both deterministic
and stochastic responses. The noise covariance matrix V is selected to be, diagonal 2 × 2 matrix with
values of the noise covariance for the current and flux density measurements, i.e V = diag(Vż, Vz̈) (Vż and
Vz̈ are taken as the square of 1% of the maximum value for the deterministic response). In this design
the process noise matrix Bw = Bzt and the process noise covariance matrix W refers to the rail velocity
input and this is optimally tuned.

In order to estimate the airgap signal two objectives are selected to minimise via NSGAII. i.e to tune
the Kalman estimator presented in (21) and the Integral absolute error between the real airgap and the
estimated for both deterministic (φd) and stochastic (φs) responses. Although the estimator is stable by
default it was important to take the appropriate time domain signal comparison for performance test.

φd =
∫

|(zt − z)m − (zt − z)e|dt
φs = RMS((zt − z)m − (zt − z)e)

(21)

In this case, it is important to obtain an accurate for the estimate of air-gap and therefore two constraints
are assigned so that the related error is less than 5% (22).

ωd =
∫

|(zt − z)m − (zt − z)e|dt ≤ 0.05
ωs = RMS((zt − z)m − (zt − z)e) ≤ 0.05

(22)

5. Simulations and data analysis

5.1. Performance optimisation of the EMS

The control strategy with classical approaches was optimally tuned and the desired performance of
the MAGLEV suspension has been achieved. Figure 8 depicts the Pareto-Optimality between 2 out of
3 objective functions. Although there are three objectives to be minimized, only the trade-off between
the irms, (φ1) and z̈rms, (φ2) is depicted which is of main interest. A 3D figure is avoided because the
trade-off is not clearly shown due to the nature of such plot. The maximum level of the noise, unrms (φ3)
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is restricted to around 25Vrms. This looks fairly high but as explained in Section 2.1.3 the noise is largely
reduced from the low-pass filtering properties of the suspension (see Fig. 4).

The vertical acceleration (i.e. ride quality) of the suspension is less than 0.5m/s2 while the input current
from the stochastic behaviour is limited to around 1A. From the optimum Pareto front of controllers
depicted in Fig. 8 all controllers (each point reflects to one controller) shown are tuned to satisfy all
control constraints listed in Table 2 and therefore anyone of them can be selected based on the user’s
requirements. The pair of controllers (PA,PI) that results in the best ride quality (i.e. smallest z̈) which
is given in (23) is selected.
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Figure 8: Pareto front of controllers using NSGAII.

PA = 3.980.1323s+1
0.0244s+1 PI = 1.1642e30.0052s+1

0.0052s (23)

The resulting vertical acceleration (ride quality) is 0.26m/s2 and the airgap deviation for a 5% rail
gradient is shown in Fig. 9(a). All the control constraints from the deterministic rail profile are satisfied
including maximum airgap deviation and settling time. It is clear that the noise on the input voltage, u in
Fig 9(b) does not affect the performance of the suspension and the maximum peak value of u constraint
is satisfied. Using the proposed optimisation method, the controllers are successfully tuned and the next
stage is to show that the Kalman estimator is able to estimate the airgap signal using the vertical velocity
(ż) and the acceleration (z̈) measurements.

5.2. Airgap estimation based on Kalman estimator

The KE has been tuned as explained in Section 4.3 for the airgap signal estimation using both deter-
ministic and stochastic input profiles.
The optimum values for V and W are given in

V = diag(5.8537, 3.3301)10−5,W = 3; (24)
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Figure 9: Real airgap ((zt − z)r) and input voltage (uc) from the deterministic rail profile.

and the resulting KE gain is given as

Kf =





−0.0689 −190519.1264
0.7542 1.0044
−0.0005 −300.1438



 (25)

Figure 10 shows the error between the different airgap signals involved for the fault detection and
decision making unit: Fig. 10(b) the measured and the estimated (e(zt−z)m,e

), Fig: 10(a): the measured and
calculated (e(zt−z)m,c

) and Fig. 10(c): the estimated and calculated airgap signals from the deterministic
response of the suspension. Similar results are obtained with the stochastic rail input hence not illustrated
here. The errors are fairly small with both disturbance inputs therefore these signals can be used for the
fault detection and decision making unit.

5.3. Robustness analysis

The Maglev suspension system performance is subject to some parametric variations in the system
including load variation and uncertainty that could occur on the operating point of the airgap, G0.

5.3.1. Load variations

The suspension has to support the mass of the vehicle as well as the passengers’ weight (load). We
assume a variation of 25% load, i.e. for quarter vehicle the laden vehicle mass (vehicle+load) increases to
1.25 tonnes. The above variation is quite substantial for the maglev application and the system should
maintain adequate performance in such case.

The load variation is simulated in the form of an external disturbance force, i.e. Fd on the mechanical
equation part from (1). Note that Fd = ∆M ∗ g, where ∆M is the passengers’ mass. We assume a
ramp profile (over 10 seconds) of varying load from 0 to 250kg, i.e. 0-250*9.81N. The Fd profile can be
seen in Fig. 11(a). The profile depicts passengers boarding the maglev vehicle compartment while the
train is stopped at a station (with the vehicle hovering). The assessment is done for the deterministic
case (although a similar pattern has been noted in the stochastic one), however it is worth noting that
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Figure 10: Error between the measured-estimated (e(zt−z)m,e
), measured-calculated (e(zt−z)m,c

) and estimated-calculated
(e(zt−z)e,c) airgap signals.

the rail profiles are injected once the vehicle is fully laden, i.e. mass is 1250kg. Fig. 11(b) presents the
deterministic airgap response to the load variation. Note that an airgap value of zero (linearised) depicts
an operating point of 15mm. Clearly, with the load varying, the airgap deflection is unacceptable and well
out of constraints as given in Table 2. At this point is important to note that the response in Fig. 11(b)
relates to the structure shown on Fig. 5, whereby the inner loop utilizes flux measurement (without the
HPF).

A practical way to avoid the large airgap deflection due to the load variation is given by the practicalities
of flux sensing. In particular, we have assumed that flux is available as measurement, however in a practical
situation a search coil is used [11] which provides measurement of dB

dt
. Naturally, dB

dt
is integrated to

provide B, although any drift in the measurement is amplified by the pure integrator. In such case, an
appropriately designed High Pass Filter is used (hence, the so-called “Self-Zero Integrator” (SZI) when it
is combined with the true integrator). Equation (26) presents the transfer function of the HPF ×1/s, i.e.
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Figure 11: Passegers boarding profile and the airgap response.

characterising a butterworth type filter with cut-off frequency at 1.2rads/s with 0 deg phase shift at the
given frequency. Its bode plot is shown in Fig. 12.

GI =
2.209s2

2.284s2 + 4.7s+ 4.7
(26)

The sensitivity of the airgap to the load variations can be shown from the frequency response plot
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Figure 12: Frequency response of the self-zero integrator (from (26))

between (zt − z) to Fd. At the outer loop where the airgap signal is fed into the PA controller there
are 4 control configurations to be studied depending on the fault scenario. For example, in the fault-free
case, all feedback paths, i.e. Ke,Kc and Km, are active in the loop. If a sensor fault happens, then the
corresponding airgap signal is de-activated, while the remaining two paths are maintained active.
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Figure 13 illustrates the designed system’s sensitivity to Fd, i.e. frequency response from Fd to airgap,
(zt − z). The frequency response without the SZI (with straight line) is flat at low frequency range while
it starts dropping at around 10rad/s. The rest of the lines are the frequency responses with a SZI in the
flux density loop, this is done by inserting the HPF soon after the flux measurement as seen on the dotted
line in Fig 5. With the HPF in the loop, means self-zero integration from dB

dt
. Four control configurations

are included, the nominal one with Km − Ke − Kc and the other three represents the sensitivity under
fault conditions. The other three frequency responses are the sensitivities for the control configurations
Km −Ke, Km −Kc and Ke −Kc.

It can be seen that the attenuation is limited by adding the KE in the loop (all of the control con-
figurations that include the KE ie. Km − Ke − Kc, Km − Ke and Ke − Kc. It is still adequate for the
normal operation of the suspension while the control configuration with Km − Kc attenuates the load
disturbance in an efficient way. This can be verified from the time response of the suspension in Fig. 14(a)
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Figure 13: Frequency response between the (zt − z)r and Fd with and without SZI in the loop.

and 14(b) where the deterministic and stochastic responses of the suspension are tested with the load
variation conditions using the SZI. The responses of the airgap in both cases are characterised sufficient.
The only difference is the small steady state error introduced from the KE dynamics.

5.3.2. Operating point variation

This next assessment relates to operating condition variation. It was assumed that the maglev system
operates under a nominal airgap point of 15mm, however it is natural that variations of the operating
condition will occur and we assume a ±25% variation in such case. The deterministic response of the
suspension with the 4 control configurations is given in Fig. 15. Each figure shows the response in the
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Figure 14: Closed-loop response of the suspension to disturbance inputs under load variation with SZI.

worst case perturbation of the operating point along with its nominal response (note that this includes
the load variation). All of the responses show adequate performance to the worst-case perturbation with a
small steady state error shown in Fig. 15(a), Fig. 15(b) and Fig. 15(d). This is expected as the sensitivity
to the load variations is increased due to the use of the KE.

5.4. Sensor fault tolerance test

As it was mentioned in Section 4.1 the performance of the suspension was tested under 20 sensor fault
scenarios. The performance of the suspension is illustrated on Table 3. The tests are done assuming single
sensor failure at a time. Using the proposed scheme the performance of the suspension is fully recovered
under any sensor faults.

Assuming that the airgap sensor (measured airgap signal) fails both fault profiles used are depicted in

Table 3: Suspension performance under various sensor fault scenarios.

Suspension Performance under sensor fault

Stochastic Input Deterministic Input

Faulty Additive/abrupt Multiplicative/abrupt Additive/abrupt Multiplicative/abrupt
sensor fault fault fault fault

i X X X X

b X X X X

(zt − z)m X X X X

ż X X X X

z̈ X X X X
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(a) Deterministic response with Km,Ke,Kc.
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(b) Deterministic response with Km,Ke.
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(c) Deterministic response with Km,Kc.
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(d) Deterministic response with Ke,Kc.

Figure 15: Deterministic response of the suspension with the various control configurations.

Fig 7(b) and Fig. 7(a). The error between the real airgap with fault (airgap additive/abrupt sensor fault)
and fault-free conditions is depicted in Fig. 16(a). Similar response is obtained with multiplicative/abrupt
fault as illustrated in Fig. 16(b). In both airgap sensor fault scenarios, the real airgap of the suspension
is well within control constraints.
Linear Kalman filter techniques have proven extremely useful in engineering problems involving esti-

mation of various quantities, one presented in this paper. However, such types of filters may suffer from
convergence problems in highly nonlinear systems with large uncertainties, and this fact is acknowledged.
By involving more complex estimation techniques, the complexity of the proposed solutions undoubtedly
increase. However, it may be useful as a next step comparing the robustness and performance of the
solutions with alternative estimation approaches, i.e. the increasingly popular Neural Networks approach
[2] or finite memory filters [1].
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Figure 16: Error between the real airgap with airgap sensor fault and fault-free (e(zt−z)rf,f−f
) situations.

6. Conclusions

A FTC method is presented which is used to maintain MAGLEV suspension performance under airgap
sensor failure with minimum hardware redundancy and cost. Instead of having a triple or quadruple set of
airgap sensors, equivalent airgap sensor information are obtained via a combination of an observer and less
costly sensor elements i.e. i, b, ż and z̈. Also, in contrast to the airgap sensor they can be installed in safer
locations on the electromagnet minimizing the possibility for more faults. In addition, the proposed scheme
relates to no reconfiguration of the included controller structure. Although an observer is expected to be
implemented on a computer, such systems are rather common in modern train systems and are subject to
appropriate computational performance. Although the inner control loop offers robustness, a drawback is
the sensitivity to failures of the flux density. A current solution is that hardware redundancy may be used
in the case of flux density sensor as it is a sensor providing vital information to the inner loop. Moreover,
we have considered only single sensor failures in this particular study, while currently investigate solutions
to simultaneous sensor failures. The proposed scheme aims to offer a first insight to control engineers
working on FTC suspension systems who have to provide practical solutions but may be put off by the
potential complexity of normal model-based control approaches.
Although, we have presented a MAGLEV suspension system, the scheme may be extended to more complex
engineering problems. Linear Kalman Filters have proved useful in control design but they may suffer
from convergence problems in the case of highly nonlinear systems with uncertainties. In this context, a
particular interest in this work is extension of the framework in more robust estimators for such cases.
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