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Abstract

This paper presents a systematic design framework for selecting the sensors in an optimised manner,
simultaneously satisfying a set of given complex system control requirements, i.e. optimum and
robust performance as well as fault tolerant control for high integrity systems. It is worth noting that
optimum sensor selection in control system design is often a non-trivial task. Among all candidate
sensor sets, the algorithm explores and separately optimises system performance with all the feasible
sensor sets in order to identify fallback options under single or multiple sensor faults. The proposed
approach combines modern robust control design, fault tolerant control, multiobjective optimisation
and Monte Carlo techniques. Without loss of generality, it’s efficacy is tested on an electromagnetic
suspension system via appropriate realistic simulations.

Keywords: Optimised sensor selection, Robust control, Fault tolerant control, Magnetic
levitation, Multi-objective optimisation, Electromagnetic Suspension

1. Introduction

Optimum sensor selection in practical control system design can be complex process especially
if the selection is done with respect to a number of properties in order to achieve robust optimum
performance and reliability properties.

A typical closed-loop control system is shown in Fig. 1. Typically, a system to be controlled has a
number of candidate control inputs (actuators) and outputs (sensors) that could be used to control it
by proper controller design using one of the existing modern control methods. Moreover the system
suffers from input disturbances and uncertainties or model inaccuracies. Additionally, faults highly
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Figure 1: A typical closed-loop control system.

affect the closed-loop performance of a control system. Particularly, actuator and sensor faults can
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cause performance degradation or even instability. This problem has been extensively considered by
the scientific community the last years. Some typical work with applications to industrial systems
includes [1], [2], [3] and [4].

The problem of sensor/actuator selection has been addressed before in the literature [5] but none
of the methods consider simultaneous satisfaction of the aforementioned properties except in [6]
where the authors have consider both optimum performance and sensor fault tolerance using Linear
Quadratic Gaussian (LQG) control. Therefore the problem is to find the ‘best’ set of sensors, Yo,
subject to the aforementioned control properties i.e. optimum performance, robustness, fault toler-
ance and minimum number of sensors.

The novelty in this paper relies in the fact that optimum robust performance with sensor fault
tolerance is achieved by combining robust control methods, Fault Tolerant Control (FTC), Multi-
Objective OPtimisation (MOOP) and Monte Carlo (MC) method as illustrated in Fig. 2.

Robust control design in a practical control system has a vital role because real systems have
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Figure 2: The simplified diagram of the proposed framework for optimum sensor selection with robust control and
fault tolerance.

uncertainties, disturbance inputs and other effects that affects the nominal performance of the
closed-loop control system. In that context robust control theory has been developed the last years
including H∞ robust control control methods [7]. Among the existing robust control methods the
H∞ Loop Shaping Design Procedure (LSDP) is merged into the framework for the design of robust
nominal controller [8].

Control system design for safety-critical systems [9, 10] is vital for the integrity of such systems
when sub-systems faults occur. Therefore the scientific community developed an area where the
faults can be accommodated. Fault tolerant control systems are divided into two categories, the
Active FTC (AFTC) and the Passive FTC (PFTC) systems. In this work, the AFTC concept is
introduced in order to accommodate multiple sensor faults [11, 12, 13].

Multiobjective constrained optimisation using heuristic approaches is very popular and has gained
a lot of intention the last years [14, 15]. Among the heuristic methods, Genetic Algorithms (GA)
are favour in control optimisation [16, 17, 18]. Since the beginning of GAs by Goldberg (1989)
[19] many versions of GAs have been published all summarised in [20] with the latest version called
Dynamical Multiobjective Evolutionary Algorithm (DMOEA) been described in [21]. In this paper
the Non-dominated Sorting Genetic Algorithm II (NSGAII) [22] is used for the optimisation part
of the framework and shows to be very strong optimisation tool in sensor selection for control design.

Monte Carlo method has gained a lot of attention after the initial introduction by N. Metropo-
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lis (1949,1987) [23, 24]. Until today many methods have been introduced for random generation of
numbers with this method [25, 26]. Moreover the MC method can be used in control systems to
assess the robustness in a probabilistic way [27]. In this paper the robustness against model para-
metric uncertainties is assessed using a combination of the MC and constraint handling functions as
used in MOOP. Particularly, the MC is used to produce a number of models for the uncertainties
and those are tested in closed-loop simulations using the nominal controller.

The proposed framework is assessed on an Electro-Magnetic Suspension (EMS) system. The
EMS systems are being used on the MAGnetic LEVitated (MAGLEV) trains that have a number
of advantages against the conventional wheel-on-rail trains [28]. As indicated in [29] the EMS is
Non-Linear (NL), safety-critical and inherently unstable system with non-trial requirements. Such
system can easily serve as a good example for testing the efficacy of the proposed optimum sensor
selection framework.

Summarizing, the novelty in this article relies on the fact that H∞ Robust Control, FTC, MC
method and optimised tuning via GAs concepts are combined to form a systematic framework in an
attempt to simplify the selection of the best sensor set defined as, Yo, for the EMS system subject to
optimum closed-loop performance and ensuring integrity and robustness of the system under possi-
ble sensor faults. In this context, the algorithm explores and separately optimises the performance
of the EMS using all feasible sensor sets in order to identify fallback options under single or multiple
sensor faults, i.e. instants of one or multiple sensors failing stability constraints but with optimum
performance maintained by controller reconfiguration using the remaining healthy sensors.

The rest of the paper is separated into six sections: Section 2 explains the problem under con-
sideration and describes the details of the proposed algorithm that leads to the optimum sensor
selection for the control system design. The next Section 3 describes the rigorous modelling issues
of the EMS system along with the disturbance inputs and multiple control objectives and con-
straints requirements. In Section 4 the multiobjective constraint optimisation concept as used in
the algorithm is given emphasizing its usefulness and importance. Further Section describes the
sensor fault tolerance concept for the EMS system with the robustness assessment of the optimally
tuned controller using the Monte Carlo method in combination with constraint handling technique
as used in previous section. In Section 6 data analysis is done from the realistic simulations done
from the proposed framework. Finally, the conclusions of this work are given in the last Section 7.

2. The problem statement and description of the proposed framework

2.1. Problem statement

The plant shown in Fig. 1 has a set of control inputs (actuators) U = {u1, u2, . . . unu}, where nu
is the total number of actuators, a set of input disturbances D = {d1, d2, . . . dnd

}, where nd is the
total number of input disturbances, and a set of possible outputs (sensors), {Y = y1, y2, . . . yns},
where ns is the total number of sensors, and a set of sensor sub-sets of Y, Y = {Y1,Y2 . . .YNss} to
choose from, where Nss is the total number of sensor sub-sets in Y. The formal problem is defined
as to determine the set of sensors, Yo, in Y (i.e. select Yo ⊂ Y(i)), for which the system

1. satisfies a set of closed-loop performance criteria,

2. satisfies a set of fault tolerance criteria,

3. the sensor set has minimum redundancy i.e. the number of elements in Yo is minimal,
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4. has sufficient robustness against parametric uncertainties and

5. has low cost (although this property is not considered in the paper, its part of this problem
and left for future work).

The following section gives a rigorous description of the proposed algorithm which attempts to solve
this problem.

2.2. The proposed framework

The proposed framework can be summarised in the flow chart of Fig. 3. The particular points
include the use of H∞ loop-shaping design and the heuristic optimisation (evolutionary algorithms)
method for tuning the controller subject to strict requirements (objectives and constraints) for each
feasible sensor set of the EMS system. Prior to running the algorithm (initialization phase), some
parameters are assigned including:

• Formulate the model of the system: Prior to algorithm execution formulate the model of the
system to be examined. i.e. non-linearities, uncertainties, linearization etc.

• Generate the sensor sets: A set, Y, which contains all sensor sets is generated at this stage.

• Define the control objective functions (φi) and constraints (fh, fs): Usually, in a system’s
optimisation the control objectives are conflicting to each other therefore a trade-off exists
between them. Also there is a number of control constraints that have to be satisfied in
order for the system to have proper control properties. Both can be time of frequency related
characteristics and will effectively define the optimum performance of the closed-loop.

• Enter the performance weights: Since the LSDP is used for the design of the controller the
structure of the Performance Weights (PW) has to be decided. This will effectively have
one PW for each measurement for the loop-shaping and it has to be optimally tuned for each
feasible sensor set using the NSGAII.

• Robustness assessment parameters: Each sensor set is tested for robustness against parametric
uncertainties using MC and the Weighted Overall Constraint Violation Function (WOCVF).
Some parameters have to be assigned for the robustness assessment like the number of uncer-
tain samples to be tested, Nmc and the Constraint Violation Weights (CVWs), wi with the
latter been rigorously described in Section 4.

• Enter the optimisation parameters: As it has been mentioned the NSGAII will be used for the
optimisation part of the proposed framework. As all GAs this also requires some parameter
assignment which effectively affects the successful recovery of the optimum Pareto front be-
tween the objective functions. This parameter assignment includes: The mutation probability
pm, crossover probability pc, population number Np, maximum generation number Ng, penalty
parameters, number of variables nu and the search space for each variable.

• Enter the controller selection criteria: After the optimisation completion for each sensor set
there is a number of controllers that result to a closed-loop performance equal to the number
of population of the NSGAII. Among those the best one which suites to the user has to be
selected therefore there are two selection criteria used and they are explained latter in this
section: (i) Controller selection criteria (fci) and (ii) User’s controller selection criterion (fkc).
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Figure 3: Flowchart of the proposed sensor optimisation framework with robust H∞ loop-shaping design.
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Starting the optimisation procedure, the first sensor set, (Y1) is selected and the evolutionary al-
gorithm seeks the Pareto-optimality of the objective functions φi subject to the control constraints
(fh, fs). At the end of this stage there is a set of optimally tuned controller C1 and a set of Overall
Constraint Violation Functions (OCVFs), Ω1 consisting of the Ωki (see (18) in Section 4) one for
each controller both sets lengths equal to the number of population Np.

In the sequence, the algorithm seeks to select the ’best’ controller. At this point there are two
paths to follow:

(i) If there is no controller to satisfy the performance (this can be easily verified by checking the
OCVF, Ωki in Ω1 for each individual response) then the controller, kc which gives the minimum Ωki

is selected and saved in K(i). Ω∗
w−c is not evaluated in this case.

(ii) Those controllers satisfying Ω are collected in C2. The next step is to collect in C3 the
controllers that satisfy the controller selection criteria fci . Finally, the user’s controller selection
criteria, fkc is used to select the controller, kc which results in the desired closed-loop response. If
no controller exists to satisfy fci then the algorithm directly selects a controller based only on fkc .

The particular sensor set in combination with the selected controller provide a nominal perfor-
mance that is assessed for parametric uncertainties by combining the MC method using the WOCVF
as explained in Section 4 in the following way:

(i) For every qth among the Nmc samples of the uncertain EMS system calculate the WOCVF,
Ω∗
kc,q

.
(ii) From the closed-loop responses of the Nmc model samples that result to a set of WOCVF,

ie. Ω∗
kc

, the maximum value of Ω∗
kc

is assigned to the current sensor set as the assessment of the
worst-case response of the uncertain model. In case the closed-loop response with any sampled
model is unstable, Ω∗

kc
is quantified as infinity.

In this way the robustness of the optimally tuned nominal controller, kc, is assessed.
The next step for the ith sensor set optimisation, is for the proposed algorithm to save the Yi in

Y(i), kc in K(i), Ω∗
w−c in Ω2(i) and Ωkc in Ω3(i).

Following that, the evaluation of the selection criterion for optimum sensor fault tolerance is
done. At this stage the Sensor Fault Accomodation Ratio (SFAR) is evaluated which indicates at
which percentage the faults can be recovered in sense of the number of fault conditions that could be
accommodated by using the remaining healthy sensors in a given sensor set Yi. Assuming that the
sensor set Yi has the Ωkc 6= 0 then the SFAR=0 otherwise SFAR is calculated using the following
formula:

SFAR(Yi,Ωkc=0) ∼=
NYh,Ωkc

=0

NYf

100(%) (1)

where Yh is the healthy sensor sub-sets of Yi that have Ωkc = 0 and Yf are the possible sensor
sub-sets that could happen in Yi (assuming that is not possible to loose all sensors). NYh

and NYf

are the number of the sensor sets in Yh and Yf respectively. Then, Yh are the healthy sensor sets in
Yi that can be successfully used for maintaining the performance under any sensor fault combination
that could occur in Yi. A typical detailed example on the SFAR calculation is found in Appendix
A. SFAR metric can be used for optimum sensor set selection that offers the highest degree of fault
tolerance against sensor failures.

Next, increase the counter i and moves to the next feasible sensor set until i = Nss. At the final
end a detailed report is given by the framework that is analysed, in this paper from the simulations
of an EMS system.
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3. The Single-stage EMS system

3.1. The Non-linear model and linearization

The single-stage, one degree-of-freedom model of the EMS system represents the quarter of a
typical MAGLEV vehicle. In order to design a control system with optimum performance using
linearized controllers, a careful and rigorous modelling analysis is required and given in this section.

Single-stage electro-magnetic suspension as the one used on the Birmingham Airport MAGLEV
and which operated for 12 years in the 1980s and 1990s is suitable for low speed vehicles [30]. The
EMS is a non-linear, inherently unstable system with non-trivial control requirements.

The basic quarter car diagram of the MAGLEV vehicle is shown in Fig. 4. The suspension
consists of an electromagnet with a ferromagnetic core and a coil of Nc turns which is attracted
to the track that is made of ferromagnetic material. The carriage mass (Mc) is supported on the
electromagnet, with zt being the track’s position and z the electromagnet’s position (both are given
as the small variations around the operating point). The distance between them is the airgap,
(zt − z). The airgap is to be kept as closed as possible to the operating point at values that will not
exceed the maximum allowed as given later in this section. There are four important variables in an
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+ve

Coil

Flux
Density

Circulation
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Figure 4: Single-stage suspension for MAGLEV vehicles.

electromagnet named as force F , flux density B, airgap G and the coil’s current I that give non-linear
characteristics to the suspension as depicted in Fig. 5 [29]. The straight lines show the theoretical
relationships and the dashed lines indicate the effects of magnetic saturation in the magnet core.
Assuming that the vertical downwards motion is taken as positive the non-linear model of the EMS
system is described by: (i) Newton’s equation of motion given in (2), (ii) the coil’s voltage Vc given
in (3) across the electromagnet’s coil from Kirchoff’s law and (iii) the equations in (4), (5) and (6)
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that give the force, the flux density and the airgap velocity respectively.

Mc
d2Z

dt2
=Mcg − F (2)

Vc = IRc + Lc
dI

dt
+NcAp

dB

dt
(3)

B = Kb
I

G
, (4)

F = KfB
2 (5)

dG

dt
=
dzt
dt

−
dZ

dt
(6)

where Rc and Lc are the coil’s resistance and inductance respectively, Ap is the pole face area
and constants Kb, Kf and g are the flux, force and gravity constants with values equal to 0.0015,
0.0221 and 9.81m/s2 respectively.

The linearisation of the EMS is based on small variations around the operating point. The
following definitions are used with lower case letters defining the small variations and subscript ‘o’
referring to the operating point.

B = Bo + b, F = Fo + f (7)

I = Io + i, G = Go + (zt − z) (8)

Vc = Vo + uc, Z = Zo + z (9)

Following the linearization procedure described by Michail (2009) [29] the following linearised
equations describe the linear model of the EMS:

Mc
d2z

dt2
= −2Kf

Io
G2

o

i+ 2Kf
I2o
G3

o

(zt − z) (10)

di

dt
= −

Rci

Lc +
KbNcAp

Go

+
KbNcApIo

G2
o

(
Lc +

KbNcAp

Go

) dzt
dt

−
KbNcApIo

G2
o(Lc +

KbNcAp

Go
)

dz

dt
+

uc

Lc +
KbNcAp

Go

(11)

d(zt − z)

dt
=
dzt
dt

−
dz

dt
(12)
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Given the states as x = [i ż (zt − z)]T , the state space description of the EMS system can be
expressed as in (13). The output equation, y corresponds to i the coil’s current, b the flux density,
(zt − z) the airgap, ż the vertical velocity and z̈ the vertical acceleration.

ẋ = Ax+Bucuc +Bżt żt (13)

y = Cx

The matrices A,Buc ,Bżt and C are given by (14)-(16).

A =




− Rc

Lc+
KbNcAp

Go

−
KbNcApIo

G2
o

(

Lc+
KbNcAp

Go

) 0

−2Kf
Io

McG2
o

0 2Kf
I2o

McG3
o

0 −1 0


 (14)

Buc =




1

Lc+
KbNcAp

Go

0
0


 , Bżt =




KbNcApIo

G2
o

(

Lc+
KbNcAp

Go

)

0
1


 (15)

C =




1 0 0
Kb
Go

0 −KbIo
G2

o

0 0 1
0 1 0

−2Kf
Io

McG2
o

0 2Kf
I2o

McG3
o




(16)

Using the output matrix, C different combination of sensors can be obtained for feedback to the
controller defined as the ‘sensor set’.

The electromagnet design of MAGLEV vehicles is described in more details by [31]. In this paper,
a typical quarter car vehicle of 1000kg is studied. It requires an operating force of Fo = Mc × g
and operating airgap (Go) of 15mm in order to accommodate effects from the track roughness.
According to these requirements the rest of the electromagnet’s parameters listed in Table 1 can be
calculated.

Additionally, the EMS system is characterised by uncertainties that can be caused due to various
reasons i.e. temperature change, mass change etc. The maximum boundaries of the uncertainties
that could possibly occur are listed in Table 1. The subscript ‘o’ indicates that the variable is at
the value of the operating point.

3.1.1. Total Number of Sensor Sets

The total number of sensor sets, Nss, in Y, is calculated from Nss = 2ns − 1. Given that the
EMS has 5 sensor outputs, 31 candidate sensor sets, Yi, can be obtained using combination of the
rows of the output matrix, C. However, since the H∞ LSDP controller design technique is used in
this paper, the airgap measurement is used as a standard measurement and therefore the number of
candidate sensor sets ,Yi, reduces to 16 with the full sensor set given as i.e. Y16 = {i, b, (zt−z), ż, z̈}.
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Table 1: Parameters of the EMS system.

Parameter Value Uncertainty

Operating point

Airgap, Go 0.015m ±10%
Flux density, Bo 1T ±10%
Current, Io 10A ±10%
Input voltage, Vo 100V 0%
Force, Fo 9810N ±10%
Electromagnets’ parameters

Carriage Mass, Mc 1000kg ±10%
Coil’s Resistance, Rc 10Ω ±50%
Coil’s Inductance, Lc 0.1H ±50%
Number of turns, Nc 2000 0%
Pole face area, Ap 0.01m2 0%

3.2. Disturbance inputs to the EMS

3.2.1. Stochastic input

The stochastic inputs are random variations of the track vertical position as the vehicle moves
along the track. This is caused by the track installation discrepancies due to track-laying inaccuracies
and unevenness. Considering the vertical direction, the velocity variations can be approximated by
a double-sided power spectrum density expressed as Sżt = πArVv [32]. Vv is the vehicle speed (taken
as 15m/s) and Ar represents the track roughness that is given a realistic value for high quality track
1× 10−7m. The corresponding autocorrelation function is given as R(τ) = 2π2ArVvδ(τ) where δ(τ)
is a dirac delta function.

3.2.2. Deterministic input

Another disturbance input to the EMS system is the position change of the track, zt, while the
vehicle is running caused by the intended changes of the track’s inclination. This intended input
is due to the track gradients due to the pre-designed infrastructure of the maglev vehicle and is
considered the only deterministic input to the suspension in the vertical direction. This transition
onto the track’s gradient is simulated by the signal depicted in Fig. 6. In this work, a deterministic
input with a track gradient of 5% at a vehicle speed of 15m/s, an acceleration of 0.5m/s2 and a
jerk of 1m/s3 is used.

3.3. Performance requirements of the EMS control system

The control design requirements of an EMS system depend on the type and speed of the train
[33, 30]. Typically, the EMS should be able to follow the gradient onto the track (deterministic
input) and reject the random variations of the track. Fundamentally, there is a trade-off between
the deterministic and stochastic closed-loop responses of the EMS system. The optimisation of the
performance is taken as minimisation of the stochastic characteristics subject to control constraints
that includes the deterministic and stochastic maximum allowable bounds. The control objectives
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Figure 6: Deterministic input to the suspension with a vehicle speed of 15ms−1 and 5% track’s gradient.

to be minimized are the RMS vertical acceleration z̈rms and the RMS current variations irms subject
to the control constraints listed in Table 2. This means that the trade-off between z̈rms and irms

will give the trade-off between the ride quality and input power while the deterministic response
will keep the bounds within safe bounds.

The robust stability margin, ε (robustness margin) calculated from the LSDP is set to be maxi-
mized for maximum robustness against the uncertainties (note that γ = 1/ε).

Another objective function taken into consideration is the level of the noise unrms that appears
on the input voltage uc. The level of the noise at the output of a sensor depends on the sensor
characteristics itself and the picked-up interference from the surrounding environment. Although
the sensors are designed to have noise immunity they still produce noise at the output. Thus an
amount of this noise will appear on uc which effectively affects the (zt−z). The dynamical behaviour
of the EMS has low pass filter characteristics so most of this noise is filtered but it still affects the
performance of the suspension if its not kept at low levels [34]. Hence, level of the noise at the
input voltage is added as the 4th objective to be minimized i.e φ4 = ucrms . This help the GA to
take it into account during the controller optimised design. ucrms is also included in the controller
selection criteria fci in order to make sure that is particularly constrained to an up to 10Vrms. In
order to measure ucrms an extra simulation is executed with idle track profile i.e. zt = 0 and since
there is no exact information about the sensor noise, the noise covariance is typically taken as 1% of
the maximum value of the deterministic response of the suspension for the corresponding measured
signal.

Summarizing, the objective functions φi to be minimized are formally written as:

φ1 = irms, φ2 = γ, φ3 = z̈rms, φ4 = unrms (17)

4. Multi-objective constrained optimization

NSGA-II is an evolutionary process that requires some parameters to be assigned in order to
ensure proper population convergence towards the Optimum Pareto front between the objective
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Table 2: Control constraints on the EMS system.

EMS limitations Value

Stochastic Track profile

fs1 RMS acceleration, z̈rms ≤ 1ms−2

fs2 RMS airgap variation, (zt − z)rms ≤ 5mm
fs3 RMS control effort, ucrms ≤ 300V (3I0Rc)
Deterministic Track profile

fs4 Maximum airgap deviation, (zt − z)p ≤ 7.5mm
fs5 Control effort, ucp ≤ 300V (3I0Rc)
fs6 Settling time, ts ≤ 3s
fh1 Airgap steady state error, (zt − z)ess = 0
Other constraints

fs7 Robust stability margin, ε ≥ 0.15

fsi-Soft constraint, fhi-Hard constraint

functions. These are mainly selected from experience rather than from a-priori knowledge of the
optimisation problem. The crossover probability is generally selected to be large in order to have
a good mix of genetic material. The crossover probability, pc is set to 90% and the mutation
probability, pm is defined as 1/nu where, nu is the number of variables. The population consists of
50 chromosomes (Np = 50) and the stopping criterion is the maximum generation number Ng. Ng

has a significant role on the Pareto-Optimality and the computational time therefore proper selection
of Ng is vital. It depends among other factors on the number of variables to be tuned because the
larger the nu the larger the Ng is required with the expense of having longer computational time.
The number of variables varies according to the number of sensors hence the Ng varies dynamically.
It is set at 250 for sensor sets with up to 2 sensors and for the rest including the full sensor set is
set at 300 generations.

In order to achieve the control constraints as described in Section 3.3 a constraint handling
technique is necessary. Different constraint handling methods have been developed as described
in [35]. The dynamically updated penalty function approach is used in this work. A rigorous
description of this method is given in [36]. A function is used in order to ‘guide’ the objective
functions in (17) towards the Pareto-optimality while the control constraints listed in Table 2 are
satisfied. The OCVF is given as

Ωki(f
(j)
s , f

(q)
h ) =

J∑

j=1

ωj(f
(j)
s ) +

Q∑

q=1

ψq(f
(q)
h ) (18)

where, ωj is the jth soft constraint violation for the corresponding jth quantity to be constrained
(fs) and J is the total number of soft constraints. Similarly, ψq is the hard constraint violation for
the qth quantity to be constrained (fh) and Q is the total number of hard constraints.

The OCVF not only serves as constraint handling technique but also serves other purposes as
described in Section 2.2: (i) as nominal performance indicator, (ii) level of sensor fault tolerance
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and (iii) robustness assessment with MC. For the first two properties is straight forward but for the
third is described next.

For the robustness assessment (18) is modified as follows

Ω∗
kc(f

(j)
s , f

(q)
h ) =

J∑

j=1

Jwjωj(f
(j)
s ) +

Q∑

q=1

Qw̃qψq(f
(q)
h ) (19)

where wj and w̃q are the CVWs, for the soft and hard constraints respectively. Depending on
the design engineer, the two CVWs can be treated as a set of unified weights or separately. There
is no a single systematic method to do that and it depends on the design engineer. However, in
this work they are unified and the authors will propose a simple and effective analytical method to
calculate them.

The reason for using CVWs is because not all constraints have the same significance i.e. effect on
the closed-loop performance. For example if there is a small violation on the airgap deflection (zt−z)
it is not as important as having the same violation on the input voltage, uc. Therefore weights are
assigned to emphasise the difference in the constraint violation. During the MC simulation tests,
the WOCVF is evaluated with infinity (∞) if the closed-loop response of the EMS system becomes
unstable.

The control constraints are separated into bands of importance as depicted in Fig. 7. The lower
band contains the least significance constraints while the top band contains the most significant
ones. There are 1, 2, 3 . . . P bands, λp are the set of the assigned control constraints in the pth band,
np is the number of control constraints in the λp and wp and αp are the weight and the weighting
parameter for pth band with the lower having the value of one (α1 = 1).

The weighting, wi for each band is calculated as follows:

1
2
3

Least
Important

Most
Important

wP

w(P−1)

w3

w2

w1

P

P − 1

λP , nP
λ(P−1),
n(P−1)

λ1, n3
λ1, n2
λ1, n1

αP

αP−1

α3

α2

α1 = 1

Figure 7: Control constraints weighting assignment.

The weighting values are then given with respect to the weight of the lowest band that have the
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smallest weighting parameter:

w2 = α2w1 (20)

w3 = α3w1

w4 = α4w1

...

wP = αPw1

(21)

weights and weighting parameters can be written in a series of summation to be equal to one

P∑

p=1

npαpw1 = 1 (22)

from where the fist CVW, w1 can be calculated as:

w1 =
1

∑P
p=1 npαp

(23)

Then, the ith CVW wi can be calculated as

wi =
αi∑P

p=1 npαp

, i = 1 · · ·P (24)

For the EMS system the control constraints are divided into three bands, i.e. P = 3. The
control constraints listed in Table 2 are assigned to each band as follows λ1 = {ts, (zt − z)ess},
λ2 = {ucp , ucrms , ε, z̈rms, } and λ3 = {(zt − z)p, (zt − z)rms} therefore n1 = 2, n2 = 4 and n3 = 2.
The weighing parameters can be assigned taking into account that λ1 is of low importance λ2 is
of medium importance and λ3 is of the highest importance. Hence, since α1 = 1 the α2 and α3

weighting parameters are selected to be α2 = 5, α3 = 25. This means that the set of constraints in
λ2 are 5 times and λ3 are 25 times ‘more important’ that the ones in λ1. These values are generated
ad-hoc but a formula can be used if many bands exits i.e. the weighting parameter for the ith band
can be calculated as αi = βi−1 where β is a free selected integer greater than one. From the data
above the CVW are calculated as w1 = 0.0139, w2 = 0.0694 and w3 = 0.347.

5. Sensor fault tolerance via LSDP design and robustness assessment

Sensor failures occur often in engineering systems reducing the reliability of a control system
and thread the integrity of safety-critical systems. In this paper, the AFTC concept is used to
accommodate sensor failures in combination with the proposed framework.

The AFTC scheme composes of a bank of H∞ LSDP designed controllers, the Fault Detection
and Isolation unit and Reconfiguration mechanism. The overall mechanism is applied on the non-
linear model of the EMS system with the operating point defined in Table 1 [37]. The diagram
which describes the sensor fault tolerant control concept is depicted in Fig. 8.
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When multiple sensor faults occur the faulty sensors are detected and isolated. After that, con-
troller reconfiguration follows in order to switch to another controller that is tuned for the remaining
healthy sensors (sub-set of the selected sensor set). Note that for simplicity the switching delay is
assumed to be negligible. In order to detect multiple faults, the FD mechanism monitors the
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Figure 8: AFTC diagram for multiple sensor failures using a bank of H∞ LSDP controllers.

residual from each healthy sensor. The residual for each healthy sensor is typically produced by
means of dedicated observers [38]. Therefore, for each sensor set there are one controller and one
observer. Hence a bank of dedicated observers (i.e. Ko1 ,Ko2 ....Kon) is used for fault detection. Each
time that faults happen, the reconfiguration mechanism gives a signal to reconfigure the controller,
the dedicated observers as well as isolate the faulty sensors. Isolating the faulty sensors is done
by taking the sensor out of the loop in such a way that the faulty signal is not fed into the new
controller (i.e. can be done using switches).

The nominal design of the H∞ controller is based on the normalised coprime-factor plant descrip-
tion as proposed by [8], which incorporates the simple performance/robustness tradeoff obtained in
loop-shaping, with the normalised Left Coprime Factorisation (LCF) robust stabilization method
as a means of guaranteeing the closed-loop stability.

Controller design using the so called loop-shaping design procedure (LSDP) requires the lin-
earized model of the plant to be controlled (for the EMS system, the linear time-invariant state
space model in (13) is used in the design) and is done in two steps. The first is shaping the open-
loop characteristics of the plant using pre and post weighting functions, W1 and W2 as shown in
Fig. 9(a). The plant is temporarily redefined as Ĝ(s) = W2GW1 and the H∞ optimal controller
K̂(s) is calculated. In the second step the weighting functions are merged with the controller by
defining the overall controller K(s) =W1K̂W2 as shown in Fig. 9(b). The size of model uncertainty
is quantified by the stability radius ε i.e. the stability margin [8, 7]. For values of ε ≥ 0.25, 25%
coprime factor uncertainty is allowable. However, in this paper a relaxed stability margin is used
set at ε ≥ 0.15.

The vital part of the LSDP is the performance weights whose structures and bounds to be varied
are selected by the user of the framework. In order to achieve the desired optimum performance
those weights are optimally tuned using the NSGAII. This is an iterative process where the bounds
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Figure 9: H∞ loop-shaping controller design.

of the weights are randomly varied until the optimum performance is achieved.
In typical design the structure of the performance weights and thus the controller are to be kept

as simple as possible. Thus, theW1 pre-compensator, is chosen as a single scalar performance weight
set to unity. For the W2 post-compensators there can be five weighting functions that are used de-
pending on the selected sensor set. The airgap (zt − z) measurement is a compulsory measurement
required for proper control of the magnet distance from the rail and thus a low pass filter (W(zt−z))
is chosen with integral action allowing zero steady state airgap error. The performance weights used
in this paper are given as

W1 = 1; W2 = diag(Wi,Wb,W(zt−z),Wż,Wz̈) (25)

with,

W(zt−z) =

( s

M
1/nw
w

+ ωw

s+ ωwA
1/nw
w

)nw

(26)

The low pass filter results to a minimum phase and stable performance weight W(zt−z), with
roll-off rate nw. Mw is the high frequency gain, Aw the low frequency gain and ωw the crossover fre-
quency. Details for weighting function selection for the loop-shaping design can be found in [18, 7].

Taking advantage of the fact that any changes in the closed-loop response (both stability and
performance) will be reflected on the WOCVF, Ω∗

kc
in (19), robustness against parametric uncer-

tainties can be tested when is combined with MC technique.
Monte Carlo is a probabilistic method that is used to randomly sample an uncertain variable

with a given probability distribution. There are many distribution functions that can be used to
sample an uncertain variable. The structured uncertainties of the EMS system are listed in Table 1
and they are assumed to be uniformly sampled. The probability density function used for each
uncertain parameters is illustrated in Fig. 10 and expressed in (27). Θo, Θmin and Θmax are the
mean, the minimum and the maximum values of the uncertain parameter respectively and U(Θ) is
the probability of each variable.

U(Θ) =
{Um=1/(Θmax−Θmin) if Θmin≤Θ≤Θmax

0 if Θmin>Θ>Θmax

(27)
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As illustrated in Fig. 11 the nominal controller is tested under Nmc multiple samples of the EMS
model producing a vector of WOCVFs, Ωi, i = 1 · · ·Nmc from where the worst-case WOCVF is
selected, i.e. Ω∗

w−c = max(Ω∗
kc
). The Ω∗

w−c is the worst case performance that can happen among
the Nmc model samples.

Probability density function

Θ
ΘoΘmin Θmax

U
(Θ

)
Um

Figure 10: Uniform probability distribution function.

Uncertainties

Nominal Controller

EMS NL
model

Y(i)
żt

uc

kc

Figure 11: Monte Carlo test of the nominal optimally tuned LSDP designed controller.

6. Framework assessment and data analysis

The framework is tested in MATLAB R2009b simulation environment without Java function
due to large computational need (simulation based). The computer used is the powerful DELL
T610 with 2.93GHz IntelrXeonrX5570 processor and 8GB RAM. The average simulation time
per sensor set is about 5.5 hours while completion of the framework takes around 87 hours.

The controller selection criteria (fci , fkc) for the desired closed-loop response are given as follows

fc1 ≡ z̈rms ≤ 0.5m/s2, fc2 ≡ unrms ≤ 10V, (28)

fkc ≡ max(ε) (29)

The first set of closed-loop desired characteristics in (28) ensures that the controllers to be selected
are within the limits indicated. fkc in (29) ensures that the selected controller has the maximum
robust stability margin (maximum robustness).

Table 3 lists the detailed results from the framework execution. The second column lists the

17



sensor sets and the first the corresponding identification number. The next four columns are the
variables from the closed-loop response with the stochastic track profile and the further four lists
the variable values from the deterministic track profile. The next is the rms value of the noise on
the driving signal from idle track profile and the following column is the resulting stability margin
from the H∞ loop-shaping design. The 13th and 14th columns show whether the controller selection
criteria in (28) and (29) are satisfied or not. The 15th column shows the SFAR value of each sensor
set and 16th column shows whether the OCVF, Ωkc = 0 (marked as ‘X’) or not Ωkc 6= 0 (marked
as ‘x’). As explained if Ωkc = 0 then all control constraints are within the pre-set limits otherwise
there is one or more control constraint violations marked with bolded fonts. The last column lists
the WOCVF, Ω∗

kc
. Recall that the WOCVF is evaluated by infinity during the MC test if there is

instability in the closed-loop response. The table gives a full picture of the EMS optimum response
under multiple circumstances that are rigorously described next.

The proposed systematic framework is able to identify stabilizing controllers that satisfy the
OCVF for 15 out of 16 sensor sets. Inspecting columns fc and fkc there are 6 sensor sets found
that satisfy (28) and (29) i.e. id : 3,id : 8 and id : 13 − 16. Comparing the corresponding sensor
set rows with the control constraints listed in Table 2 it can be seen that the optimum nominal
performance has been fully satisfied. The fc1 is not satisfied with many sensor sets (i.e. the z̈rms ex-
ceeds the given criterion) but those could be still used for fault tolerance under multiple sensor faults.
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Table 3: Optimised sensor configurations for control and sensor fault tolerance of the EMS system.

Stochastic Input Deterministic Input Idle input

id
Sensor set grms ucrms z̈rms irms gp ucp ts ess unrms ε fc fkc SFAR Ωkc Ω∗

kc
Yi mm V ms−2 A mm V s V

1 (zt − z) 1.41 37.19 0.77 1.30 1.24 11.92 2.29 X 0.20 0.15 x X 0 X ∞
2 i, (zt − z) 1.41 37.19 0.77 1.30 1.24 11.92 2.29 X 0.20 0.15 x X 100 X ∞
3 b, (zt − z) 1.24 24.88 0.47 1.02 3.67 27.50 2.10 X 0.37 0.26 X X 100 X 28.45
4 (zt − z), ż 1.41 37.19 0.77 1.30 1.24 11.93 2.29 X 0.20 0.15 x X 100 X ∞
5 (zt − z), z̈ 1.41 37.19 0.77 1.30 1.24 11.92 2.29 X 0.20 0.15 x X 100 X ∞
6 i, b, (zt − z) 1.40 37.35 0.77 1.30 1.23 11.87 2.29 X 0.20 0.15 x X 100 X ∞
7 i, (zt − z), ż 1.40 43.19 0.88 1.35 1.06 10.74 2.27 X 0.12 0.15 x X 100 X ∞
8 i, (zt − z), z̈ 1.01 40.60 0.48 0.87 3.36 25.53 2.15 X 2.04 0.27 X X 100 X 1.01
9 b, (zt − z), ż 1.41 37.19 0.77 1.30 1.24 11.92 2.29 X 0.20 0.15 x X 100 X ∞
10 b, (zt − z), z̈ 1.41 37.19 0.77 1.30 1.24 11.92 2.29 X 0.20 0.15 x X 100 X ∞
11 (zt − z), ż, z̈ 1.28 35.28 0.75 1.18 2.87 22.17 2.08 x 15.98 0.12 - - - x -
12 i, b, (zt − z), ż 1.41 37.18 0.77 1.30 1.24 11.92 2.29 X 0.20 0.15 x X 100 X ∞
13 i, b, (zt − z), z̈ 1.16 25.90 0.45 0.96 3.78 28.40 2.13 X 0.90 0.21 X X 100 X 0.76
14 i, (zt − z), ż, z̈ 1.16 25.21 0.42 0.95 4.13 30.78 2.15 X 0.98 0.24 X X 85.71 X 0.26
15 b, (zt − z), ż, z̈ 1.43 20.76 0.45 1.15 4.34 31.86 2.18 X 0.26 0.18 X X 85.71 X 12.37
16 i, b, (zt − z), ż, z̈ 1.00 42.27 0.49 0.86 3.28 25.00 2.15 X 2.13 0.27 X X 93.33 X 1.25

gp ≡ (zt − z)p, grms ≡ (zt − z)rms, ess ≡ (zt − z)ess
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If the user is to consider optimum sensor selection for optimum control of the EMS then the
id : 3 which satisfies fc, fkc and Ωkc with the minimum number of sensors can be used. The parallel
coordinate plot represents the Pareto-Optimality of the objective functions with the id : 3 sensor
set {b, (zt−z)} that is found using the NSGA-II. This represents the response of a pool of optimally
tuned controllers, C1, that minimize the functions in (17) subject to the control constants tabulated
on Table 2. At the last N th

g generation, of the optimisation the population of the optimised solutions
is depicted in Fig. 12(a). The trade-off of the objective functions is illustrated through a parallel
coordinate plot. All solutions of each φi are placed on the vertical axis and connected with Np

straight lines (equal to the number of population) creating the parallel coordinate system which
illustrates the trade-off of the minimized objectives. Note that all control constraints are satisfied
i.e. all elements Ωki ∈ Ω1 are zero. The objective functions are normalised around one for easy
graphical illustration using their maximum values shown on top of the graph.

From this last generation the controller, kc is selected according to (28) and (29). The response
of kc with the nominal EMS model to deterministic input disturbance (described in Section 3.2) is
depicted in Fig. 12(b). The maximum airgap deflection is less than 7.5mm and it settles back to
the operating point(15mm) within less than 3s with the steady state error being almost zero. The
x-axis (zero line) of the figure represents the operating airgap of the suspension. The same graphical
representation is used with the rest of suspension’s variables in this paper.

Looking at the results from the robust control point of view, optimum sensor selection includes

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective function

N
or

m
ili

ze
d 

ob
je

ct
iv

e 
fu

nc
tio

ns

z̈rmsγirms unrms

0.93m/s26.521.27Arms 0.54Vrms

(a) Trade-off between the objective functions.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

Time − seconds

A
irg

ap
 d

ef
le

ct
io

n,
(z

t−
z)

−
m

(b) Airgap response.

Figure 12: Parallel coordinates plot showing the trade-off between the objective functions in (17) and airgap response
to deterministic input both with id : 3.

the WOCVF Ω∗
kc

tabulated on Table 4). This means that the id : 3 with Ω∗
kc−id:3 = 28.45 cannot

be used to accommodate the parametric uncertainties of the EMS since there are very important
control constraint violations from both the stochastic and deterministic track profiles.

More useful information from the results are extracted using the WOCVF in the last column.
Note that for the sensor sets that do not satisfy the OCVF, the WOCVF is not evaluated. Typically,
the lower the value of the Ω∗

kc
is the higher the robustness against the uncertainties is. Looking at

the value of Ω∗
kc

for each sensor set it can be seen that it varies from values between 0.26-28. The
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detailed results of the candidate sensor sets (id : 3, id : 8, id : 13− 16) from the corresponding worse
case closed-loop performances are listed on the same table. The Table shows the measurements
from both the corresponding responses with stochastic and deterministic inputs to the EMS system.
The measurements with bolded numbers show that its maximum value is exceeded. id : 3 has 2
constraint violations (i.e. (zt − z)rms, (zt − z)p) with the highest importance (i.e. w3). Following
that option, the id : 15 with 2 constraint violations, the (zt − z)p and ts where the first is of highest
importance (w3) while the second is of lowest importance (w1). This explains why both id : 3 and
id : 15 have the highest Ω∗

kc
. The rest of the constraint violations are from the peak values of the

input voltage (ucp) with medium importance (w2) and from the (zt − z)ess with lowest importance
(w1). This results with the lowest Ω∗

kc
for sensor sets with id : 8, id : 13, id : 14 and id : 16. The

Table 4: Robustness assessment results with Monte Carlo for the EMS system.

Stochastic Input Deterministic Input

grms ucrms z̈rms gp ucp ts ess ε Ω∗
kc

wi −→ w3 w2 w2 w3 w2 w1 w1 w2

id Sensor set mm V ms−2 mm V s mm

3 b, (zt − z) 12.0 141 0.42 20.0 232 2.1 172 0.26 28.45
8 i, (zt − z), z̈ 1.5 35.10 0.44 5.0 847 2.14 5e-5 0.27 1.01
13 i, b, (zt − z), z̈ 1.3 23.28 0.36 5.5 344 2.14 6.19 0.21 0.76
14 i, (zt − z), ż, z̈ 1.7 24.39 0.37 6.3 440 2.15 0.0041 0.24 0.26
15 b, (zt − z), ż, z̈ 4.6 57.21 0.37 19.0 219 3.17 69.68 0.18 12.37
16 i, b, (zt − z), ż, z̈ 1.4 40.31 0.45 4.8 976 2.14 0.090 0.27 1.25

wi = {w1 = 0.0139, w2 = 0.0694, w3 = 0.347}
gp ≡ (zt − z)p, grms ≡ (zt − z)rms, ess ≡ (zt − z)ess

figures in Fig. 13(a) and Fig. 13(b) show the deterministic closed-loop responses of the EMS with
the id : 8 and id : 14. The responses from both sensor sets fully agrees with the control constraints
as given except with the steady state error which is around 1mm but this does not threaten the
integrity of the system. Looking at the results in Table 3 from the sensor fault tolerance point of
view the SFAR and the OCVF are used as a metric select the sensor set which results the optimum
performance and have a desired level of fault tolerance. The SFAR is evaluated for most of the
sensor sets except the id : 1 because there is only one sensor and the id : 11 because the OCVF is
not satisfied. Most sensor sets (id : 2− 10, id : 12− 13) have a SFAR of 100%. The last three sensor
sets with larger number of sensors have lower level of sensor fault recovery ratio. Nevertheless, they
still offer fault tolerance to up to 93%.

The final step is to select the best sensor set starting with elimination of the sensor sets that do
not satisfy Ωkc , fc, fkc and the sensor sets with Ω∗

kc
= ∞. After that there are 6 candidate sensor

sets: (id : 3, id : 8, id : 13 − 16). From these candidates, its easy to identify that the id : 3 and
id : 15 have Ω∗

kc−id:3 = 28.45 and Ω∗
kc−id:15 = 12.37 respectively both excluded although they have

SFAR=100%. Finally, from the four left candidates it is easy to identify that the id : 8 has both the
higher SFAR and sufficient robustness with the minimum number of sensors. If better robustness is
required the other option is the id : 14 with Ω∗

kc
= 0.26 but with smaller SFAR.
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Figure 13: Airgap deflections (with deterministic track profile) for 100 samples of the non-linear uncertain model.

At this stage, the optimum sensor set selection comes to the point where the selection is relative
to the system’s requirement and at what level of fault tolerance and robustness is required by
the engineer. For the work in this paper, the id : 8 is selected to be the optimum set of sensors
that can offer 100% sensor fault recovery and robustness with the minimum number of sensors i.e.
Yo = {i, (zt−z), z̈}. Additionally, the optimum nominal performance is achieved even under multiple
sensor faults. At this point it is mentioned that robustness under sensor faults is not quarantined
in this version of the framework but is left as future work.

Sensor fault tolerance is a vital issue in control system design because the stability of the system
depends on it. The sensor fault modelling can be done in three ways [38]: (i) abrupt fault (stepwise)
(i) incipient fault (drift-like) and (iii) intermittent fault. For the simulation tests the first case is
assumed in this paper. Since the Yo = {i, (zt − z), z̈} and the airgap measurement is a standard
measurement it is assumed that faults can affect the current and the acceleration sensors. Figure 14
illustrates the abrupt-like fault on the accelerometer during the deterministic and stochastic track
profiles at 1s. The output signal is normal until the first second but afterwards the fault is injected
having low frequency random characteristics. Similar profile appears on the current sensor after the
fault is injected. The sensor fault tolerance based on the diagram in Fig. 8 involves all possible
sensor fault conditions that could possibly happen with the i and z̈ and the EMS performance after
the controller reconfiguration. The results are listed in Table 5. The first row is the optimum sensor
set id : 8 and the rest are the healthy sensor sets after faults with the corresponding controllers and
EMS performance. The results show that the nominal performance of the EMS system is maintained
in both stochastic and deterministic track profiles.

Figure 15 shows the closed-loop response of the EMS system under the worst case scenario
where both i and z̈ fail at 1s. The stability of the system is successfully maintained in both cases.
Additionally, the figures show the error of the airgap with fault-free condition and with faults on
the aforementioned sensors. The peak-error with the deterministic input is at 2.5mm and then it
goes to zero while the stochastic response has a small continues error without any significance effect
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Figure 14: Abrupt fault profiles of the accelerometer sensor in Yo

Table 5: Possible sensor fault conditions with Yo = id : 8 and nominal performance recovery.

EMS Performance
Healthy Sensor Faulty Sensor LSDP Deterministic Stochastic

sets, Yoh Sets, Yof controller Input Input

i, (zt − z), z̈ - K
i,(zt−z),z̈
H∞1

X X

i, (zt − z) z̈ K
i,(zt−z)
H∞2

X X

(zt − z), z̈ i K
(zt−z),z̈
H∞3

X X

(zt − z) i, z̈ K
(zt−z)
H∞4

X X

on the performance of the EMS.

7. Conclusions

The paper presented an approach for selecting sensor sets for control and fault tolerance on EMS
systems, aiming to offer a level of simplicity and flexibility in such a demanding design problem.
The computational expensive, off-line framework successfully identifies fallback options in case of
multiple sensor faults with minimum sensor redundancy. Advanced software programming, i.e.
parallel programming, can alleviate some of the time consuming nature of the framework (which
arises due to the complex nature of the problem and related constraints and parameter dependence)
by reducing computational effort. It is worth noting that user experience can also relax the issue of
parameter dependence. With no loss of generality the framework can be applied to a wider range
of engineering systems with multiple conflicting and complex control requirements.
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(a) Response with deterministic input.
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(b) Response with stochastic input.

Figure 15: Airgap error (zt − z)e between the airgap with fault-free condition (zt − z) and the airgap under the sensor
faults condition (zt − z)f . Both i and z̈ in the Yo (id : 8) simultaneously fail at 1s.
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Appendix A. SFAR calculation example

Assume that there are three sensors at the output of a plant to be used for control, i.e. y1, y2, y3.
The total number of sensor sets in Yi is given byNss = 2ns−1 = 7 hence Yi = {Y1,Y2,Y3,Y4,Y5,Y6,Y7}.
Assume that optimising the performance for each sensor set in Yi the SFAR has to calculated for
the full sensor set, Y7 = {y1, y2, y3} must have Ωkc = 0 (otherwise SFAR is set at zero). Until this
stage, Ωkc in Ω3 for each sensor sub-set, (ie. Y(1−6)) is calculated as shown on Table A.7. Note that
Ωkc for Y3 and Y6 is not equal to zero indicated by ‘x’ mark. This means that there are one or more
control constraint violation using the corresponding sensor set. If Ωkc = 0 means that all control
constraints are within the pre-set limits and is indicated by ‘X’. By definition the SFAR (Yi,Ωkc=0)
is given by

SFAR(Y7,Ωkc=0) ∼=
NYh,Ωkc=0

NYf

100(%) (A.1)

assuming that not all sensors can fail in Y7, NYf
= 2nY7 −2 = 6, nY7 is the number of sensors in Y7.

Then, NYh,Ωkc=0 is calculated using a simple iterative algorithm given in Table A.6. In this case is
found that SFAR of Y7 is found to be SFAR(Y7,Ωkc=0) = (4/6) ∗ 100 = 66.66% which means that
4 sub-sets of Y7 can be used to restore the performance of the plant with various sensor faults.
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Table A.6: SFAR calculation algorithm.

if Ωkc of Y7 equal to zero
Set NYh,Ωkc

=0
= 0, NYf

= 2nY7 − 2

for i=1 to NYf

if Ωkc of Yi equal to zero
NYh,Ωkc

=0
= NYh,Ωkc

=0
+ 1

end
end

SFAR(Y7,Ωkc=0) = (NYh,Ωkc
=0
/NYf

)100 ∗%

else SFAR(Y7,Ωkc=0) = 0
end

Table A.7: Sensor subsets of Y7 with the corresponding Ωkc .

Yi
Sensor sub-sets, Ωkc

of Y7

Y1 y1 X

Y2 y2 X

Y3 y3 x
Y4 y1,y2 X

Y5 y2,y3 X

Y6 y1,y3 x
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