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THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER
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Abstract. With an increasing emphasis on renewable energy resources, wave power

technology is fast becoming a realistic solution. However, the recent tsunami in Japan

was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly

undetectable in the open ocean but as the wave approaches the shore its energy is com-

pressed creating large destructive waves. The question posed here is whether a nearshore

wave energy converter (WEC) could withstand the force of an incoming tsunami. The

analytical 3D model of Renzi & Dias (2012) [11] developed within the framework of a

linear theory and applied to an array of fixed plates is used. The time derivative of the

velocity potential allows the hydrodynamic force to be calculated.
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1. Introduction

Wave energy devices are slowly becoming a reality. Various prototypes are now being
tested in harsh sea conditions (storms). What about tsunamis? Even if offshore wind
turbines seem to have survived the 2011 tsunami in Japan, it is legitimate to ask whether
WECs will resist tsunamis. For deep sea WECs, such as Pelamis (Figure 1), tsunamis
are not anticipated to be a threat since they are located far from the shore (the present
Pelamis prototype operating at EMEC, Orkney, is located 2 km from the shore). On the
other hand, for nearshore WECs, such as Oyster (Figure 2) it is important to take a closer
look at the effect of tsunamis (the present Oyster prototype operating at EMEC, Orkney,
is located 500 m from the shore). Unfortunately there is very few tsunami wave data away
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from the shoreline. One exception is the Mercator yacht, anchored 1.6 km away from the
shore in Thailand during the 2004 Indian Ocean tsunami. The water depth was about
12−13 m and the yacht experienced four major waves, one “depression” wave (2.8 m) and
three “elevation” waves (3.8 m, 1.7 m and 4.2 m) [12]. And the problem is quite different
from the problem of wave forces acting on flap-type storm surge barriers [15] because the
periods involved are different.

Figure 1. Pelamis Wave Power Device, picture from http://www.pelamiswave.com

Figure 2. Oyster Wave Power Device picture from http://www.aquamarinepower.com

http://www.pelamiswave.com
http://www.aquamarinepower.com
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Relative Wave Wave Ursell
Height Shallowness Steepness Number

ǫi =
Ai

hi

δi =
hi

λi

γi =
Ai

λi

Uri =
ǫi
δ2i

Table 1. Dimensionless numbers

h1 = 3 km h2 = 31 m

ǫi 3.3x10−4 10−1

δi 0.03 3x10−3

γi 10−5 3x10−4

Uri 0.367 1.08x104

Table 2. Values of dimensionless numbers for tsunami at two positions
i = 1, 2 according to Equations 1.2.

Kajiura (1977) [8] considers the amplification of tsunamis which advance toward shore
over a gentle slope using Green’s law for tsunamis,

A1

A2
=

(

λ2

λ1

)
1

2

=

(

h2

h1

)
1

4

. (1.1)

where Ai and λi are the amplitude and wavelength of a tsunami at a depth of hi, at two
different positions i = 1, 2. Four dimensionless parameters are defined in Table 1. These
parameters are used to compare the importance of linear, non linear and dispersive effects.

Green’s Law (1.1) implies that for a tsunami at 2 different positions 1 and 2,

ǫ2 = ǫ1

(

h1

h2

)5/4

δ2 = δ1

(

h1

h2

)−1/2

γ2 = γ1

(

h1

h2

)3/4

Ur2 = Ur1

(

h1

h2

)9/4

. (1.2)

If one takes a typical tsunami wave with A1 = 1 m, h1 = 3 km, λ1 = 100 km then
the corresponding dimensionless parameters arising from Table 1 are shown in column 1
of Table 2.

These values indicate that linear theory can be used to describe the behaviour of the
wave up to a certain depth and a slight dispersive effect should be included for the wave
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travelling over very large distances. However, when considering small travel distances over
a few kilometers the linear shallow water equations are sufficient. As the wave approaches
the shore, finite amplitude (non linear) effects come into play when ǫ2 ≈ 10−1. According
to Equations (1.2) this occurs at a depth of h2 = 31 m. Assuming a sea bed slope of
0.02 this occurs at a distance of approximately 1.5 km from the shore which is about one
seventh of the wavelength of a tsunami with a period of 10 minutes. The dimensionless
parameters corresponding to this depth are shown in column 2 of Table 2. The wave
steepness is γ2 ≈ 0.0003 and the Ursell number is Ur2 ≈ 104 ≫ 1, indicating that dispersion
is relatively minor compared with the non-linearity except for the front part of the wave.
From these considerations, it is reasonable to conclude that at this distance from the shore
there is a shift in importance from linear to non linear effects. Therefore linear shallow-
water equations used offshore should be matched to the inner solution of the nonlinear
shallow-water equations at a distance from shore of about a seventh of a wavelength of the
tsunami. As a first approximation, linear theory is used here to predict the force exerted
on a WSC.

2. Model description

We consider here the following idealized problem: a flap-type structure mounted at the
sea bottom pierces the surface of the ocean. The structure is assumed to be fixed. What
is the load on the flap due to a tsunami wave?

Authorities tend to classify the different forces acting on a structure due to a tsunami
in the following way. In the document entitled “Development of design guidelines for
structures that serve as tsunami vertical evacuation sites” [16] several forces are described
by a number of design codes [7, 5, 1] which include loading requirements based on equations
given by [4]:

• Hydrostatic Forces: Occur when standing or slowly moving water encounters a
structure. They are caused by an imbalance of pressure due to a differential water
depth on opposite sides of structure and act perpendicular to the surface.

• Buoyancy Force: Concerns structures with little resistance to lift eg. light wood
frame buildings, basements, or swimming pools. These act vertically through the
center of mass of the displaced volume.

• Hydrodynamic Force: Caused by water flowing at a moderate to high velocity
around a structure. These are a combination of the lateral forces caused by the
pressure forces from the moving mass of water and the friction forces generated as
the water flows around the structure. They include frontal impact, drag along the
sides, and suction on the downstream side. This force is a function of flow velocity,
fluid density and structural geometry.

• Breaking Wave Force: This force is taken as the hydrodynamic force if the wave
breaks on the structure. When considering a breaking wave, generally the two
structures of interest are piles/columns and walls. Waves that break obliquely
incident to the wall (not perpendicular) result in a lower force. The net force is
assumed to act at the still water elevation. It is also assumed that a breaking wave
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against a wall causes a reflected or standing wave and the crest of the wave is some
height above the still water elevation.

• Surge Force: Another variety of hydrodynamic force caused by the leading edge of
a surge of a tsunami impinging on a structure.

• Impact Force: Results from debris or any object transported by floodwaters, strik-
ing against a structure.

Assuming that the load is mainly hydrodynamic, even within this idealized framework it
is not clear what the main force is going to be. The suggested loading for a solid wall facing
the shoreline by [16] (ignoring impact forces) is given by one of three forces: a breaking
wave force

Fbrkw = (1.1Cp + ς)ρgd2sw, (2.1)

a surge force

Fs = 4.5ρgh2, (2.2)

or a hydrodynamic force

Fd =
1

2
ρCdAru

2
p, (2.3)

where ρ is the water density, g is the acceleration due to gravity, Cp ∈ [1.6, 3.5] is the
dynamic pressure coefficient, ς = 1.9 or 2.4 is a hydrostatic coefficient, w is the width of
the wall, Ar is the area of the wall, h is the surge height, Cd ≈ 1.5 is the drag coefficient,
up = 2

√
gds is the design flood velocity and ds is the surge depth.

Furthermore, Chen & Scawthorn (2003) [2] give the form proposed by Cross (1967)
[3] for the force on a seawall, of width w,

Fwall =
1

2
ρgwη2(xwall, t) + Cf(t)ρwη(xwall, t)v

2,

where η(xwall, t) is the water surface elevation on the wall, v is the surge or bore velocity,
w is the width of the wall and Cf = (1+ tan θ1.2) where tan θ is the slope of the front face
of the bore as it impacts the wall which is estimated using experimental and theoretical
data.

These formulas produce values that are highly dependent on coefficient estimates and
on the design flood velocity, which is highly conservative up = 2

√
gds, twice that of the

wave speed of a tsunami given by shallow water theory. Another way (a more precise
way) to look at forces is through the integral of the stress tensor. Since viscous effects are
neglected, the only contribution comes from the pressure term. In turn the pressure term
can be evaluated through Bernoulli’s equation. In the linear model p = −ρ(gz+Φt), where
−ρgz is the hydrostatic pressure and −ρΦt is simply the dynamic pressure. In the fully
nonlinear model p = −ρ(gz + Φt +

1
2
|∇Φ|2), so the dynamic pressure has an additional

term −ρ1
2
|∇Φ|2. We focus here on the linear model and calculate the dynamic pressure

difference across a fixed plate.
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Figure 3. Geometry of the array of WECs (plan view).

3. Linear model

Consider an infinite array of equally spaced thin plates in the open ocean used for the
purpose of wave energy conversion (e. g. WECs). The analysis of the scattering problem,
in which the flaps are held fixed in incoming waves, is used here to calculate the velocity
potential and so, the pressure exerted on the system. This is important in order to in-
vestigate whether an array of nearshore WECs would survive the impact from a tsunami.
Periodicity of the problem allows the geometry to be reduced to that of a single plate
within two waveguides at a mutual distance b, as shown in Figure 3.

With reference to Figure 3, the plate is represented by a rectangular box of width w
and thickness 2a, hinged along a straight foundation at a distance c from the bottom of
the ocean of depth h. The plate is in the middle of a channel of total width b. A plane
reference system of coordinates x = (x, y, z) is also set, with x on the centre line of the
channel, y along the axis of the plate and z positive upwards. Monochromatic waves of
frequency ω are incoming from the left with wave crests parallel to the plate.

3.1. Model equations. The theoretical basis of the mathematical model is provided by
[11] and summarised here. Within the framework of a linear potential-flow theory, the
velocity potential Φ(x, y, z, t) must satisfy the Laplace equation

∇2Φ(x, y, z, t) = 0 (3.1)

in the fluid domain, with∇ the nabla operator. On the free-surface, the kinematic-dynamic
boundary condition

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0, z = 0
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is applied, with g the acceleration due to gravity. Absence of normal flux at the bottom
and through the lateral walls of the channel requires

∂Φ

∂z
= 0, z = −h;

∂Φ

∂y
= 0, y = ±b/2 (3.2)

respectively.
A no-flux boundary condition must be applied on the lateral surfaces of the plate, yielding

∂Φ

∂x
= 0, x = ±a, |y| < w/2. (3.3)

Since the total thickness of the plate 2a ≪ b, the thin-plate approximation can be made
[9] by which the boundary condition on the plate (3.3) is restated at x = ±0. Finally, the
reflected and transmitted wave field respectively on the weather side and the lee side of
the plate must be both outgoing at large distances from the origin.

3.2. Solution. The system of governing equations (3.1)–(3.3) is solved via the introduction
of a complex spatial potential φ(x, y, z) such that

Φ = Re
{

φ(x, y, z)e−iωt
}

. (3.4)

Due to the linearity of the problem, the spatial potential φ is analysed by the classical
decomposition

φ = φI + φD, (3.5)

where

φI(x, y, z) = − iA0g

ω cosh kh
cosh k(z + h)e−ikx (3.6)

is the potential of the incident wave and φD the potential of the diffracted waves (see [9, 10]).
In Equation (3.6) A0 and k are respectively the wave amplitude and wavenumber, the latter
depending on the wave frequency according to the dispersion relation ω2 = gk tanh kh.

Application of the Green integral theorem to the governing system of equations (3.1)–
(3.6) yields an integral equation for φD with a strong kernel singularity. The latter is solved
with a new analytical method based on the careful treatment of the singularity (for details
see [11]).

The solution is expressed in terms of a series of Chebyshev polynomials of the second
kind Up:

φ(x, y, z) = φI(x, y, z)− 1

4
√
2
Re

{

igA0w kx
cosh k(z + h)

(

gh+ (g/ω)2 sinh2 kh
)1/2

×

N
∑

p=0

βp

+∞
∑

m=−∞

∫ 1

−1

(

1− u2
)1/2

Up(u)
H

(1)
1

(

k
√

x2 + (y − 1
2
wu−m)2

)

√

x2 + (y − 1
2
wu−m)2

du

}

. (3.7)

In the latter expression H
(1)
1 the Hankel function of first kind and first order. Finally,

the βp, p = 0 . . .N ∈ N, are the complex solutions of a system of linear equations which
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ensures that the boundary condition on the plate (3.3) is respected. This system is solved
numerically with a collocation scheme, therefore the solution (3.7) is partly numerical.

Once the potential is known, the dynamic pressure on the plate can be found

p = −ρ
∂Φ

∂t
= ρRe

{

iωφe−iωt
}

. (3.8)

This is directly related to the hydrodynamic force F , acting on the plate by integrating
over the wet surface of the body SB, i. e.

F =

∫∫

SB

p(x, y, z, t) dA, (3.9)

where dA = dxdy the infinitesimal area on the plate.
Substituting Equation (3.7) into (3.8) at x = 0±, the pressure jump across the plate is

given by

∆p = p(0−, y, z, t)− p(0+, y, z, t) = ρRe{iω[φD(0−, y, z)− φD(0+, y, z)]e−iωt} (3.10)

since

φI(0−, y, z)− φI(0+, y, z) = 0. (3.11)

Therefore, the maximum pressure jump can be found

|∆p| = ρgωA0(1− u2)

N
∑

p=0

βpUp(u)

√
2 cosh k(z + h)

(

h + ω−2 sinh2 kh
)1/2

, (3.12)

where u = 2y/w. Note that Equation (3.12) is truncated at p = N making it an approxi-
mate expression, which converges as N → ∞.

4. Results

The force of a tsunami on an array of nearshore WECs at a depth of 10.9 m is analysed. If
the tsunami has an amplitude of 1 m offshore at a depth of 3 km, then according to Green’s
law for tsunamis (1.2) the amplitude of the wave will be approximately 4 m when it hits
the devices. Applying the linear model from [11] we approximate the WECs as an array
of a fixed plates with a spatial period b = 91.6 m and width w = 18 m and determine the
pressure exerted on one plate from a tsunami with amplitude 4 m and period 10 minutes.
The pressure jump across the plate is shown in Figure 4 (a). It is plotted against y which
runs along the axis of the plate and calculated at 6 equally spaced depths from the still
water level to the sea floor. The greatest overall pressure difference is felt at the center of
the plate (y = 0) and is zero at the edges of the plate (y = ±9 m) but is invariant with
depth. The maximum value is ∆p ≈ 3x103 N/m2 = 0.03 bar.

In order to compare these results to a standard sea state, the pressure jump exerted by a
typical swell with amplitude 3 m and period 5 s impacting on the plate is shown in Figure
4 (b). This clearly shows how the pressure changes with depth, the maximum effect felt at
the free surface and decreasing towards the sea floor. Also the magnitude is much greater
than that from the tsunami, with a maximum ∆p ≈ 3x105 N/m2 = 3 bar. From these
results we can conclude that the tsunami load exerted on the plate does not vary with
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(a) Tsunami
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(b) Swell

Figure 4. Various jumps in pressure across an 18 m plate for a typical
tsunami (a) and a typical swell (b), in a depth of h = 10.9 m at 6 depths
from the free surface to the ocean floor.

depth since it is such a long wave relative to the depth. Moreover, the magnitude of load
exerted by the tsunami is approximately 100 times less than that of a normal swell. We
can therefore assume that an array of nearshore WECs would easily withstand the force
from a tsunami according to linear theory. However, as previously noted, non linear effects
will start to become important at approximately 1.5 km from the shore so further research
into the non linear effects on the plate needs to be done.

5. Conclusions

The hydrodynamic load of a tsunami on an array of nearshore WECs was investigated
here. First, the difficulty in knowing whether to use linear or non linear theory was
demonstrated, showing that WECs of this type are usually located close to the boundary
of dominance between linear and non linear effects. Different forces suggested by standard
tsunami design codes were reviewed displaying the variety of formulas and their reliance
on estimated coefficients and a conservative velocity estimate. Applying the linear model
from [11] to an array of fixed plates, a first approximation for the hydrodynamic loading on
a WEC was calculated through determining the jump in the −ρΦt term. Results showed
that the loading for a typical tsunami was invariant with depth and maximum loading is
felt at the center of the plate. By comparison with the loading from a typical swell, it was
shown that the maximum force of a tsunami on a nearshore WEC will be approximately
one hundreth of the magnitude of a regular sea state. We therefore conclude that an array
of WECs will withstand a tsunami. However, further research needs to be done on the
non linear effects on nearshore WECs, in particular the effects of a sloping sea bed and
multiple waves. Stefanakis et al. (2011) [13] demonstrated resonant phenomena between
the incident wavelength and the beach slope within the framework of the nonlinear shallow
water equations in one dimension for multiple tsunami waves. A comparison between the
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velocities of resonant and non resonant states from [14] are shown in Figure 5. Furthermore,
if after the first wave recedes the device is left on dry land, a second wave may act as a
shock on the plate and do more damage than it would to a partially submerged device. This
effect is demonstrated using a two dimensional non linear shallow water solver, VOLNA
[6] in Figure 6 (note the wave is not exactly symmetric due to an unstructured triangular
mesh being employed). We believe that dangerous configurations could be found with more
detailed investigations.

(a) (b)

Figure 5. (a) Non resonant and (b) resonant non dimensional velocities
from a monochromatic wave at x = L = 12.5 m on a sloping beach with
slope tan θ = 0.13 and initial shoreline at x = 0 [14].
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