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Abstract: This paper addresses the issue of Software Cost Estimation (SCE) providing an 
alternative approach to modelling and prediction using Artificial Neural Networks (ANN) and 
Input Sensitivity Analysis (ISA). The overall aim is to identify and investigate the effect of the 
leading factors in SCE, through ISA. The factors identified decisively influence software effort 
in the models examined and their ability to provide sufficiently accurate SCEs is examined. 
ANN of variable topologies are trained to predict effort devoted to software development based 
on past (finished) projects recorded in two publicly available historical datasets. The main 
difference with relevant studies is that the proposed approach extracts the most influential cost 
drivers that describe best the effort devoted to development activities using the weights of the 
network connections. The approach is validated on known software cost data and the results 
obtained are assessed and compared. The ANN constructed generalise efficiently the 
knowledge acquired during training providing accurate effort predictions. The validation 
process included predictions with only the most highly ranked attributes among the original 
cost attributes of the datasets and revealed that accuracy performance was maintained at same 
levels. The results showed that the combination of ANN and ISA is an effective method for 
evaluating the contribution of cost factors, whereas the subsets of factors selected did not 
compromise the accuracy of the prediction results. 
 
Keywords: Software Cost Estimation, Artificial Neural Networks, Input Sensitivity Analysis 
Categories: D.2.8, D.2.9 

1 Introduction  

Over the last four decades a plethora of Software Cost Estimation (SCE) methods and 
modelling techniques has been proposed in the international literature [Boehm, 00; 
Moløkken, 03; Jørgensen, 07]. The vast variety of such techniques on one hand, and 
their inconclusive results so far on the other, reveal the complexity of the 
development process and highlight the difficulties of producing accurate and reliable 
cost approximations. SCE involves the activity to calculate, with certain confidence, 
the resources required to develop software systems which are associated with the total 
person-months of the effort required. For estimating software effort various project 
parameters, usually called software cost drivers, need to be considered. However, the 
definitions of many of the cost drivers are not easy to define and sometimes are 
regarded as highly ambiguous and difficult to measure due to their dependence on 
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subjective notions and due to the intangible nature of software [Sommerville, 07].  
In fact, numerous difficulties have been identified in the process of accurate and 

reliable SCE. Most difficulties concern practical measurement and modelling issues 
[Briand, 00] while the high complexity and uniqueness of the software engineering 
process is being the leading obstacle for achieving consistently successful estimations.  
In addition, two software systems are never identical; they may need to run on 
unfamiliar platforms, or use new technologies. Moreover, their development 
undergoes new processes and usually different people are involved. All the above 
cause high uncertainty during the initial project phases as many of the project 
parameters are undefined or unknown. The process of software development involves 
many inter-twined factors, which affect development effort, quality and productivity 
and whose relationships are not well understood or easily studied.  Also, there is lack 
of trained estimators with the necessary expertise and knowledge to support the 
estimation process [Leung, 02], whereas the number of active researchers with long-
term interest on SCE is low compared to other research topics and approaches within 
the software engineering discipline [Jørgensen, 07]. Practically, this suggests that 
extensive research of the many correlated factors contributing to software effort and 
their inter-relations is a very tedious set of tasks, while many researchers emphasise 
the need of automating such a process.  

Several models and tools developed for SCE use a set of measures that describe a 
software project and provide an estimation of the associated effort. However, since 
the influencing factors of cost and their relationships are not well understood, many 
existing models aim to improve forecasting ability without conducting any form of 
analysis of the input variables [Park, 08]. Furthermore, most of the SCE models 
encounter the following difficulty: In order to make a reliable estimation they require 
information that is not known at the initiation of the project, while project managers 
and engineers try to specify exact values for the metrics used as inputs [MacDonell, 
97]. Since for many of these metrics the actual values are never known with certainty 
until the project is completed, managers often assume values they anticipate 
[Jørgensen, 04]. As an alternative, cost data values may be collected from past 
completed projects and be utilised as future cases in an analogy-based method [Chiu, 
07] according to a set of project characteristics. While the former situation suffers 
from subjectivity, the latter does not guarantee that a project under development will 
require the same amount of effort with that of a ‘similar’ project with respect to 
specific characteristics.  

Taking the above problems into consideration, this paper focuses on the 
combination of Computational Intelligent methods, such as Artificial Neural 
Networks (ANN) [McCulloch, 43; Haykin, 99] with Input Sensitivity Analysis (ISA) 
to assess and rank the significance of a set of attributes used as inputs in the models 
based on the internal weight values assigned to ANN after training is concluded. The 
aim is to capture and examine the interactions between the influencing cost factors 
and effort and utilise the input’s degree of influence built within the network to 
extract the most influential cost factors. In the use of ANN for SCE an important step 
is to identify the dominant factors, or attributes, that affect development effort [Park, 
08]. Even though a number of measures have been reported to determine the 
significance of ANN input attributes [Garson, 91; Belue, 95; Glorfeld, 95; Satizábal, 
07] they have never been employed on software cost drivers. 
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In this work the proposed process of selecting the most significant attributes, 
meaning those that most highly affect development costs, and then, using them to 
investigate the behaviour of ANN in SCE is proven a practical way to reduce the 
model’s input space (and thus computational complexity and human effort) while 
maintaining the same levels of effort prediction accuracy. The approach offers a 
simple and reliable automatic method to reach to a usable influential subset of project 
attributes which may be more feasible to measure, collect and maintain. Another 
contribution of this work lies with the revelation and exploitation of strong 
correlations among a selected set of cost attributes and development effort recorded in 
past projects. Numerical and ordinal values from completed project data are used and 
their performance on accurate SCE is evaluated based on specific evaluation criteria. 
The core of the proposed approach is a series of empirical experiments employing 
ANN with different feedforward Multi-Layer Perceptron (MLP) topologies 
[McCulloch, 43; Karray, 04] aiming at improving the internal and external validity 
(generalisation) of the model. The prediction ability of ANN is also compared to a 
Multiple Linear Regression (MLR) model.  

The rest of the paper is organised as follows: Section 2 presents a review on SCE 
research and techniques from the area of Computational Intelligence. Section 3 
provides a description of the datasets used and explains the stages of the proposed 
methodology for creating Computational Intelligent SCE, along with the design 
principles of the experimental process. Section 4 presents the experimental results and 
summarises the main findings of this work. The section closes with an outline of 
possible threads to the validity of the proposed approach. Section 5 draws the 
concluding remarks and suggests some directions for future research. 

2 Computational Intelligence Techniques in SCE Research 

During the last decades, extensive research has been conducted in SCE resulting in 
the development of various estimation techniques and models. Several data-driven 
techniques in the area of Artificial Intelligence and Soft Computing, such as Artificial 
Neural Networks (ANN) and Evolutionary Algorithms (EA), have been investigated, 
as they presented several advantages over other, parametric approaches like 
Regression. The main advantage is that they usually make minimal or no assumptions 
at all regarding the mathematical function for describing the behaviour of effort in 
relation to a set of cost attributes and present high adaptability within the 
environments examined. A lot of studies (presented in a subsequent section) rely on 
non-parametric methods, such as ANN, and present comparative or improved results 
to traditional methods. Nevertheless, to the best of our knowledge, none of these 
studies addresses the issue of analysing how ANN store the knowledge gained 
through the iterative mapping of input patterns to the output samples. This knowledge 
is represented mainly by the synaptic weights of the individual neurons. Thus, it 
would be very interesting to analyse the ‘black box’ nature of ANN and the 
contribution of the independent variables to the prediction process, by examining the 
strength of the connections between the neurons, which originate from the inputs and 
propagate to the output, revealing their overall significance. The following section 
presents a brief literature overview related to studies that employ ANN for SCE. The 
advantages of using ANN include the ability to deal with domain complexity, noisy or 
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distorted data and generalise the knowledge gained, along with adaptability, 
flexibility and parallel processing [Haykin, 99].  

2.1 Artificial Neural Networks and SCE: A Literature Overview 

A wide range of studies have conducted research to approximate effort and compare 
various techniques. We begin our review with some of the early studies: The work of 
Serluca [Serluca, 95] compared the results of three methods, regression, analogy and 
ANN, using the MERMAID-2 dataset for effort estimation. The ANN achieved far 
more superior results compared to regression and marginally better than analogy 
when the dataset was fully used. However, when the dataset was separated into two 
more homogenous and therefore smaller clumps, the ANN performed very poorly, 
while the other two methods improved considerably. This led the author to conclude 
that ANN require large training sets before they can provide accurate predictions. 

Srinivasan and Fisher [Srinivasan, 95] compared ANN and regression trees for 
predicting effort reported in the Kemerer dataset, using the COCOMO dataset for 
training. The results of the experiments were in favour of ANN. 

Jørgensen [Jørgensen, 95] reported four modelling approaches to estimate 
maintenance effort: Regression, ANN, a form of pattern recognition and a simple 
baseline rule of thumb model according to which, “effort is equal to size divided by 
the mean productivity”. The study used a MLP with a back-propagation training 
algorithm on the Jørgensen95 dataset and the ANN was found to perform worse than 
the best regression model in terms of the MMRE, but very successfully in terms of the 
Pred(0.25) metric (for the description of evaluation metrics refer to section 3.3). This 
leads to the conclusion that the selection of evaluation criteria is very important in the 
assessment of SCE models. 

Wittig and Finnie [Wittig, 97] compared a back-propagation MLP ANN with 
CBR (Case Based Reasoning or analogy) using the Desharnais dataset [Desharnais, 
89] and 136 sample observations from the Australian Software Metrics Association 
(ASMA) to estimate effort. In this work the ANN yielded very encouraging results, 
but only the attribute of system size was utilised to provide predictions of effort. 
Trials conducted to test the model combining other attributes resulted in reduced 
prediction errors, which suggested that there is room for further investigation and 
improvement through a more systematic study of the development characteristics. 

Samson et al. [Samson, 97] developed an Albus MLP to predict software effort, 
which operates in a similar way to a lookup table, using a generalisation mechanism 
so that a solution learned at one point in the input space influenced solutions at 
neighbouring points. Different ANN were then compared with linear regression. 
Although predictions made by the ANN outperformed those produced by linear 
regression using the COCOMO dataset, for some projects both techniques performed 
poorly. Thus, accurately performing SCE in every single case is usually not feasible. 

Hughes [Hughes, 97] compared a wide range of approaches for effort estimation 
including analogy, regression, and ANN, using the WSD1 dataset. The dataset was 
initially divided into two homogenous groups. When the two groups were merged the 
MMRE was improved, reinforcing the fact that ANN can perform well when 
presented with larger datasets, while, at the same time, performance of other 
techniques, including analogy and regression, deteriorated. 
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Mair et al. [Mair, 00] evaluated predictions of effort using regression, rule 
induction, CBR and ANN models, which showed considerable variations, but 
concluded that ANN was the most accurate model. Although the datasets utilised had 
different characteristics, like the number of features and the number of projects, and, 
additionally, the dataset presented outliers, collinearity, total convergence was finally 
obtained.  

MacDonell and Gray [MacDonell, 97] compared the FP (Function Points) 
method, Least Squares (LS) regression and ANN for effort prediction on the 
Desharnais dataset and indicated that the most accurate model was the ANN. The 
authors attribute this success to the non-linearity and interactions within the data. 

Heiat [Heiat, 02] compared the effort prediction performance of a MLP and 
Radial Basis Function Networks (RBFN) to that of regression analysis and found that 
when a set of project data implemented with a third generation language was used the 
ANN performed equally well with regression. However, when a combined third and 
fourth generation languages dataset was used ANN outperformed regression. 

Idri et al. [Idri, 02] conducted two experiments for effort estimation using a back-
propagation trained MLP on the COCOMO ’81 dataset, the outputs of which were 
mapped to a fuzzy rule-based system. Their results indicated poor accuracy 
performance, while an important issue was ANN overfitting which was not 
sufficiently handled since 300,000 iterations were executed on just a small set of 
samples (63 samples). The same authors investigated the use and interpretation of 
RBFN in SCE by mapping the ANN to a fuzzy rule-based system [Idri, 04]. Results 
on the COCOMO ’81 dataset indicated that the accuracy of the ANN depended 
heavily on the parameters of the middle layer and more specifically on the number of 
hidden neurons and the weight values. 

Kumar et al. [Kumar, 08] used Wavelet Neural Networks (WNN) for SCE and 
compared the effectiveness with MLP, RBFN, Multiple Linear Regression (MLR), 
Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Support Vector 
Machines (SVM) in terms of the MMRE. WNN seemed to outperform all other 
techniques. 

Tronto et al. [Tronto, 08] investigated the application of ANN and stepwise 
regression for SCE. The experiments were conducted on the COCOMO dataset 
employing categorical variables whose impact was identified based on the work of 
Angelis et al. [Angelis, 01] forming new categorical values. It was observed that there 
is a strong relationship between the success of a technique and the size of the learning 
dataset, the nature of the function for cost and other dataset characteristics (such as 
existence of outliers, collinearity and number of attributes).  

Park and Baek [Park, 08] built and evaluated ANN effort estimation models by 
using regression analysis and expert interviews to select the input variables. The ANN 
model was compared to expert judgement and two traditional regressions. The authors 
found ANN to yield the most accurate predictions. They also emphasised how most 
existing studies focus on selecting the best estimation method without mentioning 
how variables are being selected, but usually refine the set of factors by a trial and 
error approach. In such an approach the different sets of factors are then tested 
repeatedly until the evaluation criteria are met. The authors also added that a method 
to define which factors to use as inputs in ANN does not exist yet and underlined that 
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it is critically important to identify dominant factors that should be used in these 
models. 

In [Azzeh, 10] the impact of Grey Relational Analysis (GRA) integrated with 
Fuzzy set theory for a by-analogy effort estimation model was investigated and also 
compared to ANN, CBR and MLR models using several public datasets, i.e., ISBSG, 
Desharnais, COCOMO, Albrecht and Kemerer. The Fuzzy GRA produced 
statistically more significant results than the rest of the models. Moreover, it 
effectively reduced the uncertainty of attribute measurement between two software 
projects and improved the way to handle both numerical and categorical data in 
similarity measurements. 

Summarising the above, the current literature is quite rich in studies reporting the 
use and comparison of ANN with other techniques which have offered valuable 
lessons. In several cases the ANN were found to outperform the techniques compared 
to; in other cases they performed similarly with other techniques, while it was not the 
most appropriate technique to use for specific datasets, for example if too few data 
samples were available [Serluca, 95; Hughes, 97; Tronto, 08]. The majority of the 
studies suggested that ANN present high data and parameters dependence (such as 
internal layer nodes and weight values) [Mair, 00; MacDonell, 97; Idri, 04; Tronto, 
08], factors that were taken into consideration in the experiments conducted in our 
work. Also, the issues of overfitting [Idri, 02] and selecting the appropriate inputs for 
the models were raised [Wittig, 97; Park, 08]. Although in many cases ANN were 
recognised to produce reasonably accurate predictions when complex relationships 
between inputs and outputs existed, or in the presence of outlying data, it is quite 
possible that in some cases they may fail to generalise when conditions change or 
they may not accurately predict every project [Tronto, 08; Samson, 97]. In a parallel 
context, this work provides an assessment of computational models applied for SCE. 
The methodology proposed combines ANN and a simpler yet rigorous Input 
Sensitivity Analysis (ISA) technique than the relative techniques found in [Refenes, 
95; Belue, 95; Glorfeld, 96; Olden, 02] with the objective to eliminate the less 
influential input parameters by computing the sensitivity level of each connection 
(weight) to the internal structure and address the open issue identified in [Wittig, 97; 
Chulani, 99; Park, 08].  

3 ANN Modelling and Estimation Methodology using ISA 

3.1 Datasets Description 

Two datasets were used in this work, the Desharnais [Desharnais, 89] and the ISBSG 
Release 9 (obtained from http://www.isbsg.org/) [ISBSG, 05] containing historical 
samples of past software projects. The Desharnais (1989) dataset includes 
observations for 81 systems developed by Canadian Software Development Houses. 
The second dataset is provided by the International Software Benchmarking 
Standards Group (ISBSG) and contains an analysis of the cost and functional size 
measurements for a large group of software projects, approximately 3,024. The 
projects come from a broad cross section of industry and range in size, effort, 
development platform and language. These projects underwent a series of quality 
checks and pre-processing to create filtered versions of the datasets that do not 
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contain null values and conform to the standards we set for homogeneity and integrity 
before feeding them as inputs to the ANN. The list of the Desharnais and ISBSG 
attributes selected and used in this work, along with their abbreviations are 
summarised in Table 1. The attributes include numerical and ordinal values and are 
related to people, schedule, function points and size metrics as we assumed that these 
attributes are the most valuable descriptors of development effort. The term ordinal 
attribute is used for any variable with values ordered in categories (such as low, 
medium, high) represented by incremental integers so that the lowest values 
correspond to the first category and the highest to the last. 

 
Dataset Attributes Abbreviation 

Desharnais 

Team Experience (years) TE 
Manager Experience (years) ME 
Duration (months) DU 
Transactions TR 
Entities EN 
Points Adjusted  PA 
Scope SC 
Points Non Adjusted PNA 

ISBSG 

Functional Size  FS 
Adjusted Function Points AFP 
Project Elapsed time PET 
Project Inactive time PIT 
Resource Level (ordinal) RL 
Maximum Team Size MTS 
Input count INC 
Output count OC 
Enquiry count EC 
File count FC 
Interface count IFC 
Added count AC 
Changed count CC 
Deleted count DC 

Table 1: Dataset Attributes and Abbreviations 

According to [Desharnais, 89] TR in the Desharnais dataset is defined by the 
number of inputs, outputs and enquiries, that is, the logical transactions in the system, 
while EN is defined as the number of entities in the system’s data model. PA is 
calculated adding the number of TR and EN (as specified by Albrecht’s approach) 
according to their identification as external or internal and with respect to a 
complexity level [Albrecht, 79; Albrecht, 83]. This calculation also takes into account 
various technical and quality characteristics called the General System 
Characteristics. SC represents the function point complexity adjustment factor (the 
total processing complexity), whereas PNA represents the Function Points (FP) 
adjusted by an adjustment factor and is equal to 0.65+(0.01*PA). According to the 

2047Papatheocharous E., Andreou A.S.: Software Cost Medelling ...



aforementioned definitions variables PA and PNA seem to have erroneously switched 
labels from the original source [Desharnais, 89] an observation also reported in [Port, 
08]. The output variable is the actual development effort measured in person-hours. In 
the Desharnais dataset even though DU may be considered as a dependent variable we 
consider it among the independent variables because usually the project schedule (or 
duration) is known (planned) at the initiation of a project and is considered highly 
correlated to effort.  

For the ISBSG dataset, FS is equal to the unadjusted form of the FP count. The 
AFP stands for the adjusted form of the FS of the project at the final count using a 
Value Adjustment Factor (VAF), if such a factor was used in the measurements. The 
VAF is provided by the developer and takes into account various technical and quality 
characteristics, like data communications and user efficiency. AFP is dependent on 
the counting approach used. PET and PIT correspond to the project schedule and are 
measured in calendar months. RL involves data about the level of people whose time 
is included in the work effort data recorded and MTS is the maximum number of 
people that worked at any time on the project (peak team size). The rest of the 
variables reported in Table 1 for the ISBSG dataset comprise the basic constituents of 
the Function Points measurements. Therefore, one may consider the inclusion of these 
elements as a repetition of the same size-related information. Nevertheless, this is not 
actually the case as each attribute is rather unique, i.e. it carries its own part of size 
description which is not repeated in the others. The output attribute is the newly 
formed Full-Cycle Work Effort containing only the projects that report actual work 
effort for the full development life-cycle thus avoiding possible bias inserted by the 
normalisation of the summary work effort. This is because the initial variables 
included in the ISBSG dataset, namely Normalized Work Effort and Summary Work 
Effort, represent an estimate of the full development life-cycle effort for projects 
covering less than a full development life-cycle and the actual effort reported 
respectively. It should be mentioned here that both of the forms of the Function Points 
metric are utilised in each dataset during the experiments firstly to exploit the benefits 
of their raw (unadjusted) form (PA and FS respectively) and secondly to investigate 
whether the transformations made from the unadjusted to the adjusted form (PNA and 
AFP) added any subjectivity or bias. The rationale of the latter lies with the possibility 
that this bias may become evident when assessing the significance of the input 
variables: One expects that if no bias is inserted in the adjusted form of a variable 
then its significance and explanatory power over the dependent variable (i.e. the 
effort) will be the same as that of its unadjusted. Prior studies on the aforementioned 
relationships among the components of Function Point Analysis may be found in 
[Jeffery, 96; Lokan, 99].  

3.2 The Methodology  

The methodology of this paper (presented in Figure 1) employs Computational 
Intelligent models (Artificial Neural Networks (ANN)) and examines their forecasting 
ability for the estimation of development effort (or Software Cost Estimation (SCE)). 
The main issues examined are the following: (i) Can we isolate a set of ANN which 
are well-trained in terms of accurately estimating software development effort (low 
prediction error and consistent performance)? (ii) Can we identify a set of attributes 
that influence software effort more than the rest through Input Sensitivity Analysis 
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(ISA)? (iii) Can we reduce the size of input dimension of the ANN and not 
compromise the accuracy of the results?  
 

 

Figure 1: The stages of the methodology 

In particular, the following stages were carried out: 
Stage one: The following pre-processing tasks were performed: In both datasets 

categorical attributes were removed, whereas ordinal attributes were kept. Then, 
irrelevant attributes with software size, complexity, productivity, or derived attributes 
(obtained from transformations of other attributes) were excluded. After that, the 
ISBSG dataset was processed based on some guidelines provided by the ISBSG. The 
projects kept were only those measured under the same counting approach (i.e., 
IFPUG) and with data quality and Unadjusted Function Points ratings equal to ‘A’ or 
‘B’. Variables with more than 40% null values were removed (as keeping them in the 
dataset would cause a substantial reduction in the sample size after deleting rows 
containing null values among the samples of those variables). In addition, only 
projects with the same value in Summary Work Effort and Normalized Work Effort 
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were kept as they represent projects with values of effort for the whole software life-
cycle. Finally, the data were normalised in the range [-1, 1] so that the attributes 
would have the same effect.  

Stage two: The stage includes the Core Cost Estimation (CCE) module which 
was iterated 250 times and each time the input samples were shuffled. Thus, no 
specific order was given to the projects. The prediction ability of ANN was assessed 
using holdout samples, meaning that different parts of the input data were used for 
training, validation and testing. The different parts were again random (with 70% of 
the data samples being used for training, 10% for validation (i.e. taking into account 
the errors of this set to adjust the weights) and 20% for testing (‘unseen’ during 
training)). This repetitive approach led to investigating the performance and 
robustness of ANN using various parts of the datasets. The results reported concern 
the best performing and the average performance of the ANN constructed.  

In addition, different ANN architectures were utilised which were analogous to 
the number of inputs. The ANN architectures variations were produced by modifying 
the number of neurons in the internal hidden layers empirically, starting from the 
number of inputs for each dataset and increasing by 1 in each step until it reached to 
twice the number of inputs, so that overfitting due to too many neurons would not 
occur.  

The hyperbolic tangent sigmoid transfer function was used in the input and 
hidden layers and the pure linear function was used in the output layer. The ANN 
were trained with the gradient descent back-propagation algorithm. The number of 
training epochs was set to 100 and the training function updated the weight values 
according to the scaled conjugate gradient method.  

The output of each ANN was the development effort. The process of training 
continued until no improvement on the learning ability of the network was observed, 
as measured by the error figures on the validation data. The performance function 
used was the Mean Squared Error (MSE), the learning rate and mutation constant 
were set to 0.3 and 0.6, whereas the Marquardt adjustment parameter, Marquardt 
decrease and Marquardt increase factors were set to 1, 0.8 and 1.5 respectively. Next, 
the generalisation ability of the trained network was assessed by testing its forecasting 
performance on the set of totally new to the network data samples (testing set). The 
10% of the best performing ANN were selected for further experimentation and 
analysis by assessing the several metrics between the estimated and actual effort 
values in the testing set (as explained in a subsequent section).  

In the  final step of this stage, Box Plots were produced to examine the overall 
performance of the population of ANN using the metric MMRE, which is a scale 
independent metric, and also remove any extreme networks. Thus, we are mostly 
interested in assessing the overall accuracy quality of ANN. 

Stage three: The identification of an order of significance for the input attributes 
in ANN was examined in this stage. More specifically, the scale describing the degree 
of influence of each attribute on the predicted effort was investigated. This task was 
performed using notions of Input Sensitivity Analysis (ISA), described extensively in 
[Refenes, 95] and [Azoff, 94]. Even though a number of measures have been 
proposed to determine the significance of ANN input attributes [Garson, 91; Belue, 
95; Glorfeld, 95; Satizábal, 07] the method adopted is simple to follow and able to 
effectively reflect the impact of each input variable to the output [Belue, 95]. 
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According to ISA, one can sum up the absolute values of the weights fanning from 
each input attribute to all nodes in the successive hidden layer, thus estimating the 
overall connection strength of this attribute. Unlike other techniques (e.g., Garson’s 
algorithm which make use of the entire hidden structure for calculating the effect of a 
certain input on the output) the adopted ISA takes into consideration only the first 
level of neurons without loss of generality, as demonstrated by [Azoff, 94]. The final 
outcome of this task was a selection of attributes which was assessed in contributing 
to the effort forecasting process. More specifically, the selected attributes formed two 
new validation datasets (Val-1/2) - used in the validation experiments of Stage four. 

Stage four: The two final subsets of project attributes were used to examine the 
accuracy performance of the ANN using the same projects and repeating the CCE 
module of Stage two. 

3.3 Evaluation Metrics 

This section describes the performance evaluation metrics utilised [Conte, 86] for the 
experimental process. A combination of three common metrics in the SCE literature 
was used, namely the Mean Magnitude of Relative Error (MMRE), the Correlation 
Coefficient (CC) and the Normalized Root Mean Squared Error (NRMSE). These 
error metrics were employed to validate the model’s estimation ability considering the 
difference between the actual and the predicted cost samples and their ascendant or 
descendant progression in relation to the actual values.  

The MMRE, given in equation (1), shows the prediction error for the sample 
being predicted. )(ixact

is the actual and )(ix pred
 the predicted effort value of the 
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The NRMSE assesses the quality of predictions and is calculated using the Root 
Mean Squared Error (RMSE) as follows:  
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If NRMSE=0 then predictions are perfect; if NRMSE=1 the prediction is no better 
than taking 

predx  equal to the mean value of n samples. 

In addition, the evaluation metric Prediction of specific Level l (Pred(l)) was used 
to evaluate the ANN performance, which is specified in equation (5). Essentially, 
equation (5) defines the ratio of the accurate data predictions k to the total number of 
data points predicted n. This accuracy is measured by the RE metric given in equation 
(6) which must be lower than level l. In our experiments parameter l was set equal to 
0.25. Finally, the RE metric is also used in conducting the statistical comparative tests 
of section 4. 
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4 Experimental Results 

The experiments were conducted on the pre-processed datasets containing 77 projects 
described by 8 attributes for the Desharnais and 113 projects consisting of 14 
attributes for the ISBSG dataset. We will refer to these new datasets as the “filtered 
data” since immense data reduction was performed. The filtered data include 
predictor variables and one response variable (effort), with the latter ranging from 546 
to 23,940 person-hours in the Desharnais dataset and from 140 to 36,046 person-
hours in the ISBSG dataset. Tables 2 and 3 summarise the descriptive statistics of the 
Desharnais and ISBSG datasets respectively.  

The attributes indicate small differences in the central tendency and large 
differences in the deviations indicating that their values are spread. In the Desharnais 
attributes there are large variations in the distributions of DU, TR, EN, PA, PNA and 
Effort, they are highly skewed and not normally distributed (the Shapiro-Wilk test 
confirmed the non-normality since the significance value is less than 0.05). Also, in 
the ISBSG case most of the attributes are not normally distributed based on the 
kurtosis, skewness and significance values reported performing the Shapiro-Wilk test 
assessing normality. The two datasets, although align in terms of their general 
statistical form (spread, distribution), they differ in terms of values which stems from 
the fact that the Desharnais projects come from a single country in contrast to the 
cross- cultural/national origin of the ISBSG projects. This means that a logarithmic 
transformation of the data samples should be performed before attempting to fit a 
linear model (like in regression approaches). 
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Attribute Mean Median 
Standard 
Deviation 

Sample Variance Kurtosis Skewness Min Max 

TE 2.30 2 1.33 1.76 -1.28 -0.05 0 4 
ME 2.65 3 1.52 2.31 0.09 0.23 0 7 
DU 11.30 10 6.79 46.05 2.74 1.45 1 36 
TR 177.47 134 146.08 21339.57 7.66 2.39 9 886 
EN 120.55 96 86.11 7414.62 1.54 1.39 7 387 
PA 298.01 258 182.26 33219.86 5.07 1.84 73 1127 
SC 27.45 28 10.53 110.88 -0.37 -0.19 5 52 

PNA 282.39 247 186.36 34730.00 4.44 1.74 62 1116 
Effort 4833.91 3542 4188.19 17540894.50 5.30 2.04 546 23940 

Table 2: Descriptive Statistics for the Desharnais dataset 

Attribute Mean Median 
Standard 
Deviation 

Sample 
Variance 

Kurtosis Skewness Min Max 

FS 436.27 252 522.80 273320.38 7.72 2.59 42 3155 
AFP 455.27 264 558.85 312316.79 8.45 2.65 39 3471 
PET 9.50 8 8.89 79.03 44.01 5.53 1 84 
PIT 1.34 0 4.31 18.55 72.25 7.86 0 42 

MTS 6.05 4 7.75 60.06 29.39 4.32 0 65 
INC 141.70 66 219.33 48106.82 9.54 2.90 0 1327 
OC 87.73 57 105.03 11031.36 9.20 2.73 0 620 
EC 63.13 30 88.70 7867.35 11.10 2.96 0 534 
FC 111.08 56 164.46 27047.18 11.42 3.11 0 995 
IFC 32.62 10 61.60 3794.36 10.71 3.19 0 329 
AC 395.28 213 523.12 273654.37 8.18 2.63 0 3155 
CC 39.41 0 109.80 12056.42 26.96 4.54 0 844 
DC 1.58 0 12.41 153.89 98.80 9.74 0 128 

Effort 4674.91 1974 6659.42 44347932.67 8.43 2.75 140 36046 

Table 3: Descriptive Statistics for the ISBSG dataset
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The next three sub-sections present the results obtained through the experiments 
executed in Matlab R2009a, following the stages of the methodology as previously 
explained. The main results of the proposed approach include: (i) the prediction 
performance of the selected ANN from the Core Cost Estimation (CCE) component 
(also free of outliers); (ii) the attribute rankings according to ISA and threshold 
analyses, and (iii) the validation results using the reduced sets of attributes (Val-1/2). 
The last two sub-sections present an analysis with regression comparing a set of 
models created with the original data values and the obtained subsets, and a brief 
discussion of some threats to the validity of the results. 

4.1 Artificial Neural Network Results and Box Plots 

Table 4 lists the top 5 ANN obtained in terms of prediction accuracy (MMRE) using 
the transformed values for each dataset which are yielded during the testing phase 
(prediction). The first column of Table 4 specifies the dataset and the second column 
reports the corresponding ANN architecture; where in all respective Tables 4, 7, 8 and 
10 the column reporting a topology “x-y-1z” refers to an ANN architecture with x 
nodes in the input layer, y nodes in the hidden layer and 1 output node. The z 
subscript indexing scheme is used to differentiate experiments performed in the 
respective experiment repetition of the CCE component for the ANN topologies 
examined but for different training and testing sets. The rest of the table columns 
report the testing phase errors and the correlation metric (CC). The last row of the 
table presents the obtained median values for the total set of experiments performed 
with each dataset.  

 
Dataset ANN Topology MMRE CC NRMSE Pred(l) 

Desharnais 

8-13-174 0.105 0.987 0.158 0.933 
8-15-1199 0.085 0.992 0.132 1.000 
 8-15-187 0.062 0.995 0.107 1.000 
8-17-158 0.111 0.989 0.145 1.000 
8-18-1190 0.111 0.986 0.196 1.000 
Median 0.214 0.931 0.389 0.933 

ISBSG 

14-16-122 0.052 0.989 0.152 1.000 
14-19-1172 0.060 0.990 0.137 1.000 
14-22-1218 0.087 0.981 0.196 0.955 
14-26-1145 0.059 0.986 0.166 1.000 
14-30-158 0.067 0.865 0.509 1.000 
Median  0.150 0.955 0.303 1.000 

Table 4: Indicative Effort Prediction Assessment of the best performed ANN 

Overall the results obtained show robustness in terms of performance and positive 
correlation between the actual and predicted values. A more detailed analysis of the 
results per dataset follows:  

Desharnais case: The error figures obtained among the best ANN were very 
close with respect to the MMRE, NRMSE and Pred(0.25) while the CC indicates a 
positive relationship between the actual and predicted values.  In particular, the 
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optimal testing figures obtained are: MMRE=0.062, CC=0.995, NRMSE=0.107 and 
Pred(0.25)=1 (with a 15 hidden neurons’ topology).  

ISBSG case: The low MMRE and NRMSE values obtained show that the models 
are able both to learn and generalise the knowledge even though the dataset contains 
heterogeneous projects from various industries and countries. In particular, the 
optimal testing figures obtained are: MMRE=0.052, CC=0.989, NRMSE=0.152 and 
Pred(0.25)=1 (with a 16 hidden neurons’ topology).  

Since ANN’s performance usually depends on a set of parameters (and to 
alleviate the possibility of utilising networks with variable performance spread), in 
our approach, we have used Box Plots on the testing errors to remove any outlying 
ANN  - yielding extreme and mild accuracy values.  

Figure 2 depicts the Box Plots of the accuracy of the ANN built based on the 
MMRE figures in the Desharnais and the ISBSG cases. These outlying networks 
(marked as crosses in Figure 2) were excluded using Box Plots with a maximum 
length of each whisker set to 1.5 times the inter-quartile range. Particularly, 16 and 6 
networks were considered outliers in the Desharnais and ISBSG cases respectively, 
leaving 234 and 244 ANN for the analysis that follows. We decided to use only the 
MMRE obtained during testing to filter-out potential outliers, as it is the most popular 
metric in the SCE literature and it is scale independent. One may observe that the 
spread of the MMRE is small in both cases and thus on average the performance of 
the ANN is consistent. Also, the small number of outlying ANN found during this 
process, which concludes Stage two, shows that the approach produces consistent 
results. 

 

Figure 2: Box Plots of Outliers from the Desharnais and ISBSG datasets 

4.2 Input Sensitivity Analysis Results 

Stage three of the experimental procedure aimed to identify the leading factors 
affecting software effort using Threshold Analysis and Input Sensitivity Analysis 
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(ISA) on the remaining set of ANN created for each dataset. First, we used an 
empirical Threshold Analysis based on three filtering levels to separate various 
subsets of the ANN based on their performance, i.e., the top performing, the lower-
than-top performing and the medium performing ANN. To perform this separation, 
three empirical thresholds were decided having the target to isolate and study the top 
15%, 20% and 25% of the total ANN produced in terms of prediction accuracy, i.e., 
with respect to the metrics MMRE, CC and NRMSE and as specified in Table 5.  

 
 Strict Medium Relaxed 
MMRE  0.15  0.20  0.25 
CC  0.85  0.80  0.75 
NRMSE  0.15  0.20  0.25 

Table 5: Values for Evaluating ANN in Threshold Analysis 

The above metrics have been selected, although previously reported studies 
[Kitchenham, 01] have criticised the problematic accuracy of measures such as the 
MRE to select optimal models, because they have been widely used in the SCE 
literature. In addition, their values were defined from suggestions in the relevant 
literature, for example [Conte, 86] consider MMRE and RE lower or equal to 0.25 as 
an acceptable level of performance for effort prediction models, and CC values 
greater than or equal to 0.75 exhibits a linear positive relationship of the predicted and 
the actual effort values.  

The Threshold Analysis led to the selection of the following ANN in each case:  
For the Desharnais dataset: the Strict filtering level retained a total of 5 ANN, 

the Medium level 14 ANN and finally the Relaxed level 35 ANN.  
For the ISBSG dataset: the Strict filtering level kept 5 ANN, the Medium level 

28 ANN and lastly, the Relaxed level 69 ANN.  
Each of these ANN subsets were used for ISA. ISA aimed to derive the 

significance rank of the ANN inputs for each level as listed in Table 6. The analysis 
explained below aimed firstly to assess the inputs’ importance for describing effort 
and secondly derive two validation sets that are characterised with over than 50% 
reduction in the number of attributes. The validation sets will then be examined in 
terms of accuracy performance using ANN in the next stage. The following process 
was executed to achieve the abovementioned targets: 

i. The leading trunc[n/2] inputs according to their weights’ values were 
isolated for each filtering level, where n=8 for the Desharnais, n=14 for the 
ISBSG and trunc[] denoting the integer part of the quotient.  

ii. The attributes that were ranked the leading ones by all filtering levels were 
placed in the so-called first evaluation set (Val-1). 

iii. If the number of elements in the evaluation set was equal to trunc[n/2], 
which essentially means that each filtering level indicated the same leading 
inputs, the process was terminated. Otherwise, the process continued with 
step (iv). 

iv. The rest of the attributes that were promoted by some of the filtering levels 
were further examined to create the second evaluation set (Val-2) as follows: 
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a. One by one the attributes promoted by the Strict level were 
examined first, followed by those of the Medium and finally by 
those suggested by the Relaxed level. For each attribute the 
following two steps were executed.  

a.1. If the attribute was suggested also by at least one of the other 
two filtering levels then it was placed in the second 
evaluation set, together with the attributes of Val-1, forming 
Val-2.  

a.2. If the elements in the evaluation set reached trunc[n/2] the 
process was terminated. Otherwise, it continued with the rest 
of the attributes of step (a) above. 

Table 6 lists the attribute rankings of each filtering level for the datasets used. The 
attributes in bold include the leading (ranked first) attributes of each dataset and the 
attributes that yielded absolute sum of weights within the 80% of the weight value of 
the leading attribute. The results summarised in Table 6 are analysed for each case 
respectively: 

Desharnais dataset: the leading attributes were consistent among the various 
filtering levels. We observe that all three filtering levels suggested relatively similar 
inputs as leading determinants among the first four, namely the DU and SC attributes, 
which are thus included in the first validation set (Desharnais-Val-1). From the rest of 
the attributes promoted by the thresholds namely TR, TE, PA, PNA and EN, only TR 
appears in at least two other filtering levels (Strict and Medium). The selection of the 
TR attribute leads to the creation of a second validation set, namely Desharnais-Val-2, 
comprising of the DU, SC and TR attributes. 

ISBSG dataset: All filtering levels consistently proposed FS, AC and OC as the 
most significant attributes among the first seven. Thus, these attributes formed the 
first validation set called ISBSG-Val-1. Taking into consideration the rest of the 
suggested attributes from the filtering levels, i.e., INC, CC, MTS, AFP, DC, EC, IFC 
and RL, the above process distinguished CC, DC, EC and IFC, which, together with 
the attributes in ISBSG-Val-1, form ISBSG-Val-2. 

The attributes promoted in the Desharnais case relate to the schedule and scope of 
the project and more specifically to the calendar months occupied by the project and 
the overall function points’ complexity factor. In the ISBSG case all attributes 
promoted relate to project sizing: Apart from the functional size, the next most 
significant attributes relate to the number of changes, additions and deletions 
performed after requirements specification, as well as counts of external outputs, 
external enquiries and external interface files used. The appearance of these variables 
in the first order of significance indicates that the basic components of the FP metric 
and the number of changes (i.e., updates, deletions, additions) to the initial 
specifications have a decisive effect on the effort variable. Thus, making changes 
after specifying requirements seems to add a considerable burden to the overall effort 
accounted during the development process. This finding is reasonable for traditional 
software development processes where the cost of changing specifications at the 
design and implementation phases increases as development proceeds to later phases. 
It is important to note here that the attributes promoted in the first order of 
significance and later used in the validation experiments may be measured at the early 
project phases, in the sense that a rough estimation of their magnitude may become 
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available at the beginning of the development process. In the same context, one may 
argue that project duration is a dependent variable; in our case, though, we consider it 
as an independent variable as the time plan is already prepared (or a close 
approximation of the required time-span) prior to effort estimation. 
 

Dataset Filtering 
Level 

Leading Inputs (starting from left) 

Desharnais 
Strict WDU >WSC >WTR > WTE >WPA >WME >WPNA >WEN 

Medium WSC >WDU  > WPA > WTR > WEN > WTE >WPNA > WME  
Relaxed WSC > WPNA > WDU > WEN > WTR > WPA > WME > WTE  

ISBSG 

Strict WFS >WINC >WCC > WAC >WOC >WMTS >WAFP >WPET 

>WDC >WEC >WIFC >WRL > WPIT >WFC  

Medium WFS > WDC > WOC > WEC > WAC > WCC > WIFC > WINC 

> WMTS > WAFP > WRL > WPIT > WPET >WFC   

Relaxed 
WFS > WEC > WIFC > WOC > WDC > WAC > WRL > WINC 

> WCC > WPET > WAFP > WPIT > WMTS >WFC   

Table 6: Leading Determinants According to ISA Weight Values from the ANN  

The appearance of FS as the leading attribute in all three threshold levels of 
ISBSG indicates that Functional Size influences software effort in a high degree, in 
comparison to the rest of the attributes examined, which is again a reasonable 
conclusion. In fact, most models proposed in the relevant SCE literature identify 
software size as the most important factor and usually base effort estimation on size 
attributes (i.e., Lines of Code, Function Points, Object Points etc.). Moreover, 
estimating size attributes from the early phases of the development process is 
considered an important subject of research in the area of SCE. Considering the 
ranking position of AFP, which is the transformed form of FS - AFP lies among the 
last in significance attributes and never to a position close to FS - leads us to infer that 
possibly AFP suffers from subjectivity. With this we mean that since FS seems to be 
the dominant attribute describing effort then we would expect its transformed version, 
expressed by AFP, to be equally strong in determining the evolution of effort. This, 
though, was not the case, as illuminated by the ANN (it was given lower rank and was 
considered less important than FS). Therefore, we may assume that transformation of 
FS to AFP, at least the one performed and recorded in the samples of the ISBSG 
dataset, ‘destroyed’ the original pattern of FS which reflected development effort, a 
fact that may be attributed to a non-universal and biased way of performing this 
transformation. 

4.3 Validation Experiments  

The final step of the fourth stage involved the execution of the validation experiments 
for each dataset with the newly formed and reduced in number of attributes validation 
sets (Val-1 and Val-2). The stage included again training, testing and validation of 
ANN (repeating the CCE component). The percentage of the best ANN utilised was 
adjusted from 10% to 25% in the CCE stage due to the small number of experiments 
executed, mostly as a result of the smaller number of attributes in each validation set. 
Finally, the results of the best performing ANN in terms of effort estimation for each 
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dataset using the full attributes sets were compared to those obtained with the reduced 
evaluation sets (Val-1 and Val-2) using the Mann-Whitney test [Mann, 47]. 

Table 7 presents a selected sample of the validation results with the transformed 
values for both datasets and their respective reduced datasets. Figures 3 and 4 depict 
graphically a partial view of the actual and predicted effort values during testing for 
the Desharnais and ISBSG datasets.  
 

Validation 
Dataset 

ANN Topology MMRE CC NRMSE Pred(l) 

Desharnais- 
Val-1 

2-6-158 0.133 0.964 0.285 0.933 
2-5-1146 0.154 0.974 0.229 1.000 
2-5-123 0.185 0.974 0.221 1.000 
Median 0.396 0.806 0.609 0.933 

Desharnais- 
Val-2 

3-8-181 0.130 0.971 0.231 1.000 
3-6-13 0.230 0.895 0.455 1.000 

3-5-1237 0.245 0.957 0.289 1.000 
Median 0.366 0.832 0.566 0.933 

ISBSG-  
Val-1 

3-8-1226 0.131 0.973 0.237 1.000 
3-7-116 0.132 0.953 0.362 0.955 
3-8-127 0.138 0.965 0.347 0.955 
Median 0.344 0.657 0.773 0.955 

ISBSG-  
Val-2 

7-10-1109 0.100 0.961 0.283 1.000 
7-15-1150 0.105 0.967 0.274 1.000 
7-15-157 0.116 0.969 0.304 0.955 
Median 0.281 0.776 0.657 0.955 

Table 7: Indicative Validation Experiments of the best performed ANN with reduced 
attributes (inputs) of the Desharnais and ISBSG datasets  

Based on the performance of the ANN shown in Table 7 assessed using the same 
metrics as before, it seems that adequate effort estimation accuracy was achieved. 
More specifically, in terms of accuracy, relatively low error values similar to those 
obtained using the whole attribute sets were achieved for both datasets. This becomes 
obvious by comparing the values yielded by the previous experiments with those of 
the final set of experiments. We observe that when using the Desharnais dataset the 
ANN with the selected inputs present a negligible increase in the MMRE and NRMSE 
figures compared to the original experiments during the testing phase, while both CC 
and Pred(0.25) remain at similar levels. The median values obtained from the total of 
250 experiments executed with the reduced validation datasets indicate a reduction in 
the prediction accuracy in MMRE, NRMSE, CC, while Pred(0.25) remains at the same 
levels.  With the immense decrease of the number of attributes used in the validation 
experiments in relation to the original experiments some decrease in the descriptive 
power of the ANN models was expected. Nevertheless, the reduction in performance 
accuracy may be considered as minor in relation to the significant reduction of the 
ANN input space dimension achieved for the specific datasets. Additionally, what is 
more important here is that these validation results suggest that if the so-called 
‘significant’ or ‘influencial’ attributes are identified and isolated in a dataset, and then 
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used for predicting effort, the accuracy of the estimations obtained is comparable to 
that of the original ANN experiments. 

The graphical representation of prediction accuracy of the values transformed in 
the original scale presented in Figures 3 and 4 provide verification of the successful 
performance exhibited by the ANN. The predicted samples are very close (with very 
few exceptions in the ISBSG case), to the actual values in the testing phase of the 
forecasting process. The results of the Mann-Whitney test listed in Table 8 show that 
statistical difference exists among the distribution of the RE error values obtained 
with the full attributes and the Val-1 and Val-2 subsets in the Desharnais case and 
between the full attributes and the Val-1 subset in the ISBSG case. The indication of 
mean rank ‘Dataset A’ > ‘Dataset B’ shows the outperforming results of Dataset A 
over Dataset B for all the set of predictions obtained. 

 

Figure 3: The partial samples of Actual vs. Predicted Effort samples during 
Validation Experiments for Desharnais dataset using a 3-8-1 ANN topology  

 

Figure 4: The partial samples of Actual vs. Predicted Effort samples during 
Validation Experiments for ISBSG dataset using a 7-10-1 ANN topology  
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Dataset ANN Topology Mean Rank U z p 

Desharnais 

Original: 8-15-187 
Val-1: 2-5-123 

Original>Val-1 51 -2.551 0.011 

Original: 8-15-187  
Val-2: 3-8-181 

Original>Val-2 56 -2.344 0.019 

Val-1: 2-5-123  
Val-2: 3-8-181 

Val-1<Val-2 87 -1.058 0.290 

ISBSG 

Original: 14-26-1145 
Val-1: 3-8-1226 

Original>Val-1 129 -2.652 0.008 

Original: 14-26-1145 
Val-2: 7-15-1150 

Original>Val-2 196 -1.080 0.280 

Val-1: 3-8-1226  
Val-2: 7-15-1150 

Val-1<Val-2 215 -0.634 0.526 

Table 8: Mann-Whitney signed-rank test results for the ANN experiments  

The final set of experiments show that the reduction of attributes proposed for the 
Desharnais case is not significant; whereas what underlines the significance of the 
results obtained in the ISBSG case is that using the subsets of the selected attributes 
(Val-2 subset) the prediction accuracy is not compromised. Thus, for the ISBSG 
projects comparable accuracy to that of the original ANN models utilised for SCE is 
achieved using the proposed and reduced attributes of Val-2. In addition, some of 
these project attributes required for SCE in the ISBSG case may be considered easier 
and less expensive to collect than others, while in the meantime, having to collect 
fewer measurements contributes to bounding the complexity of the estimation 
process. Practically, the proposed methodology shows an automatic way to minimise 
the number of independent attributes of ANN, emphasising on scheduling and sizing 
attributes for predicting effort. Thus, we may also assume that we actually need to 
gather and validate a relatively smaller set of project data attributes to perform ANN 
estimations since these attributes make an appreciable contribution to the ANN result, 
which is an improvement to the classical form of ANN experiments conducted so far. 
Therefore, we have additionally suggested a way for avoiding the time and money 
consuming process of managing and maintaining large portions of data and 
eliminating the need for measuring too many metrics, while at the same time, 
managed to preserve highly accurate estimates consistently throughout the 
experiments performed. 

4.4 Comparative Experiments with Regression Models 

Assessing and comparing various SCE approaches in terms of statistical accuracy 
throughout a set of experiments is a popular research topic especially in data-driven 
methods [Finnie, 97; Briand, 00; Heiat, 02; Jørgensen, 07]. In this section, we report 
the best results of regression models, after trying out multiple data splits and 
experimenting with many parameters and calibrations of stepwise regression. The 
results are reported based on the full sets of attributes in the Desharnais and ISBSG 
datasets, as well as, using the reduced validation subsets (Val-1 and Val-2).  
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Main aim of this section is to compare the results obtained from ANN with those 
of a linear regression approach. We carried out the Wilcoxon ranked test [Wilcoxon, 
45] to assess whether the results obtained with the best models of each technique are 
significantly different. Furthermore, we investigated whether adequate prediction 
accuracy may be achieved with the reduced sets of attributes (as proposed by ISA) in 
the case where they are utilised by another modelling techniques apart from ANN 
(using the Mann-Whitney test [Mann, 47]). Thus, the attribute selection process of 
ISA is assessed in terms of generalisation and universality. 

In the experiments conducted we have used Multiple Linear Regression (MLR) 
which produces a simple cost model but it required some degree of calibration. The 
level of accuracy obtained using this model was assessed by using the same data and 
employing the same performance measures as with ANN. The set of cost attributes 
were investigated on the dependent attribute (i.e., effort) to see how well the 
regression hyperplane approximates the actual data points, assuming that there is a 
linear relationship between the dependant variable and a set of independent variables. 

 The comparison was carried out after data were separated into training and 
testing sets (as explained previously) and in the MLR case they were additionally 
transformed to their natural logarithms as their relation was found to be non-linear 
through residual analysis. After the two techniques were applied in parallel to the 
same sample data the reverse transformation was used to calculate the final error 
values. In the MLR case, the coefficients were used to calculate the dependant 
variable (effort) for the training set and calculate the error figures. The same process 
was repeated for the testing set of values (i.e. using the testing holdout samples). The 
latter may be considered the validation process of MLR that tested the 
appropriateness of the model by predicting the average value of the effort variable in 
terms of the known values of other variables.  

The results of the validation experiments employing the coefficients obtained 
from the best MLR models in terms of accuracy are summarised in Table 9. The value 
of development effort is predicted using the complete set of attributes (original) and 
the same reduced set of attributes proposed by ISA in the ANN experiments (Val-1 
and Val-2) for both the Desharnais and the ISBSG data samples. 
 

Dataset MMRE CC NRMSE Pred(l) 

Desharnais 
Original 0.496 0.889 0.765 0.294 

Val-1 0.463 0.715 0.846 0.235 
Val-2 0.463 0.823 0.689 0.412 

ISBSG 
Original 1.032 0.715 0.725 0.391 

Val-1 0.668 0.539 1.025 0.130 
Val-2 1.071 0.151 1.104 0.217 

Table 9: Performance Results of the best trained MLR Models for SCE  

The experimentation process with the MLR method was executed 250 times with 
different parts of the dataset used for training and testing (multiple sampling) to 
optimise the results of Table 9 and identify the subsets of attributes that offered better 
fitting. Both stepwise selection methods were used (forward and backward) which 
controlled the inclusion or exclusion of attributes starting with all candidate attributes 
and testing them one by one for statistical significance, removing those attributes that 
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were not significant. Several models were thus developed that utilised a variety of 
attributes, but due to space limitations on one hand, and the fact that the accuracy 
levels obtained were similar to the results presented in Table 9 on the other, the partial 
regression results will not be presented in full.  

In addition, the backward or forward stepwise selection process of the MLR 
method on the original (filtered) datasets may be considered as a promising method to 
promote the most significant predictors (or variables). As specified earlier, though, 
this is not the target of the relevant experiments carried out in this paper and thus we 
will not investigate further the order of significance suggested by each regression 
model tested, leaving this investigation for the future. 

The Wilcoxon ranked test (Table 10) performed to evaluate the difference 
between the medians of the performance of the two techniques (ANN and MLR) 
revealed that the two techniques did not differ significantly (p>0.05) except in the 
case of using the whole Desharnais dataset and the Val-2 ISBSG dataset where MLR 
outperformed ANN. 

 
Dataset ANN Topology ANN MMRE Mean Rank p 

Desharnais 
Original: 8-12-1241 0.753 ANN < MLR 0.028 

Val-1: 2-4-1110 0.602 ANN = MLR 0.463 
Val-2: 3-3-1122 0.429 ANN > MLR 0.287 

ISBSG 
Original: 14-18-180 1.032 ANN < MLR 0.465 

Val-1: 3-5-154  1.200 ANN < MLR 0.465 
Val-2: 7-14-1179 2.265 ANN < MLR 0.003 

Table 10: Wilcoxon signed-rank test results comparing ANN and MLR experiments  

Overall, the results obtained show that MLR outperforms ANN, something which 
indicates that either the former technique is a superior approximator of the effort 
values of the samples, or perhaps the ANN requires more effort in tuning. 
Nevertheless, the observed performance of the two techniques is comparable and in 
most of the cases not significantly different.  

In addition, the results of the Mann-Whitney test (listed in Table 11) show no 
statistical difference among the distribution of the RE error values obtained with the 
full attributes and the Val-1 and Val-2 subsets. What underlines the significance is 
that the proposed reduced subsets (Val-1 and Val-2) in the MLR case provide 
comparable in terms of accuracy results with respect to that of the original sample 
values in both datasets cases. In addition, the mean rank indicates superiority of the 
original sets of attributes in comparison to the reduced subsets in some cases, whereas 
the opposite is observed in some other cases.  

Consequently, the attribute reduction proposed by ISA in the Desharnais and the 
ISBSG cases yields similar predictions (no statistical difference is observed) with 
those of the original data samples through the simple linear regression model showing 
that we cannot rule out the potential of ISA in reducing dimensionality in SCE and 
preserving accuracy levels.  
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Dataset Mean Rank U z p 

Desharnais 
Original > Val-1 127 -0.603 0.547 
Original < Val-2 130 -0.499 0.617 

Val-1 > Val-2 129 -0.534 0.593 

ISBSG 
Original = Val-1 255 -0.209 0.835 
Original > Val-2 221 -0.956 0.339 

Val-1 > Val-2 231 -0.736 0.462 

Table 11: Mann-Whitney signed-rank test results for the MLR experiments 

4.5 Threats to Validity  

There are a few limitations of the approach presented in this paper that generate some 
threats to the validity of the results. We will now discuss briefly these threats: 

i. The Desharnais dataset includes a small size of samples, something that on 
one hand gives birth to doubts as regards proper ANN training versus 
overfitting of the data and on the other limits the significance of the findings 
supporting that this Computational Intelligent approach is suitable for SCE. 
Nevertheless, the former limitation was faced successfully by using holdout 
samples and testing the generalisation ability of the networks, while the latter 
was altered through a similar study of the larger in size ISBSG dataset. In 
addition, overfitting in training is avoided by stopping training if a maximum 
amount of epochs or time is reached, if performance reached the goal set and 
if validation performance increased more than 5 times of maximum 
validation failures since the last time it decreased.  

ii. The variables selected and included in the models of this work were those 
considered more appropriate to describe development effort. This selection 
was purely empirical and was not based on any scientific evidence apart 
from relevant studies describing attempts and experiences with other models 
utilising these variables. The variables selected involved some highly 
subjective measures, such as team experience, project size and complexity, 
whose effect on effort may not be thoroughly captured or explained by any 
model. Our target, though, was not to assess the subjectivity of the 
measurements but to produce successful effort estimations with the use of a 
limited set of variables from the specific datasets, something that was finally 
achieved. 

iii. The ANN models developed and trained will not necessarily work 
sufficiently well when conditions (data samples) change. Having in mind 
that the proposed models are empirical investigations based on available 
effort datasets, it is clear that when new data emerge the trained models may 
fail to generalise. Especially in software development environments that are 
frequently characterised by rapid change in the technologies used, the people 
involved and the products built, it is hardly the case that within different 
conditions the same accuracy results in terms of performance errors will be 
obtained. In the investigations carried out on the specific datasets the trained 
ANN seem to have worked sufficiently well using the holdout samples 
during validation. The same models, though, in light of a large number of 
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completely different projects may or may not work that well. In such case, a 
possible solution will be to repeat the process of training until the network 
restores its ability to generalise with the new data (if possible). Conclusively, 
there are several arguments mentioned throughout this work regarding the 
generalisation ability of the ANN that support that the methodology may be 
used easily with projects of different contexts as the stages of 
experimentation and validation are very simple, fairly repeatable and 
analysable.  

iv. The method used in Stage two to select the best in accuracy ANN over the 
testing phase affects the type of networks that are then utilised by ISA. Thus, 
this method consequently affects the attributes that are finally considered as 
most ‘significant’ and are included in the validation subsets. Another 
possible threat relevant to the attributes that are promoted by the proposed 
approach is the threshold values of the Strict, Medium and Relaxed filtering 
levels which are empirically defined. This is another reason why the 
validation experiments conducted included execution of the Core Cost 
Estimation (CCE) component with two subsets for each dataset, Val-1 and 
Val-2, the latter being supplementary to the former, which have resulted 
from combinations of the above thresholds. 

v. The selected method of ISA used in Stage three to calculate the overall 
connection strength of each input to the output does not consider any impact 
of the weights connecting the hidden nodes to the output. There are other 
saliency measures of input variables that calculate the impact of the input 
vector on the output by using the whole set of connection weights between 
neurons (e.g., Garson’s algorithm [Garson, 91]). Our validation experiments, 
though, were designed so as to provide an assessment whether in practical, 
real-world cases a simple and straightforward way of determining the 
significance of a certain input, like the ISA selection of saliency measure, 
may be proven robust in revealing the dependencies among the input 
parameters and effort in the ANN case. Our results suggested that this is 
highly likely, as the reduced set of attributes suggested by ISA yielded 
equally accurate cost predictions with the full set. 

vi. A final possible threat lies with the fact that the results of data-driven 
methodologies usually depend on the existence and quality of the respective 
data. There are cases where the form of data, the presence of collinearity, or 
even outliers within the data jeopardise the outcome of estimation processes 
that rely on learning by examples (like the one used in this work) and require 
further analysis or filtering activities to enhance their effectiveness and 
assess their appropriateness. 

5 Conclusions 

This work investigates the combination of a Computational Intelligence method with 
a filtering technique, namely that of Artificial Neural Networks (ANN) and Input 
Sensitivity Analysis (ISA) respectively, with the overarching aim to model and 
estimate software development costs. The methodology outlined in this paper 
suggests a simple, easy and straightforward way to conduct experiments and reduce 
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the input space of ANN models maintaining at the same time prediction levels. More 
specifically, the proposed procedure selects a set of important software cost attributes 
(from a larger pool) and retains effort estimations accuracy at the same  levels of 
using the whole pool of attributes. The selected attributes form a subset of cost drivers 
that seem to have the strongest influence in predicting the value of development effort 
in ANN. Thus, ANN may constitute a useful tool in the hands of project managers by 
estimating the total effort required for the completion of software projects and provide 
better resource planning, monitoring, coordinating and controlling in the development 
phases. 

The experiments carried out employed different ANN architectures in terms of 
number of neurons in the input and hidden layers, which were trained with empirical 
cost data recorded in two publicly available datasets, the Desharnais and the ISBSG. 
The approach was based on randomly selecting holdout samples for iteratively 
training, validating and testing the performance of specific ANN topologies. The 
randomisation removed from the cost models developed chronological dependence of 
how project data were fed thus removing possible bias. In addition, to obtain 
conclusive remarks on the best performed ANN in terms of accuracy, a set of 
objective error measures were employed, potential outliers were removed (to ensure 
that the ANN were not affected by bias) and results were filtered with respect to three 
threshold levels. These filtering levels were defined empirically according to a 
combination of error measures so that the prediction error, that is, the difference 
between actual and predicted effort values, was taken into account, as well as the 
positive or negative percentage of evolution follow-up between actual and predicted 
values, along with the difference from a simple mean-value predictor. Repeating the 
experiments a sufficient number of times and attaining consistently similar estimation 
errors strongly suggested that the ANN were stable and able to generalise the 
knowledge acquired during training.  

Subsequently, the cost drivers that were considered more important in describing 
effort were extracted through a process called Input Sensitivity Analysis (ISA), which 
suggested an order of significance for the inputs of the ANN developed. When ISA 
was combined with the filtering thresholds mentioned above, it became evident that 
some of the attributes were globally accepted, meaning that they were always highly 
ranked among the leading attributes in each filtering level and could be assumed as 
more informative than others. In addition, considering the rank of the rest of the 
attributes we were able to include or exclude some of them in subsequent validation 
experiments. Subsets containing a reduced number of attributes were formed and a 
series of validation experiments were executed. The outcome of these experiments 
revealed that accuracy performance was retained to the same levels as with the 
original (unreduced) sample data, while the validation subsets worked reasonably well 
with a simple Multiple Linear Regression (MLR) model.  

The results of the methodology were relatively consistent for both datasets as 
regards the type of attributes that were promoted by ISA. Moreover, most of the 
significant (promoted) attributes related with scheduling, complexity and functional 
size attributes, which are attributes known from the early stages of the project (i.e. at 
the end of the specification phase), accompanied by attributes describing final 
software adaptations such as Added Count, Changed Count and Deleted Count. The 
latter proposes that apart from parameters like duration and functional size that are 
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available from the early phases of the software life-cycle, the overall probability of 
late changes in the requirements should be taken into account in order to obtain 
accurate enough approximations of the overall effort value. This means that the cost 
of change in requirements is considerably high for adding, changing or deleting 
software functionality and estimations should be repeated in the later stages of the 
development.  

The main contribution of the paper lies with the identification and isolation of the 
most promising attributes to predict software development effort based on historical 
samples. This leads to introducing parsimony and greater flexibility in ANN cost 
models with respect to project parameters as it frees them from too many independent 
variables. Thus, the reduction of the network’s input dimension means that a smaller 
number of influential attributes to effort estimation is required and therefore fewer 
measurements need to be collected and monitored along the software process. This, in 
turn, requires less time, effort and cost for the data gathering activities. Project cost 
data can be collected much faster thus facilitating the construction of more refined 
cost models and industry benchmarks.  

The methodology described enhances the understanding of dataset features and 
increases the efficiency and effectiveness of adaptation ANN in the SCE process. 
Moreover, ANN achieve accurate estimations of software development costs which is 
a critical prerequisite for any approach. The attributes promoted in each dataset 
indicate that the duration and scope of a project highly affect effort values and that 
functional size attributes of some major components (such as outputs, enquiries, 
interface files of the program under development) have a significant and influential 
relationship with effort. Moreover, the distinction from the numerical analysis of 
attributes related to counts of changes and deletions performed during project delivery 
indicate immediate impact, or correlation of these attributes with effort. The ISA 
approach also identified different (distant) ranking positions of attributes that are 
defined as transformations of one to another, i.e., from FS (unadjusted variable) to 
AFP (adjusted). This provides an indication that possibly the transformation suffers 
from bias and subjectivity which should be further examined in future work. 

In addition, further analyses of the attributes within SCE datasets need to be 
carried out. Future work may include considering attributes that were excluded from 
the datasets of this work, such as nominal (categorical) attributes of the Desharnais 
and the ISBSG, and examination of different characteristics from other available cost 
datasets, or from the newer version of the ISBSG repository. Also, other methods of 
ANN sensitivity analysis may be investigated (such as fuzzy curves, change of mean 
square error, and other modifications and extensions from the ISA measures used,) to 
rank input feature importance and compare the results with those obtained in this 
work. One of the main problems faced in this work was the difficulty to handle 
missing values which resulted in major data reduction. This restriction could be 
tackled with imputation techniques in future endeavours. Additionally, the datasets 
could be divided into portions referring to measurements of small, medium and large 
software systems and then separate ANN models may be developed to perform the 
analysis presented in this paper for each portion.   

Finally, our future research might include further experimentation utilising other 
datasets and Computational Intelligent methods, such as Genetic Algorithms (GA) for 
evolving the ANN settings (input and hidden neurons, learning functions and internal 

2067Papatheocharous E., Andreou A.S.: Software Cost Medelling ...



parameters like the momentum and learning rates). Our ultimate goal will be to be 
able to incorporate enterprise- or organisation- dependent factors in ANN models that 
will be automatically tuned via the GA and to assess the degree to which a set of 
inputs measured under the same software development conditions (i.e., team and 
project attributes) can be used for SCE. 
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