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Networks-on-chips (NoCs) provide scalable on-chip communication and are expected to be the dominant interconnection
architectures in multicore and manycore systems. Power consumption, however, is a major limitation in NoCs today, and
researchers have been constantly working on reducing both dynamic and static power. Among the NoC components, links that
connect the NoC routers are the most power-hungry components. Several attempts have been made to reduce the link power
consumption at both the circuit level and the system level. Most past research efforts have proposed selective on/off link state
switching based on system-level information based on link utilization levels. Most of these proposed algorithms focus on a
pessimistic and simple static threshold mechanism which determines whether or not a link should be turned on/off. This paper
presents an intelligent dynamic power management policy for NoCs with improved predictive abilities based on supervised online
learning of the system status (i.e., expected future utilization link levels), where links are turned off and on via the use of a small
and scalable neural network. Simulation results with various synthetic traffic models over various network topologies show that
the proposed work can reach up to 13% power savings when compared to a trivial threshold computation, at very low (<4%)
hardware overheads.

1. Introduction

Power management is a crucial element in modern-day
on-chip interconnects. Significant efforts have been made
in order to address power consumption in networks-on-
chips (NoCs) [1–6]. One of the most power-hungry NoC
components are the links connecting the routers to each
other and the processing elements (PEs) of the on-chip inter-
connection network (NoC). Recent data from Intel’s Teraflop
NoC prototype [7] suggests that link power consumption
could be as high as 17% of the network power and could
be even more given the types of links used as well as the
size and pipelining involved in designing the link structure.
These links, which can be designed with differential signals
and low-voltage swing hardware using level converters as
circuit-based optimizations for low power consumption,
are almost active all the time, even when not transmitting
useful data thus spending energy when no inter-router com-
munication exits. While such traditional hardware design

techniques have contributed towards reducing the power
of these links, a system-level technique becomes necessary
for more efficient power reduction, as the number of links
increases with the scaling and increasing sizes of NoCs,
and as application-specific knowledge becomes available.
For example, power-aware-encoding techniques [8] such as
Gray coding cannot be efficiently used, as the hardware cost
in the encoder/decoder increases drastically as the system
scales to a higher number of network components. As such,
recent research focuses on turning links off and on in order
to reduce power consumption, and has been adopted by
several works [1, 6, 9–11], as certain links in the system
are severely underutilized during a specific operational time
frame [1]. Techniques such as DVFS (dynamic voltage and
frequency scaling) applied to the link hardware, [9, 11] have
been used to vary the link frequency and power according
to link utilization; however, even when not data is sent
across a link, static power is still being consumed, especially
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in multipipelined links with pipeline buffers in place. In
addition, CMOS technology scaling is pointing towards
an increased portion of the allocated power budget being
consumed as static energy instead of dynamic energy; hence,
switching on/off links instead of just selectively reducing
their frequency/voltage levels offers better power saving
advantages as links still do burn power even at lower (i.e.,
nonzero) voltage-frequency settings [12]. The majority of
these on/off link dynamic power-management works employ
traditionally a statically-computed threshold value on the
link utilization, and based on that threshold value, the link
is turned off for an amount of time and then is turned
back on when the algorithm decides so. This of course
is a pessimistic approach by nature, and imposes harder
performance constraints. Recently, the use of control theory
for managing candidate links for turning off has been
proposed as an idea in [10], with promising results when
compared to the statically-based approaches.

Motivated by the findings in [10], this paper proposes the
use of artificial neural networks (ANNs) as a dynamic link
power consumption management mechanism, by utilizing
application traffic information. Based on their ability to
dynamically be trained by variable scenarios, ANNs can
offer flexibility and high prediction capabilities [13]. An
ANN-based mechanism can be used to intelligently compute
dynamically the threshold value used to determine which
links can be turned off and on during discrete time intervals.
The ANN receives link utilization data in discrete time
intervals, and predicts the links that should be turned off
or on based on the computed threshold. ANNs can be
dynamically trained to new application information, and
have been proven that they can offer accurate prediction
results in similar scenarios [14]. ANNs can be efficiently
designed in hardware provided they remained relatively
small, through efficient resource sharing and pipelining. Fur-
thermore, by partitioning the NoC, individual small ANNs
can be assigned to monitor each partition independently,
and in parallel monitor the entire network. This work also
introduces topology-based directed training as a pretraining
scheme, using guided simulation, which helps to minimize
the large training set and the ANN complexity. This work
extends our initial idea presented in [15] by several new
contributions: (a) the ANN architecture has been redesigned,
making it flexible and smaller through trade-off simulations
involving the size and structure of the ANN and the offered
power savings, (b) extended discussion on the architecture
and its hardware implementation, (c) extended discussion
on the simulation platform, synthetic traffic benchmarks
and power modeling, and (d) extended results related to
the power savings versus the performance penalty and the
associated hardware overheads.

The rest of this paper is organized as follows. Section 2
discusses background and related work. In Section 3, we
introduce the ANN-based approach for managing link power
in NoCs. Section 4 presents the simulation framework and
simulation results and analysis through various topologies
and synthetic traffic, and Section 5 concludes the paper
giving brief future research directives.

2. Background and Related Work

2.1. ANN Background and Motivation. An ANN is an
information-processing paradigm that is inspired by the
way biological neurons systems process information. It
is composed of a large number of highly interconnected
processing elements (neurons) working in unison to solve
specific problems. ANNs learn by training and are typically
trained for specific applications such as pattern recognition
or data classification. ANNs have been successfully used as
prediction and forecasting mechanisms in several application
areas, as they are able to determine hidden and strongly
nonlinear dependencies, even when there is a significant
noise in the data set [14]. ANNs have been used as
branch prediction mechanisms in computer architecture, as
forecasting mechanisms in stocks [14], and in several other
prediction applications. The ANN operates in two stages:
the training stage and the computational stage. A neuron
takes a set of inputs and multiplies each input by a weight
value, which is determined in training stage, accumulating
the result until all the inputs are received. A threshold value is
then substracted from the accumulated result, and this result
is then used to compute the output of the neuron based on an
activation function. The neuron output is then propagated
to the neurons of the next layer which perform the same
operation with the newly set of inputs and their own weights.
This is repeated for all the layers of an ANN. A neural
network can be realized in hardware by using interconnected
neuron hardware models, each of which is composed by
multiplier accumulator (MAC) units, and a look-up Table
(LUT) as a shared activation function. Some memory is also
required to hold the training weights.

2.2. Related Work in Link Dynamic Power Management.
Recently published research practice surveys such as [16]
which outline the design challenges and lay the roadmap
in future NoC design have emphasized the critical need
to conduct research in NoC power management due to
concerns of battery life, cooling, environmental issues, and
thermal management, as a means to safeguard the scalability
of general-purpose multicore systems that employ NoCs
as their communication backbone. Link dynamic power
management has been given significant attention by NoC
researchers, as circuit-based techniques such as differential
signals and low-voltage swing hardware using level convert-
ers do not seem to adequately address the power manage-
ment problem [17, 18]. As such, there is a significant shift
towards high-level techniques such as selective turning of
links on and off. The challenge involved in those techniques
includes the computation of the decision on whether a
certain link is to be turned off, and when it will be turned
back on. These decisions typically rely on information from
the system concerning link utilization, and, so far, have been
taken using a threshold-based approach. There have been
attempts in dynamic link frequency and dynamic link voltage
(DVFS) management with most using these thresholds as
well.

Among the proposed techniques, some approaches use
software-based management techniques such as the one in
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[17], which proposes the use of reducing energy consump-
tion through compiler-directed channel voltage scaling.
This technique uses proactive power management, where
application code is analyzed during static compilation time
to identify periods of network inactivity; power management
calls are then inserted into the compiled application code
to direct on/off link transitions to save link power. A
similar approach was also taken in [19] for communication
power management using dynamic voltage-scalable links.
Both of these techniques, however, have been applied to
highly predictive array-intensive applications, where precise
idle and active periods can be extracted. Hence, run-time
variability, applicable to NoCs found in general-purposed
multicore chips, has not been examined. Further the work
in [20] proposes software-hardware hybrid techniques that
extend the flow of a parallelizing compiler in order to
direct run-time network power reduction. In this paper, the
parallelizing compiler orchestrates dynamic-voltage scaling
of communication links, while the hardware part handles
unpredicted online traffic variability in the underlying NoC
to handle unexpected swings in link utilization that could not
be captured by the compiler for improved power savings and
performance attainability.

Low-level, hardware-based techniques that determine
on/off periods and manage the voltage and frequency, exhibit
however better energy savings as they can shorten the
processing time required for a decision whether to turn
a link off or on to be made. The most commonly used
power management policies deal with adjusting processing
frequency and voltage (dynamic voltage scaling—DVS). The
works in [5, 18] present DVS techniques that feature a
utilization threshold to adjust the voltage to the minimum
value while maintaining the worst case execution time. In
[21], the authors propose that the dynamic voltage scaling is
performed based on the information concerning execution
time variation within multimedia streams. The work in [22]
proposes a power consumption scheme, in which variable-
frequency links can track and adjust their voltage level to the
minimum supply voltage as the link frequency is changed.
Furthermore, [11] introduces a history-based DVS policy
which adjusts the operating voltage and clock frequency of
a link according to the utilization of the link/input buffer.
Link and buffer utilization information are also used in
[9], which proposes a DVS policy scheme that dynamically
adapts its voltage scaling to achieve power savings with
minimal impact on performance. Given the task graph of a
periodic real-time application, the proposed algorithm in [9]
assigns an appropriate communication speed to each link,
which minimizes the energy consumption of the NoC while
guaranteeing the timing constraints of real applications.
Moreover, this algorithm turns off links statically when no
communications are scheduled because the leakage power of
an interconnection network is significant. In general on/off
links have, in most cases, been more efficient than DVFS
techniques, as links, even if operating at a lower voltage, still
consume leakage and dynamic power [1, 6]. These works
therefore present a threshold-based technique that turns
links off when there is low utilization, using a statically com-
puted threshold. Given that static computation by nature

is pessimistic, dynamic policies have been proposed. Re-
search work in [23] proposes a mechanism to reduce inter-
connect power consumption that combines dynamic on/off
network link switching as a function of traffic while main-
taining network connectivity, and dynamically reducing the
available network bandwidth when traffic becomes low. This
technique is also based on a threshold-based on/off decision
policy. Next, the work in [24] considers a 3D torus network
in a cluster design (off-chip interconnection network) to
explore opportunities for link shutdown during collective
communication operations. The scheme in [25] introduces
the Skip-link architecture that dynamically reconfigures
NoC topologies, in order to reduce the overall switching
activity and hence associated energy consumption. The
technique allows the creation of long-range Skip-links at
run-time to reduce the logical distance between frequently
communicating nodes. However, this is based on application
communication behavior in order to extract such opportu-
nities to save energy. Finally the related work in [26] explores
how the power consumed by such on-chip networks may be
reduced through the application of clock and signal-gating
optimizations, shutting power to routers when they are
inactive. This is applied at two levels: (1) at a granular level
applied to individual router components and (2) globally at
the entire router.

Run-time link power management has recently gained
ground in research to address the leakage issues as well.
As links become heavily pipelined to satisfy performance
constraints, link buffers and pipeline buffers contribute
significantly in leakage power consumption. As such, the
problem becomes significant with the increased on-chip NoC
sizes, impacting both the power consumption as well as the
thermal stability of the chip. Dynamic link management
techniques have therefore been proposed; the work in
[2] proposes an adaptive low-power transmission scheme,
where the energy required for reliable communications is
minimized while satisfying a QoS constraint by varying
dynamically the voltage on the links. The work in [27]
introduces ideas of dynamic routing in the context of NoCs
and focuses on how to deal with links or/and routers that
become unavailable either temporarily or permanently. Such
techniques are a little more complicated than a threshold-
based approach, and inhere performance overheads during
each dynamic computation. As such, the work in [10] intro-
duces the idea of an intelligent method for dynamic (run-
time) power management policy, utilizing control theory.
A preliminary idea of a closed-loop power management
system for NoCs is presented, where the estimator tracks
changes in the NoC and estimates changes in service times,
in arrival traffic patterns and other NoC parameters. The
estimator then feeds any changes into the system model,
and the controller sets the voltage and frequency of the
processor for the newly estimated frequency rate. Motivated
by the promising results presented in [10], and the potential
performance benefits of dynamic threshold computation
techniques, this work proposes a dynamic, intelligent, and
flexible scheme based on ANNs for dynamic computation of
the threshold that determines which links can be turned off
or on.
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3. ANN-Based Threshold
Computation Methodology

3.1. Static Threshold Computation for On/Off Links. The
first step in realizing the proposed ANN methodology is to
establish a framework for comparing whether an intelligent
management is comparable to the nonintelligent case, not
only in terms of energy savings, but also in terms of
throughput and hardware overheads. As such, a trivial case,
where a simple threshold mechanism was used to determine
whether or not a link would turn off or back on, was first
implemented using an NoC simulation framework and the
Orion power models [28] (explained later in Section 4.1).
The mechanism chooses an appropriate threshold based
on which the links turn on and off. This trivial algorithm
takes as input the link utilizations of all the links in the
experimental NoC system, and outputs control signals based
on a statically defined threshold; based on this threshold,
the algorithm then decides which links are turned off and
then back on. The statically-defined threshold was computed
based on simulation observations from different synthetic
traffic models and based on the observed power savings and
throughput reduction when compared to a system without
the mechanism. Figure 1 shows the real-time power savings
for four synthetic traffic models, observed over a 4× 4 NoC.

This method was introduced in [1], and the results
presented therein as well as the experiments with our
framework indicate that such mechanisms can be quite
effective. However, a run-time mechanism, which can poten-
tially benefit from real-time information stemming from
the network, can potentially outperform this method. Such
mechanism is described next. Furthermore, [1] uses an open-
loop mechanism, prone to oscillations that potentially can
limit both the attainable performance and also the power
savings, as power is still used during the transition [10].

3.2. Mechanism Overview. The ANN-based mechanism can
be integrated as an independent processing element in
the NoC (PE), potentially located in a central point in
the network for easy access by the rest of the PEs, and
each base ANN mechanism can be assigned to monitor
an NoC partition. Such cases are shown in Figure 2(a).
Each base ANN mechanism monitors all the average link
utilization rates within its region. These values are processed
by the ANN, which computes the threshold utilization value
for each link within its region, during each interval. The
threshold value is then used to turn off any links in the region
that exhibit lower utilization. Links which have been turned
off remain off for a certain period of time. Experiments in
related work [1, 10] indicate that such time should be within
a few hundred cycles, as longer periods tend to create a vast
performance drop-off (as the network congestion increases
due to lack of available paths), whereas shorter periods
do not incur worthy power savings. The proposed ANN
mechanism uses a 100-cycle interval, during which all new
utilization rates are received. This interval was chosen based
on existing experiments in [1], which shows that a 100-cycle
interval incurs better performance to power savings. The
interval, however, is a system parameter, which can also be

10

20

30

40

50

10000 20000 40000 60000 80000 100000

Random traffic
Tornado traffic

Transpose traffic
Neighbor traffic

Po
w

er
 s

av
in

gs
 (

%
)

Cycles  (time slots)

Figure 1: Power savings of a trivial threshold case compared to no
on/off links case.

taken into consideration by the system training, and involves
future work. During the interval span, the ANN computes
and outputs the new threshold, which is then used by the link
control mechanisms in each router to turn off underutilized
links. The links remain off for another 100 cycles, and turn
back on when a new threshold is computed. During the 100-
cycle interval, links which are off, do not participate in the
computation of the next threshold; instead, they are encoded
with a sentinel value that represents them being fully utilized,
so they are not kept off in two subsequent intervals. This
reserves fair path allocation within the network.

Each ANN-based mechanism follows a fully connected
multilayer perceptron model [13, 14], consisting of one
hidden layer of internal neurons/nodes and a single output-
layer neuron. The activation function used in this work is
the hyperbolic tangent function, which is symmetric and
asymptotic, henceforth easy to implement in hardware as
a LUT [29]. Furthermore, the specific function has been
extensively used in several ANNs and its accuracy has been
very good [13]. The ANN system is shown in Figure 2(b).
The number of internal neurons was chosen to be the half
of the summation of the input and output neurons [13]. The
input neurons depend on the number of links that the system
receives as feedback. As such, the size of the ANN depends
on the number of inputs to the system. The output neuron
chooses the corresponding threshold that best matches the
pattern observed through the hidden layer neurons and
outputs the threshold value to the link controller.

The neuron computation involves computing the
weighted sum of the link utilization inputs. An activation
function is then applied to the weighted sum of the inputs
of the neuron in order to produce the neuron output (i.e.,
activate the neuron). Equation (1) shows how the output of
a neuron is calculated.

Function which calculates the output of a neuron:

f (x) = K

⎛
⎝∑

i

wigi(x)

⎞
⎠. (1)
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where K represents the activation function which is the
hyperbolic tangent, w represents the weights which apply
to the link utilization inputs which are represented by g(x)
input function. The overall procedure is shown in Figure 3.

3.3. ANN Training and Operation. The training stage can
be performed off-line, that is, when the NoC is not used,
and the training weights can be stored in SRAM-based LUTs
for fast and on-line reconfiguration of the network. The
network is trained using application traffic patterns, off-
line, using the back-propagation ANN training algorithm
[14]. In our experiments, we used synthetic traffic patterns
and the Matlab ANN toolbox; the weight values were then
fed to the simulator as inputs, where the actual prediction
was then implemented and simulated. The operation of
the ANN can be potentially improved, by categorizing the
applications that a system will practically run. As such, for
each application category (and subsequently traffic patterns

with certain common characteristics), the ANN can be
trained with the corresponding weights. Each training set can
then be dynamically loaded during long operation intervals,
where the system migrates to a new application behavior.

3.4. Intelligent Threshold Computation—ANN Size and NoC
Scalability Issues. While ANNs are heavily efficient in pre-
dicting scenarios based on learning algorithms, they require
careful hardware design considerations, as their size and
complexity depend on the number of inputs received as well
as the number of different output predictions (classes) that
they have to do. NoCs consist of a large number of links
which grow exponentially as the size of the NoC grows.
Therefore, receiving link utilization and having to determine
the threshold that controls which links are candidates for
turning off and on would require an exponentially scalable
ANN. As such, we devise a preprocessing technique, which
identifies, based on simulation and observations, the set of
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candidate links for turning off and on, eliminating links
which are almost always utilized. This depends obviously on
the chosen network topology (e.g., in a 2D mesh topology,
links that are likely to be less busy include links which
are at the edges of the mesh, whereas central links are
usually more active and can be left on all the time), so that
the ANN mechanism can handle the output decision in a
more manageable way. This can be aided by intelligent floor
planning and placement of processing elements inside the
NoC as well, but is beyond the scope of this paper. Through
various synthetic traffic simulations, for each given NoC
topology, the average utilization values for each link through
various phases in the simulation are computed, and the
links with the highest utilization values are always assumed
that they will be on. Obviously this step reduces a little the
effectiveness of the ANN, but it is necessary to minimize the
size and overheads of the ANN both in terms of performance
and in terms of hardware resources. This step has to be done
for a given topology, prior to the ANN training. However,
both steps (determining the links that the ANN will use,
as well as the ANN training) can be done off-line, during
the NoC design stage. The ANN training can also be done
repeatedly whenever new application knowledge becomes
available that might alter the on-chip network traffic behav-
ior. This particular property of ANNs provides a comparative
advantage against a statically computed threshold, making
the NoC flexible under any application that it is required
to facilitate. It must be stated that the number of links that
will be considered as likely candidates for on/off activity (i.e.,
the ones which do tend to have low utilization during the
pretraining stage) impact both the size of the ANN itself
and the overall size of the mechanism (which involves logic
that sends the appropriate control signals). Through the two
steps, pretraining and training, each ANN can be trained
and configured independently to satisfy its targeted NoC
structure (topology and number of monitored links).

Furthermore, large NoCs can be partitioned into smaller
regions. As such, a base ANN architecture can be assigned
to monitor each region, and all the link utilizations of the
routers of the NoC partition arrive at the ANN which is
responsible for that region. The size of this NoC region,
however, depends on two major factors; the incurred power
savings that the corresponding base ANN offers, which
depend on its ability to process and evaluate the input
information, and the resulting ANN size and hardware
overheads (and subsequently power consumed within the
ANN) which grow exponentially as the size of the NoC region
grows. Choosing a small NoC region will likely result in
a small ANN, but will result in smaller savings since the
ANN will not have enough information to compute a good
threshold value. On the other hand, a large NoC region
will provide the ANN with much more information and
potentially result in a much better threshold value, but its size
and overheads would reduce the power savings making the
ANN ineffective. As such, we experimented with several NoC
regions and base ANNs, comparing their hardware overheads
(a product of the ANN power consumption and the gate
count required to implement each ANN in hardware) and
responding savings incurred with the computed threshold.
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Figure 4 shows a comparison between hardware overheads
(power× gate count) and power savings in the cases of 3×3,
4 × 4, and 5 × 5 ANN sizes for monitoring regions in an
NoC. Results show that computation over a 4×4 NoC region
offers satisfactory power savings and significantly less ANN
overheads when compared to a 5 × 5 NoC region. A 3 × 3
NoC region does not provide enough information to the
ANN in order to make accurate predictions. Based on these
observations, we designed the base ANN system to monitor
4× 4 NoC regions.

3.5. Base (4 × 4) Artificial Neural Network Operation. The
ANN mechanism is responsible to compute for all the link
utilizations the minimum values during each interval. Based
on these values, the ANN calculates an optimal threshold.
Figure 5 shows the procedure of the ANN mechanism for
a 4 × 4 NoC partition. The ANN mechanism receives all
the average link utilizations from all the links of the 4 × 4
NoC partition. These values are fed to the ANN in order
to calculate an optimal threshold. Each router contains a
control hardware monitor that measures the average link
utilization for each of the four links in each router, and this
value is sent to the ANN every n cycle (where n is the size of
the time interval). If a router fails to transmit the values at a
single interval, its value is set to sentinel value, which shows
that its buffers are fully utilized. This mechanism acts also
as a congestion information mechanism because links which
are heavily active are not candidates to be turned off. The
ANN uses the utilization values to find the threshold which
will determine if a link is going to be turned off or on for
the next n-cycle interval. As said earlier, we used 100-cycle
intervals [1] (i.e., n = 100) in our simulations.

3.6. Base (4×4) Artificial Neural Network Hardware Architec-
ture. One of the main advantages of ANNs is their simple
hardware implementation when the number of neurons
remains small and the activation function remains simple
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[13]. The neuron operation can be designed efficiently in
hardware since it can be modeled as a multiply-accumulate
operation. The ANN hardware implementation depends
on the number of hidden layer neurons; each neuron is
implemented as a multiplier-accumulator (MAC) unit, with
the accumulators being multiplexed for each neuron, so
that the number of multipliers is minimized. The base
ANN hardware architecture is shown in Figure 6. Utilization
values for each link arrive and sorted through an input
coordination unit, which distributes the values to each of the
appropriate multipliers. The multipliers receive these values
and through a shared weights memory, the corresponding
weight. The weights and inputs product is then accumulated
in the corresponding accumulator, with the entire process
controlled via a finite-state machine controller. Each neuron
has an assigned storage register, to enable data reuse; when
one layer of neurons is computed, their outputs are stored
inside a corresponding register. As such, the same hardware
is reused for computing the next layer (i.e., from input layer
to hidden layer and from hidden layer to output layer). When
each neuron finishes its MAC computation, the result is
then computed through the activation function LUT and
propagates to the output neuron.

An ANN monitoring a 4×4 region in a torus topology, for
example, receives 64 different inputs; if we are to assume that
each router transmits a packet with its own link utilization
during each interval, and if we also assume one packet
per cycle delivered to the ANN during each interval, then,
during each cycle, the ANN will receive at most 4 input
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Figure 6: ANN hardware architecture and its hardware realizations.

values. Hence, if we use pipelined multipliers, we need only 4
multipliers for each ANN to achieve maximum throughput.
The ANN therefore remains small and flexible, regardless
of the size of the network it monitors. Furthermore, an
ANN monitoring a 4 × 4 NoC partition receives 16 packets
(one for each router); as such, it requires 16m cycles (where
m is the cycle delay of each multiplier), plus 16 cycles for
each accumulator, plus one cycle for the activation function
plus one cycle for the output neuron, to output the new
threshold (total of 16m + 18 cycles). The overall data flow
and architecture is shown in Figure 6.

3.7. ANN Hardware Optimization and Trade-Offs. In order
to make the ANN architecture simpler and smaller we
studied how the number of neurons of the hidden layer
affect the total power savings of the system. Given that the
4 × 4 ANN monitors 16 routers, we need at least 8 input
neurons [14]. Having eight neurons at the input layer of the
ANN means that the hidden layer should have five neurons
(based on the rule of thumb that a satisfactory number
of the hidden layer neurons equals to half the number of
input neurons plus one neuron) [14]. Three different ANNs
were developed with five, four, and three neurons at the
hidden layer, respectively. Figure 7 shows the power savings
for these ANNs under the use of four different traffic patterns
(Random, Tornado, Transpose, and Neighbor). Using four
neurons therefore (instead of five), in the hidden layer
exhibits the best power savings for all the traffic patterns.
In addition, we studied how the bit representation of the
training weights affects the threshold computation and
subsequently the total power savings. Figure 8 shows how
the bits used in representing the training weights influence
the power savings of the system. As we can see 24, 16, 8,
and 6 bits show similar power savings, but these savings are
significantly reduced when 4 bits are used, due to reduced
training accuracy. Based on the above, we selected the weight
bit representation from 6 bits, which made the multiplier-
accumulation hardware very small, requiring a 6-bit port for
each weight and a 5-bit port for the utilization values.
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Figure 7: Power savings for five, four and three neurons in the
hidden layer of the ANN.

4. Simulation and Results

4.1. Experimental Setup. In order to evaluate the ANN-
based on/off link prediction mechanism, we developed
a simulation framework based on the Java-based cycle-
accurate gpNoCsim simulator (general-purpose simulator for
network-on-chip architectures) [30]. The framework enables
simulation of multiple topologies, utilizing dimension-
ordered XY routing algorithm with virtual channel support
and 4-stage pipelined router operation. The simulated router
supports 64-bits flit width, 2 virtual channels per link
and two buffers per virtual channel. The routers used
are all the same, and we assume wormhole flow control.
The framework supports various synthetic and user-defined
traffic models. We experimented with a 4× 4 mesh topology,
and mesh and torus 8 × 8 topologies. Simulations are done
over a range of 200,000 cycles, with a warm-up period
of 100,000 cycles. In the 8 × 8 topologies, we partitioned
the NoC into four regions of 4 × 4 routers/links, where
each ANN-based model was assigned as responsible for
monitoring. The ANN-based models monitored all links in
their corresponding partition, all links were candidates for
off/on, and all ANN results related to the size and operation
of the ANN are given based on these architectural details.

Time was divided into 100-cycle intervals [1]; at the end
of each interval, all routers in the NoC partition transmit
their average utilization data for that span (computed via a
counter and LUT-based multiplication with the reciprocal of
the interval). A time-out mechanism equal to the expected
delay of each router towards the ANN mechanism is imposed
to maintain reasonable delays. The ANN receives one packet
from each router with four utilization values, one for each
port. The ANN then proceeds to compute the new threshold
which is transmitted to each router through a control packet.
Each router then turns off each link, depending whether
or not its utilization value is above or below the new

threshold. The router continues operation until the end
of the new interval. It must be repeated that when a link
is turned off or on, an extra 100-cycle penalty is inserted
into the simulation to indicate the impact on the network
throughput.

While the savings could significantly be improved using
a more intelligent routing algorithm than the trivial XY
dimension-ordered algorithm (DOR), we experimented with
the XY algorithm and induced blocking when a link was
off and the output buffer of that link fully utilized. In the
case that a packet arrives in a router, and its destination
link is off, the packet resides in the buffer until the link is
turned back on. While this incurs a performance penalty,
it is necessary to maintain correctness; this is a pessimistic
approach obviously—a better routing algorithm would likely
yield much better throughput and power savings, but is
beyond the scope of this paper.

In order to study the power savings and the throughput
of the dynamic ANN-based prediction algorithm for turning
links on/off, we compare this to a static threshold-based
algorithm and to a system without any on/off mechanism.
Prior to discussing the simulation results, we first explain the
power modeling followed in the experiments.

4.2. Power Modeling. We adopted the Orion power models
for the dynamic power consumption of each router [28].
Router and link hardware were designed and synthesized in
Verilog and Synopsys Design Compiler in order to obtain
the leakage power values. We used a commercial CMOS
65 nm library, and a sequence of random input vectors, for
several thousand cycles, and measured the leakage power of
each router and link, through all computation cycles and
combinations of events. The leakage values are then fed into
the simulator, along with the Orion models for active power,
and the overall power is computed. In addition, we take into
consideration the start-up power consumed when we turn a
link back on.

4.3. Simulation Results and Discussion. Using synthetic traffic
patterns with varied injection rates (Random, Tornado,
Transpose, and Neighbor) [31, 32], we first evaluated the
power savings of the ANN-based mechanism when com-
pared to the same system without any on/off link capability,
and when compared to a system that employs a statically
determined threshold. The traffic patterns, for which we
experimented, are a superset of the patterns used to train
the ANN; we measured power savings and the impact of the
throughput on all the traffic patterns. However, in order to
compute the power savings in the torus network, we follow
the guided-training approach as described in Section 3.3,
and we measure link utilizations in all possible partitions
of the torus network to compensate for the toroidal links.
The link utilizations with the least values (from all the link
utilizations, from all the partitions of the torus network)
are then passed through the ANNs. Figure 9 shows the
comparison when targeting 8× 8 mesh and torus NoCs. The
power savings of the ANN-based mechanism are better than
the savings in the cases of statically determined threshold
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Figure 9: Power Savings for 8 × 8 mesh and 8 × 8 torus networks for the ANN-based technique, static threshold technique and no on/off
technique.

and the case without any on/off links. The ANN-based
mechanism can identify a significant amount of future be-
havior in the observed traffic patterns; therefore, it can intel-
ligently select the threshold necessary for the next timing
interval.

Next, we measure the impact of the throughput in each
mechanism; while having no on/off mechanism obviously
yields a higher throughput, the ANN-based technique shows
better throughput results compared to statically deter-
mined threshold techniques. Figure 10 shows the throughput
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Table 1: Power savings/hardware overhead comparisons.

Related work Characteristics
Power savings

comparing to no
algorithm

Hardware overhead

[1]
8× 8 2D mesh topology,

Uniform traffic
∼37,5%—turning on/off

2 links per router
N/A

[11]
8× 8 2D mesh topology,
Pareto distribution—0.5

packet injection rate
∼30%

500 equivalent logic
gates per router port

Delay ignored

Proposed ANN-based
technique

8× 8 2D mesh topology
and 8× 8 torus

topology,uniform traffic

Up to ∼40%—turning
on/off links based on

ANN prediction

4% of the NoC hardware
for a complete 4× 4

Mesh NoC

comparisons for an 8 × 8 mesh and an 8 × 8 torus network.
The throughput values are normalized based on the number
of the simulation cycles.

Figure 11 represents the normalized energy consumed in
a 8× 8 mesh network. We observe that the energy consumed
using the ANN mechanism is less than the cases of statically-
computed threshold and without on/off link management
algorithm. The ANN exhibits a reduction in the overall
energy, because of a balanced performance-to-power savings
ratio, when compared to not having on/off links or when
compared to static threshold computation.

Figure 12 presents the average packet delay in packets per
cycle for the 8 × 8 mesh, when the ANN-based mechanism
is used compared to the cases where no on/off mechanism is

used and the statically computed threshold case. The ANN-
based mechanism incurs more delay, but we believe that the
delay penalty is acceptable when compared to the associated
power savings.

4.4. ANN Hardware Overheads: Synthesis Results. To com-
pute the hardware overheads of the proposed scheme,
the ANN-based mechanism for one 4 × 4 NoC region
was synthesized and implemented targeting a commercial
65 nm CMOS technology. The ensuing synthesized ANN-
based controller and the associated hardware overheads in
each router consume approximately 4 K logic gates (for
comparison purposes, an NoC router similar to the one
used in our simulation [29] consumes roughly 21 K gates),
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Figure 12: Average packet latency for the cases where ANN-based
mechanism is used, when trivial case is used and when there is no
on/off mechanism.

bringing the estimated hardware overhead for an 4× 4 mesh
network to roughly 4% of the NoC hardware.

4.5. Comparison with Related Works. Lastly, we briefly give a
comparison with relevant related works that follow dynamic
threshold techniques in Table 1. When compared to both
[1, 11], the ANN-based prediction yields better power
savings than having no prediction mechanism, while still
maintaining lower hardware overheads. We must note that
while [10] was the motivating idea behind our paper, it
presented only a preliminary implementation of the idea,
without enough information about hardware overheads and
power savings in order to make an informed comparison.

5. Conclusions

This paper presented how an ANN-based mechanism can
be used to dynamically compute a utilization threshold, that
can be in turn used to select candidate links for turning
on or off, in an effort to achieve power savings in an NoC.
The ANN-based model utilizes very low hardware resources,
and can be integrated in large mesh and torus NoCs,
exhibiting significant power savings. Simulation results
indicate approximately 13% additional power savings when
compared to a statically determined threshold methodology
under synthetic traffic models. We hope to expand the results
of this paper to further explore dynamic reduction of power
consumption in NoCs using ANNs and other intelligent
methods.
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J. Duato, “Power saving in regular interconnection networks,”
Parallel Computing, vol. 36, no. 12, pp. 696–712, 2010.

[24] S. Conner, S. Akioka, M. J. Irwin, and P. Raghavan, “Link
shutdown opportunities during collective communications in
3-D torus nets,” in Proceedings of the 21st International Parallel
and Distributed Processing Symposium (IPDPS ’07), pp. 1–8,
March 2007.

[25] C. Jackson and S. J. Hollis, “Skip-links: a dynamically reconfig-
uring topology for energy-efficient NoCs,” in Proceedings of the
12th International Symposium on System-on-Chip 2010 (SoC
’10), pp. 49–54, September 2010.

[26] R. Mullins, “Minimising dynamic power consumption in on-
chip networks,” in Proceedings of the International Symposium
on System-on-Chip (SoC ’06), pp. 1–4, November 2006.

[27] M. Ali, M. Welzl, and S. Hellebrand, “A dynamic routing
mechanism for network on chip,” in Proceedings of the 23rd
NORCHIP Conference, pp. 70–73, November 2005.

[28] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a power-
performance simulator for interconnection networks,” in Pro-
ceedings of the International Symposium on Microarchitecture,
pp. 294–305, 2002.

[29] E. Kakoullit, V. Soteriou, and T. Theocharides, “An artificial
neural network-based hotspot prediction mechanism for
NoCs,” in Proceedings of the IEEE Computer Society Annual
Symposium on VLSI (ISVLSI ’10), pp. 339–344, July 2010.

[30] H. Hossain, M. Ahmed, A. Al-Nayeem, T. Z. Islam, and
M. M. Akbar, “gpNoCsim—a general purpose simulator for

network-on-chip,” in Proceedings of the International Confer-
ence on Information and Communication Technology (ICICT
’07), pp. 254–257, March 2007.

[31] W. J. Dally and B. Towles, Principles and Practices of Inter-
connection Networks, Morgan Kaufmann, San Francisco, Calif,
USA, 2004.

[32] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection
Networks: An Engineering Approach, Morgan Kaufmann, San
Francisco, Calif, USA, 2003.


