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Abstract. We introduce a new clustering method for DNA microarray dbg
is based on space filling curves and wavelet denoising. Toygoged method is
much faster than the established fuzzy c-means clustegoguse clustering oc-
curs in one dimension and it clusters cells that contain, dagéead of data them-
selves. Moreover, preliminary evaluation results on data §om Small Round
Blue-Cell tumors, Leukemia and Lung cancer microarray grpents show that
it can be equally or more accurate than fuzzy c-means clogter a gaussian
mixture model.
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1 Introduction

Microarray experiments allow the simultaneous study ofreggion patterns of thou-
sands of genes. Usually, microarray datasets are chdrattdyy a large number of
genes across a relatively small number of different expemiad conditions [1]. The
genes form a data set of a few thousands of vectors, whilexiberienental conditions
(a few tens) constitute the dimensions of each vector. Ontheofeasons behind mi-
croarray experiments is to figure out the genes that havdasitmiblogical function,
by comparing their expression patterns. An unaided reBeatrying to make sense of
these data will have a hard time. Clustering is a widely usethod to group those
genes that have similar expression levels into the sam&ecduidierarchical clustering
has been widely used in microarray experiments, where endllisters are merged to
form a hierarchical tree called the dendrogramme [2]. H@xdhe visualisation that is
offered by such a method is problematic as thousands ofitieysegments represent-
ing the genes can clutter the screenPartition based clusteringhe data are split into
a fixed number of clusters (either crisp of fuzzy) by optimisain objective function
through a series of steps. A representative is the fuzzyanselustering [3]. Moreover,
in Grid based clusteringhe input space is first quantised into a fixed number of cells
and then the clusters are formed out of cells [4]. Finallypansity based clusterirthe
aim is to find high density regions of the data space that graraged from low den-
sity regions. High density regions stand for clusters. Aeljyjclised density estimation
method is through a mixture of gaussian models. Mixture risockn be learnt with the
expectation maximisation Algorithm (EM). A fast method thmamically computing
a mixture model appeared in [5]. We refer the interestedeetma recent survey of
clustering and cluster analysis for gene expression dta [6



The gene clustering method for DNA microarray we proposeasehd on a four step
process. First, we partition (quantise) the input spaceoise, we map the multidimen-
sional gene expression vectors onto one dimension, theesuitt of which is a spatial
signal. Then we use one dimensional discrete wavelet wemsfn the spatial signal to
denoise the signal. Finally, we cluster the one dimensidata based on the assumption
that cells that are not close belong to different clustetsoAow density cells represent
the boundaries of clusters.

To place our work into context, we would say that it has soreeehts of partition
based clustering and it is also related téVaveClusterwhere wavelets are used to
cluster data of very large databases. In this method low filtessare used to remove
outliers [7]. It has been shown to be very efficient and toctetebitrary shaped clusters
on benchmark datasets. HowevéfaveClustethas been applied to two dimensional
data, whereas our proposal can deal with multidimensioatal.d

The rest of the paper is organised as follows: In Sect. 2 wednice the concept of
space filling curves, and we also present wavelet denoi$imgn in Sect. 3 we present
the space filling based clustering method we developed.ritrpats and evaluation are
presented in Sect. 4. Finally, conclusions are drawn in.Sect

2 Space Filling Curves and Wavelets

A space filling curve is a one dimensional curve that can fileatire plane [8]. There
are many space filling curves, in particular we are inteckgtethe Z-space filling
curve This curve is a mapping : R® — R, which is constructed by interleaving
bits from a point'sM dimensions into a single dimension. For example, givenorect
e = (v1,v9,...v,), With k bitsb; . . . b, used to represent each dimension, witland
by, being the most and least significant bits respectively. Tire dimensional projec-
tionofeise’ = (b7*b1% ... by"by by? ... by™ ... by b2 ... by"), whereb! denotes the
i-th ordered bit from dimensiop. In Fig. 1 is depicted a two dimensional version of a
Z-curve ordering of the cells in an area. In particular, we abserve a first, second and
third order curve. Higher order curves represent a “derc®réring of the input space.
The limit of Z-curve is the area that contains the curve.

The Z- curve has the interesting property (easier to visaati two dimensions, but
also holds for more dimensions), that it tends to preservéddtality of the data. That
is data that are close togetherl® tend also to be close iR, which does not hold
for row major ordering. The Z-curve can be considered as aadfgignal, which can
analysed with signal processing techniques, and in péatievavelets.

From the point of view of mathematics, a function can be repnéed as an infi-
nite series expansion in terms of a dilated and translatesloreof a basis function
called themother waveletlenoted as)(x) and weighted by some coefficieby,:
f(t) = 32, bjktjk(t) Normally, a wavelet starts at time= 0 and ends at time
N. Instead of time one can consider space (as it is often theinasage analysis). A
shifted wavelet, denoted as;,, starts at time¢ = k and ends at time = k£ + N. A
dilated waveletv;, starts attime = 0 and ends at time= N/27. A waveletw;, that
is dilated; times and shifted times is denoted as?; , (t) = (27t — k). For practical
purposes, we can use the discrete wavelet transform, waanohves some of the redun-



dancy found in the continuous transform. In this study wg ol wavelet shrinkage
for denoising. The shrinkage is based on discarding someeadétail coefficients and
then by reconstructing the signal based on the reduced setedficients. Moreover,
in [9] it has been shown that the wavelet shrinkage methopesfdrms other methods
for denoising signals.
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Fig. 1. The Z-space filling curve. The curve in each figure denote®iter of visitation of the
cells.

3 Clustering with the Z-curve

The proposed algorithm with the Z-space filling curve, héortk called Space Filling
Curve Clustering (SFCC), accepts as input a matrix of mitayadata, and it assigns
genes into clusters. The number of clusters are discovegréiaebalgorithm. The steps
are summarised as follows: Quantise Input space, Consjpack filling curve, Smooth
the curve, discover clusters. The algorithm is exposed inleTa. The rationale of step
3 (i.e. smoothing by denoising) is based on the assumptiatthle limits of a cluster
is marked by a high frequency component. Thus by zeroingititefrequency compo-
nents we make cluster detection clearer. Step 4, says thds pleat belong to the same
cluster must be close (determined by threshg)dand the cell must have a minimum
amount of data density (determined by threshg)d

For the proposed clustering method the time complexitydsthps it takes to create
the curve, to apply wavelet denoising and to cluster the. daa/V, be the number of
cells that contain data points, aid the number of data, consequenily < N. The
time to create the Z-curve I x nb x N, wherenb is the number of bits used to encode
each dimension. Thu8(M x nb x N + N.logN.+ N).

The computational complexity of the FCM algorithm($ N k2 M ), whereN is the
number of datak the number of clusters antl the number of dimensions (experi-
ments) of the data. The important thing to notice is that ttragexity of algorithm is
quadratic with regard to the number of clusters.



Table 1. Clustering with the Z-curve

[EnY

. Quantise each dimension of the input space into equadigespintervals.

. Record the number of data in each resulting hyper reaang|

3. Construct a space filling cun&i) that passes through the created hyper rectangles (cells).
Because the cell space is sparsely populatéd), is created only for cells that contain data.
1 € N represents the index of the cells, afiflc) represents the number of data points per
cell.

. Smooth the curve by applying wavelet denoising.

5. Cluster the cells (i.e. their indices) that contain datee(dimensional clustering) as follows

fori =2...1 =length(S).

(@) If]|S(¢) —S(i — 1)|]2 < t1 andS(7) > t2 then put current cell in the existing cluster.

(b) elseif||S(i)—S(i—1)||2 > t1 andS(i) > t2 then create a new cluster, which becomes

the current cluster and put current cell into new clusters
(c) else this cell is an outlier and ignore it.

N

i

Finally, learning gaussian mixtures with the greedyEM &thon takesO (N x k2)
steps, under certain conditions the complexity can be ®it@O(N x k) according
to [7].

4 Experiments and Evaluation

We compared the proposed method (i.e. SFCC) with FCM anddgEed in terms
of two validation indicesfigure of merit[10] andsilhouette[11]. The figure of merit

(FOM) is defined asFOM (e) = \/% |R:(x, €) — ue(e)||?, Ve whereR.(z, ) repre-
sents the: dimension of datum: that belongs in clustet, 1. represents the average
value of R.(z, e), N is the number of data (geneg); the number of experiments (di-
mensions) and is index in the experiments. The FOM index of the whole clistgis
defined as:

M
FOM = FOM(e) (1)

e=1

Smaller values of"OM denote better clustering, for the same number of clusters by
different algorithms.
The silhouette index for datumof clusterc is defined as:

min[by.(z)] — ac(x)
maz{ac(z), min[by.(x)|}

sc(z) = 2)
wherea(z) is the average dissimilarity of datumto the data of the same cluster,
andb(x) is the average dissimilarity of a datumfrom all the data of another cluster.
Dissimilarity can be defined as the eucledian distance. Theugtte index of clus-
tercis: S, = ‘—i‘ Zlﬂl sc(7). Finally, the silhouette index of the whole clustering is:



S=1z Z’Ll S;, wherek is the number of clusters. From the definition if follows that
sc(z) € [~1,1]. An s(z) value for datume close to 1 denotes good clustering, a value
close to 0 denotes that the datum belongs to more than onerdpand a value close
to -1 denotes that belongs to another cluster.

We have used datasets from 3 microarray DNA experiments.fif$tedata set
was obtained from “The Microarray Project cDNA Librariit t p: / / r esear ch.
nhgri . ni h. gov/ m croarray/ Suppl enent /. The second and third data sets
were obtained from the Gene Expression Datasets collebtiom: // sdnt. lit.
or g. sg/ GEDat aset s. The first data set is about Small Round Blue-Cell tumours
(SRBCT), investigated with cDNA microarrays containingd83enes, over a series
of 83 experiments. The 83 samples included tumour biopsyemahtand cell lines
from 4 different types: Ewing’s sarcoma (EWS), rhabdomyeema (RMS), neurob-
lastoma (NB) and Burkitt's lymphoma (BL) [12]. The proverarof the second data set
stems also is from oligonucleotide microarrays, with a vawistinguishing between
acute lymphoblastic leukemia (ALL) and acute meyeloid Eaia (AML). The data
set consisted of 72 bone morrow samples from 7130 human ¢&Bld he third data
set also stems from a microarray experiment and consistsngf inalignant pleural
mesothylioma (MPM) and adenocarcinoma (ADCA) samples.[ThE data set con-
sists of 181 samples from 12534 human genes. All data setsbie®n normalised in
the[0, 1] region.

Experiments have been performed at Matlab 6.1, with theemphtation of FCM
from fuzzy toolbox 2.1.1, and wavelet denoising from the @lattoolbox 2.1. The code
for greedyEM was obtained from the author’s ditet p: / / www. Sci ence. uva.
nl / ~vl assi s/ publ i cati ons. The code for space filling curves and evaluation
was developed by the authors in matlab. In the wavelet baredthing we employed
daubechy of order 2. The wavelet smoothing is achieved blyeyp4 levels of decom-
position for SRBCT and Leukemia data sets and 8 levels foLtimg set. Then we set
the detail coefficients to zero and we reconstructed theakidiiso, the thresholds,
andt, influence the performance of the algorithm since they defimenxclusters occur,
thus we varied the values of andt, from 0.05 to 0.7 with a step 00.01. Finally, the
quantisation step for each dimension for all data sets hes bet to 10. The levels of
wavelet decomposition that are used to smooth the sigmealtie space filling curve)
play a crucial role in the performance of the algorithm. @uatly, the number of levels
of decomposition are experimentally determined.

In Fig. 2 and we depict the results of evaluating SFCC and eoimg@ it with FCM
and greedyEM under the FOM criterion (recall that smalldues indicate better re-
sults). The FOM in the case of the space filling curve has beefieal to the multi-
dimensional data according to the cluster they belong t€GIs depicted with dia-
monds, FCM with rectangles and greedyEM with small dots.h&tfirst diagramme,
corresponding to the SRBC experiments, the SFCC is overrafiev for a small number
of clusters (2-4). At the middle diagramme (Leukemia) gyded is the best method.
At the right most diagramme, which corresponds to Lung Cariicis shown that the
SFCC outperforms FCM or greedy in for most cases (from 5@ilcRisters).

Finally, in Fig. 3 we present the evaluation of SFCC, FCM anegedyEM with
respect to the silhouette validation index (recall thagkigvalues are better and non
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Fig. 2. Evaluation results based on comparing FOM values for thpqsed method (star curve),
FCM (square curve), greedyEM (small dots curves)
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Fig. 3. Evaluation results based on comparing silhouette valuethtoproposed method (star
curve), FCM (square curve), greedyEM (small dots curves)



positive values denote bad clustering). At the leftmosgdiemme (SRBC data), the
winner is SFCC in most cases. Considering the Leukemia ddthl{e diagramme) the
winner in most cases is the FCM. At the rightmost diagrammen{l Cancer), SFCC
and FCM have a comparable behaviour beyond three clustbereas greedyEM is
generally worse than all the other methods.

Considering both the FOM and the silhouette validationdadj the SFCC is better
or at least equally good as FCM. For the leukemia data, thendioes do not concur
about the overall clustering quality of each of the clustg@lgorithms. In any case, we
must recall that even if SFCC is equally or slightly worsentR&CM, it is much faster
to compute.

5 Conclusionsand Future Directions

We have developed an efficient method to cluster genes frol Didroarray exper-
iments. Our method is based on Z-space filling curve whichsmagpltidimensional
genes into one dimension and it performs clustering intoddmension which is very
efficient in terms of computational complexity. It is impant to emphasize that the
proposed method actually does not cluster data directhyif olusters cells into which
data belong (after some patrtitioning). Thus it is indepedéthe number of data but
dependent on the quantisation step. The outcome of the @dijtling curve is a one
dimensional spatial signal which can be processed as tescd detect clusters. The
algorithm is dependent on two thresholds, the maximum gigtdetween two cells so
that they belong to the same cluster and also on the minimuaand#asity of a cell so
as not to be considered as outlier. Of course, by clustegtig, ave also cluster the data
that belong to each cell. Wavelets play an important roleabse they constitute a pre-
processing step to the actual clustering. With wavelenglade, we can denoising the
spatial signal and achieve better results. Thus this pdgecantributes in introducing
signal processing techniques into multidimensional dasaevaluation, we have em-
ployed the FOM and silhouette criteria to compare SPCC wiiMFand greedyEM,
where we obtained promising results. In any case there carolmustering method
that is panacea. The clustering results will always depertti®@data distribution of the
samples, on the amount of noise they contain, and on the niiwelelser tries to apply
to these data.

For the future, it is important to enhance our evaluatiomwther measures such as
the Partition Coefficient, Dunn’s index and the Geometriteiin order to check the
validity of the derived clusters; the aforementioned iretelxave been used in a work re-
lated to evaluating clusters in cDNA experiments [15]. Rarimore, all aforementioned
evaluation measures are based on statistics, and we neeckstigate the biological
significance of the discovered clusters. For example, ihfl@ustering experiment is
described, where the genes of each cluster are mapped @nfarthtional categories
of the Martinsried Institute of Protein Sciences. Then facteclusterP—values were
calculated to measure the statistical significance of etast

Moreover, the space filling curve is of crucial importancehe algorithm and a
basic property it must have is to preserve the locality ofdata. There is enough



research on such curves and there is evidence that thethilbee can achieve better
clustering. We need to investigate that on more microarxagements.
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