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Abstract. We introduce a new clustering method for DNA microarray datathat
is based on space filling curves and wavelet denoising. The proposed method is
much faster than the established fuzzy c-means clustering because clustering oc-
curs in one dimension and it clusters cells that contain data, instead of data them-
selves. Moreover, preliminary evaluation results on data sets from Small Round
Blue-Cell tumors, Leukemia and Lung cancer microarray experiments show that
it can be equally or more accurate than fuzzy c-means clustering or a gaussian
mixture model.

keywords: clustering, space filling curve, wavelets, microarray DNA

1 Introduction

Microarray experiments allow the simultaneous study of expression patterns of thou-
sands of genes. Usually, microarray datasets are characterized by a large number of
genes across a relatively small number of different experimental conditions [1]. The
genes form a data set of a few thousands of vectors, while the experimental conditions
(a few tens) constitute the dimensions of each vector. One ofthe reasons behind mi-
croarray experiments is to figure out the genes that have similar biological function,
by comparing their expression patterns. An unaided researcher trying to make sense of
these data will have a hard time. Clustering is a widely used method to group those
genes that have similar expression levels into the same clusters.Hierarchical clustering
has been widely used in microarray experiments, where smaller clusters are merged to
form a hierarchical tree called the dendrogramme [2]. However, the visualisation that is
offered by such a method is problematic as thousands of tiny line segments represent-
ing the genes can clutter the screen. InPartition based clusteringthe data are split into
a fixed number of clusters (either crisp of fuzzy) by optimising an objective function
through a series of steps. A representative is the fuzzy c-means clustering [3]. Moreover,
in Grid based clusteringthe input space is first quantised into a fixed number of cells
and then the clusters are formed out of cells [4]. Finally, inDensity based clusteringthe
aim is to find high density regions of the data space that are separated from low den-
sity regions. High density regions stand for clusters. A widely used density estimation
method is through a mixture of gaussian models. Mixture models can be learnt with the
expectation maximisation Algorithm (EM). A fast method fordynamically computing
a mixture model appeared in [5]. We refer the interested reader to a recent survey of
clustering and cluster analysis for gene expression data [6].



The gene clustering method for DNA microarray we propose is based on a four step
process. First, we partition (quantise) the input space. Second, we map the multidimen-
sional gene expression vectors onto one dimension, the end result of which is a spatial
signal. Then we use one dimensional discrete wavelet transform on the spatial signal to
denoise the signal. Finally, we cluster the one dimensionaldata based on the assumption
that cells that are not close belong to different clusters. Also, low density cells represent
the boundaries of clusters.

To place our work into context, we would say that it has some elements of partition
based clustering and it is also related to aWaveCluster, where wavelets are used to
cluster data of very large databases. In this method low passfilter are used to remove
outliers [7]. It has been shown to be very efficient and to detect arbitrary shaped clusters
on benchmark datasets. However,WaveClusterhas been applied to two dimensional
data, whereas our proposal can deal with multidimensional data.

The rest of the paper is organised as follows: In Sect. 2 we introduce the concept of
space filling curves, and we also present wavelet denoising.Then in Sect. 3 we present
the space filling based clustering method we developed. Experiments and evaluation are
presented in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Space Filling Curves and Wavelets

A space filling curve is a one dimensional curve that can fill anentire plane [8]. There
are many space filling curves, in particular we are interested in the Z-space filling
curve. This curve is a mappingS : R

n → R, which is constructed by interleaving
bits from a point’sM dimensions into a single dimension. For example, given vector
e = (v1, v2, . . . vn), with k bitsb1 . . . bk used to represent each dimension, withb1 and
bk being the most and least significant bits respectively. The one dimensional projec-
tion of e is e′ = (bv1
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k ), wherebji denotes the
i-th ordered bit from dimensionj. In Fig. 1 is depicted a two dimensional version of a
Z-curve ordering of the cells in an area. In particular, we can observe a first, second and
third order curve. Higher order curves represent a “denser”covering of the input space.
The limit of Z-curve is the area that contains the curve.

The Z- curve has the interesting property (easier to visualise in two dimensions, but
also holds for more dimensions), that it tends to preserve the locality of the data. That
is data that are close together inR

n tend also to be close inR, which does not hold
for row major ordering. The Z-curve can be considered as a spatial signal, which can
analysed with signal processing techniques, and in particular wavelets.

From the point of view of mathematics, a function can be represented as an infi-
nite series expansion in terms of a dilated and translated version of a basis function
called themother waveletdenoted asψ(x) and weighted by some coefficientbj,k:
f(t) =

∑

j,k bj,kψj,k(t) Normally, a wavelet starts at timet = 0 and ends at time
N . Instead of time one can consider space (as it is often the case in image analysis). A
shifted wavelet, denoted asψjo, starts at timet = k and ends at timet = k + N . A
dilated waveletwj0 starts at timet = 0 and ends at timet = N/2j. A waveletwjk that
is dilatedj times and shiftedk times is denoted as:ψj,k(t) = ψ(2jt− k). For practical
purposes, we can use the discrete wavelet transform, which removes some of the redun-



dancy found in the continuous transform. In this study we rely on wavelet shrinkage
for denoising. The shrinkage is based on discarding some of the detail coefficients and
then by reconstructing the signal based on the reduced set ofcoefficients. Moreover,
in [9] it has been shown that the wavelet shrinkage method outperforms other methods
for denoising signals.
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Fig. 1. The Z-space filling curve. The curve in each figure denotes theorder of visitation of the
cells.

3 Clustering with the Z-curve

The proposed algorithm with the Z-space filling curve, henceforth called Space Filling
Curve Clustering (SFCC), accepts as input a matrix of microarray data, and it assigns
genes into clusters. The number of clusters are discovered by the algorithm. The steps
are summarised as follows: Quantise Input space, Constructspace filling curve, Smooth
the curve, discover clusters. The algorithm is exposed in Table 1. The rationale of step
3 (i.e. smoothing by denoising) is based on the assumption that the limits of a cluster
is marked by a high frequency component. Thus by zeroing the high frequency compo-
nents we make cluster detection clearer. Step 4, says that points that belong to the same
cluster must be close (determined by thresholdt1) and the cell must have a minimum
amount of data density (determined by thresholdt2).

For the proposed clustering method the time complexity is the steps it takes to create
the curve, to apply wavelet denoising and to cluster the data. LetNc be the number of
cells that contain data points, andN the number of data, consequentlyNc < N . The
time to create the Z-curve isM×nb×N , wherenb is the number of bits used to encode
each dimension. ThusO(M × nb×N +NclogNc +N).

The computational complexity of the FCM algorithm isO(Nk2M), whereN is the
number of data,k the number of clusters andM the number of dimensions (experi-
ments) of the data. The important thing to notice is that the complexity of algorithm is
quadratic with regard to the number of clusters.



Table 1. Clustering with the Z-curve

1. Quantise each dimension of the input space into equally spaced intervals.
2. Record the number of data in each resulting hyper rectangle
3. Construct a space filling curveS(i) that passes through the created hyper rectangles (cells).

Because the cell space is sparsely populated,S(i) is created only for cells that contain data.
i ∈ N represents the index of the cells, andS(x) represents the number of data points per
cell.

4. Smooth the curve by applying wavelet denoising.
5. Cluster the cells (i.e. their indices) that contain data (one dimensional clustering) as follows

for i = 2 . . . i = length(S).
(a) If ||S(i) − S(i − 1)||2 ≤ t1 andS(i) ≥ t2 then put current cell in the existing cluster.
(b) else if||S(i)−S(i−1)||2 > t1 andS(i) ≥ t2 then create a new cluster, which becomes

the current cluster and put current cell into new clusters
(c) else this cell is an outlier and ignore it.

Finally, learning gaussian mixtures with the greedyEM algorithm takesO(N × k2)
steps, under certain conditions the complexity can be reduced toO(N × k) according
to [7].

4 Experiments and Evaluation

We compared the proposed method (i.e. SFCC) with FCM and greedyEM in terms
of two validation indices:figure of merit[10] andsilhouette[11]. The figure of merit

(FOM) is defined as:FOM(e) =
√

1

N
‖Rc(x, e) − µc(e)‖2, ∀c whereRc(x, e) repre-

sents thee dimension of datumx that belongs in clusterc, µc represents the average
value ofRc(x, e), N is the number of data (genes),M the number of experiments (di-
mensions) ande is index in the experiments. The FOM index of the whole clustering is
defined as:

FOM =

M
∑

e=1

FOM(e) (1)

Smaller values ofFOM denote better clustering, for the same number of clusters by
different algorithms.

The silhouette index for datumx of clusterc is defined as:

sc(x) =
min[b∀c(x)] − ac(x)

max{ac(x),min[b∀c(x)]}
(2)

wherea(x) is the average dissimilarity of datumx to the data of the same cluster,
andb(x) is the average dissimilarity of a datumx from all the data of another cluster.
Dissimilarity can be defined as the eucledian distance. The silhouette index of clus-
ter c is: Sc = 1

|c|

∑|c|
i=1

sc(i). Finally, the silhouette index of the whole clustering is:



S = 1

k

∑k

j=1
Sj , wherek is the number of clusters. From the definition if follows that:

sc(x) ∈ [−1, 1]. An s(x) value for datumx close to 1 denotes good clustering, a value
close to 0 denotes that the datum belongs to more than one clusters, and a value close
to -1 denotes thatx belongs to another cluster.

We have used datasets from 3 microarray DNA experiments. Thefirst data set
was obtained from “The Microarray Project cDNA Library”http://research.
nhgri.nih.gov/microarray/Supplement/. The second and third data sets
were obtained from the Gene Expression Datasets collectionhttp://sdmc.lit.
org.sg/GEDatasets. The first data set is about Small Round Blue-Cell tumours
(SRBCT), investigated with cDNA microarrays containing 2308 genes, over a series
of 83 experiments. The 83 samples included tumour biopsy material and cell lines
from 4 different types: Ewing’s sarcoma (EWS), rhabdomyo sarcoma (RMS), neurob-
lastoma (NB) and Burkitt’s lymphoma (BL) [12]. The provenance of the second data set
stems also is from oligonucleotide microarrays, with a viewof distinguishing between
acute lymphoblastic leukemia (ALL) and acute meyeloid leukemia (AML). The data
set consisted of 72 bone morrow samples from 7130 human genes[13]. The third data
set also stems from a microarray experiment and consists of lung malignant pleural
mesothylioma (MPM) and adenocarcinoma (ADCA) samples [14]. The data set con-
sists of 181 samples from 12534 human genes. All data sets have been normalised in
the[0, 1] region.

Experiments have been performed at Matlab 6.1, with the implementation of FCM
from fuzzy toolbox 2.1.1, and wavelet denoising from the wavelet toolbox 2.1. The code
for greedyEM was obtained from the author’s sitehttp://www.science.uva.
nl/∼vlassis/publications. The code for space filling curves and evaluation
was developed by the authors in matlab. In the wavelet based smoothing we employed
daubechy of order 2. The wavelet smoothing is achieved by applying 4 levels of decom-
position for SRBCT and Leukemia data sets and 8 levels for theLung set. Then we set
the detail coefficients to zero and we reconstructed the signal. Also, the thresholdst1
andt2 influence the performance of the algorithm since they define when clusters occur,
thus we varied the values oft1 andt2 from 0.05 to 0.7 with a step of0.01. Finally, the
quantisation step for each dimension for all data sets has been set to 10. The levels of
wavelet decomposition that are used to smooth the signal (i.e. the space filling curve)
play a crucial role in the performance of the algorithm. Currently, the number of levels
of decomposition are experimentally determined.

In Fig. 2 and we depict the results of evaluating SFCC and comparing it with FCM
and greedyEM under the FOM criterion (recall that smaller values indicate better re-
sults). The FOM in the case of the space filling curve has been applied to the multi-
dimensional data according to the cluster they belong to. SFCC is depicted with dia-
monds, FCM with rectangles and greedyEM with small dots. At the first diagramme,
corresponding to the SRBC experiments, the SFCC is overall winner for a small number
of clusters (2-4). At the middle diagramme (Leukemia) greedyEM is the best method.
At the right most diagramme, which corresponds to Lung Cancer, it is shown that the
SFCC outperforms FCM or greedy in for most cases (from 5 till 20 clusters).

Finally, in Fig. 3 we present the evaluation of SFCC, FCM and greedyEM with
respect to the silhouette validation index (recall that bigger values are better and non
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Fig. 2. Evaluation results based on comparing FOM values for the proposed method (star curve),
FCM (square curve), greedyEM (small dots curves)
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Fig. 3. Evaluation results based on comparing silhouette values for the proposed method (star
curve), FCM (square curve), greedyEM (small dots curves)



positive values denote bad clustering). At the leftmost diagramme (SRBC data), the
winner is SFCC in most cases. Considering the Leukemia data (middle diagramme) the
winner in most cases is the FCM. At the rightmost diagramme (Lung Cancer), SFCC
and FCM have a comparable behaviour beyond three clusters, whereas greedyEM is
generally worse than all the other methods.

Considering both the FOM and the silhouette validation indices, the SFCC is better
or at least equally good as FCM. For the leukemia data, the twoindices do not concur
about the overall clustering quality of each of the clustering algorithms. In any case, we
must recall that even if SFCC is equally or slightly worse than FCM, it is much faster
to compute.

5 Conclusions and Future Directions

We have developed an efficient method to cluster genes from DNA microarray exper-
iments. Our method is based on Z-space filling curve which maps multidimensional
genes into one dimension and it performs clustering into onedimension which is very
efficient in terms of computational complexity. It is important to emphasize that the
proposed method actually does not cluster data directly, but it clusters cells into which
data belong (after some partitioning). Thus it is independent of the number of data but
dependent on the quantisation step. The outcome of the Z-space filling curve is a one
dimensional spatial signal which can be processed as described to detect clusters. The
algorithm is dependent on two thresholds, the maximum distance between two cells so
that they belong to the same cluster and also on the minimum data density of a cell so
as not to be considered as outlier. Of course, by clustering cells, we also cluster the data
that belong to each cell. Wavelets play an important role, because they constitute a pre-
processing step to the actual clustering. With wavelet shrinkage, we can denoising the
spatial signal and achieve better results. Thus this paper also contributes in introducing
signal processing techniques into multidimensional data.As evaluation, we have em-
ployed the FOM and silhouette criteria to compare SPCC with FCM and greedyEM,
where we obtained promising results. In any case there can beno clustering method
that is panacea. The clustering results will always depend on the data distribution of the
samples, on the amount of noise they contain, and on the modelthe user tries to apply
to these data.

For the future, it is important to enhance our evaluation with other measures such as
the Partition Coefficient, Dunn’s index and the Geometric index in order to check the
validity of the derived clusters; the aforementioned indexes have been used in a work re-
lated to evaluating clusters in cDNA experiments [15]. Furthermore, all aforementioned
evaluation measures are based on statistics, and we need to investigate the biological
significance of the discovered clusters. For example, in [16] a clustering experiment is
described, where the genes of each cluster are mapped into the functional categories
of the Martinsried Institute of Protein Sciences. Then for each clusterP−values were
calculated to measure the statistical significance of clusters.

Moreover, the space filling curve is of crucial importance inthe algorithm and a
basic property it must have is to preserve the locality of thedata. There is enough



research on such curves and there is evidence that the hilbert curve can achieve better
clustering. We need to investigate that on more microarray experiments.
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