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Summary

The coarsest balancing score for multiple treatments T is the min-

imal sufficient statistic s for the covariates’ distributions, DT , of

populations {Pt, t ∈ T } receiving each treatment t ∈ T . A unit in

Pr with covariates x is a good match with respect to T for a unit

in Pt with covariates y, when x and y provide similar information

for DT , i.e. when s(x) ≈ s(y). For finite, countably finite and often

continuous treatments, s(x) is shown to be equivalent to ẽ, a vector

of propensities’ ratios. The units in {Pt, t ∈ T } can be divided into

subpopulations where causal comparisons are simultaneously valid.

Satisfactory s-matchings are obtained for simulated covariates in R3.

The use of ẽ’s estimate rather than s’s estimate allows to avoid the

x-curse of dimensionality, but the available data’s size in each case

is critical for the final choice.

Some key words: Causal Inference, Generalized Propensity Scores, Match-

ing, Minimal Sufficient Statistic

Running head: S-matching for multiple treatments
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1 Introduction

In observational studies for causal effects of two treatments, t = 1, 2, Rosen-

baum and Rubin (1983) proposed the propensity score e(x), or its estimate

ê(x), to balance the pre-treatment covariates x(∈ Rp) of the n units in the

treatment groups; e(x) is the conditional probability of receiving, say, treat-

ment 1 given x, and ê(x) is usually obtained using the logit model. It was

showed therein, among others, that e(x) is the coarsest balancing score and, if

the potential units’ responses to treatments, ri(1) and ri(2), i = 1, . . . , n, and

treatment assignment are conditionally independent given x, that the differ-

ence between the sample treatments’ means given e(x) is an unbiased estimate

of the average causal effect E{r(2) − r(1)}; E denotes expectation over the

whole population. According to Rubin and Thomas (1996, p. 250), R. Ba-

hadur recognized e(x) is equivalent to the likelihood ratio of the x-populations

which is minimal sufficient.

For more than two treatment levels t ∈ T , Joffe and Rosenbaum (1999)

studied causal effects using, under special circumstances, a single-variable bal-

ancing score, and under certain models a small number of balancing linear func-

tions of x. For multi-valued categorical treatments and T the treatment vari-

able, Imbens (2000) introduced the generalized propensity score P (T = t|x)

for each level t and used it to estimate average causal effects. For general
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treatment regimes, with t-values either discrete (ordered or not), or continu-

ous, semi-continuous or multivariate, Imai and Van Dyk (2004) introduced the

propensity function and, assuming for all x-values it is defined from a unique

finite dimensional parameter, established causal effects.

The generalized propensity scores and the propensity function are balanc-

ing scores only under specific models and assumptions. The main contribution

in this work is to provide in general setting the coarsest balancing score s and

use it in causal inference; s is the minimal sufficient statistic of the covariates’

distributions and is shown to be equivalent to ẽ, consisting of propensities’

ratios. Logit modeling can be used for both s and ẽ confirming the results in

Joffe and Rosenbaum (1999). A unit with covariate y is a good match for a unit

with covariate x with respect to T , when they provide similar information for

all the covariates’ distributions, i.e. when s(x) ≈ s(y). These subpopulations

can be used in causal comparisons, for example, to determine the “right” dose

for a new drug, by examining simultaneously the expected response differences

E{r(t2)− r(t1)}, E{r(t3)− r(t2)}, . . . , E{(r(tk)− r(tk−1)} for different doses’

levels t1 < t2 < . . . < tk. Assuming monotonicity of Er(tj), j = 1, . . . , k, the

“right” dose could be the smaller in the expected response difference that is

closer to zero.

Strong ignorability of treatment assignment given s(x) is established, and
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the expected treatments’ differences given s(x) are shown to be unbiased for

the average causal effects of any treatments’ differences. These results hold

also using ẽ(x) instead of s(x). Some directions are given for s-mathing’s im-

plementation in practice, followed by s-matchings of simulated covariates from

normal mixtures in R and normal densities in R3. When s and ẽ are unknown,

ẽ’s estimate may be preferred to avoid the x-curse of dimensionality via propen-

sity scores’ methodology, but the available data’s size in each case is critical

for the final choice The proofs are in the Appendix and the Figures after the

references.

2 Causal inference framework and assumptions

For random vectors U, V, use p(u|v) to denote the conditional probability

or conditional density pU |V (u|v). Let T denote the treatments and let T be

the treatment variable with values in T . Treatment t(∈ T ) is used in selected

elements of population Pt having balanced covariates x ∈ Rp with respect to

T . The units in Pt have covariates x ∈ C(Pt) ⊂ Rp. Let p(x|t) denote the

x-covariates’ density/probability of units in Pt and let DT = {p(x|t), t ∈ T }.

Unless otherwise stated it is assumed that C(Pt) = C, t ∈ T . For unit i, ri(t)

is the response for treatment t and the potential outcomes R = {ri(t), t ∈

T , for i = 1, . . . , n}.
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The Stable Unit Treatment Value Assumption (SUTVA) is presented as in

Imai and Van Dyk (2004):

Assumption 1 (SUTVA, Rubin, 1980, 1990) The distribution of potential

outcomes for one unit is assumed to be independent of potential treatment

status of another unit given the observed covariates.

Assumption 2 (Strong ignorability of treatment assignment, Rosenbaum

and Rubin, 1983)

(i) R and T are conditionally independent given x : R ⊥ T |x, and

(ii) for every t ∈ T , 0 < p(t|x) (or equivalently 0 < p(x|t)).

Recall that b(x) is a balancing score if the conditional distribution of x

given b(x) is the same for all treatment values, i.e.

p(x|t, b(x)) = p(x|b(x)), for all t ∈ T . (1)

From (1), thinking of t as parameter value for the distribution of x it follows

that b(x) is sufficient statistic for the family DT = {p(x|t); t ∈ T }.

3 Large-sample theory

As in Rosenbaum and Rubin (1983), the results in this section treat the

minimal sufficient statistic s(x) as known and are applicable for large samples.
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Proposition 3.1 Assume that there are k treatments, ordered or not, with

the treatment variable taking values in T = Tk = {t1, . . . , tk}. When the dis-

tributions of the covariates DTk = {p(x|t), t ∈ Tk} have common support C,

s(x) = s(1)(x)1 =

(
p(x|t2)
p(x|t1)

,
p(x|t3)
p(x|t1)

, . . . ,
p(x|tk)
p(x|t1)

)
(2)

is a minimal sufficient statistic. Thus, s(x) is the coarsest balancing score

and treatment assignment and the observed covariates are conditionally inde-

pendent given s(x) : x ⊥ T |s(x). The same result holds for countably finite

treatments and in some situations for treatments with continuous values.

The s-Matching Rule: Match u to v when s(u) = s(v).

The next proposition shows that s-matching is not changed when

s(j)(x) =

(
p(x|t1)
p(x|tj)

, . . . ,
p(x|tj−1)

p(x|tj)
,
p(x|tj+1)

p(x|tj)
, . . . ,

p(x|tk)
p(x|tj)

)
, j ̸= 1, (3)

is used instead of s = s(1) in (2).

Proposition 3.2 If s(u) = s(v), then s(j)(u) = s(j)(v), j > 1.

Without loss of generality s(x) = s(1)(x) is used in this section.

Proposition 3.3 Consider (k − 1) ratios of generalized propensity scores

ẽj(x) =
P (T = tj|x)
P (T = tk|x)

, j = 1, . . . , k − 1. (4)

1In s(1)(x), (1) indicates the denominator is p(x|t1).
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The ratios of propensity scores statistic

ẽ(x) = (ẽ1(x), . . . , ẽk−1(x)), (5)

is equivalent to s, i.e. ẽ is the coarsest balancing score.

From Proposition 3.3, one can use either s or ẽ but the results herein are

obtained using s. When k = 2, ẽ(x) is equivalent to the propensity score e(x).

Corollary 3.1 Let qi(x) =
p(x|ti)

p(x|ti)+p(x|t1) , i = 2, . . . , k. Then,

s(x) =

(
q2(x)

1− q2(x)
, . . . ,

qk(x)

1− qk(x)

)
. (6)

An expression similar to (6) can be obtained for ẽ.

Remark 3.1 Propositions 3.1 and 3.3 indicate that, with several treatments,

the coarsest balancing score is expected to have dimension larger than one.

Remark 3.2 When the covariates’ distributions DTk = {p(x|t), t ∈ Tk} do

not have common support, the minimal sufficient statistic s(x) has dimension

that depends on x (Lehmann and Casella, 1998, p. 70, Theorem 9.1).

We revisit an example in Rosenbaum and Rubin (1983, p. 47) when the

number of treatments k is larger than 2.

Example 3.1 Let p(x|t) be a polynomial exponential family distribution,

p(x|t) = h(x) exp{Pt(x)}, t = 1, . . . , k,
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with Pt(x) a degree m polynomial. Then, the statistic

(
ln

p(x|t2)
p(x|t1)

, . . . , ln
p(x|tk)
p(x|t1)

)
= (P2(x)− P1(x), . . . , Pk(x)− P1(x))

= (Q1(x), . . . , Qk−1(x))

is equivalent to the minimal sufficient statistic (2) with Qi(x) a degree m poly-

nomial, i = 1, . . . , k − 1.

Proposition 3.4 Strong ignorability of treatment assignment given the min-

imal sufficient statistic s(x): Under Assumption 2, for the responses R and

the treatment variable T = t it holds

p{t,R|s(x) = s} = p{t|s(x) = s} · p{R|s(x) = s}. (7)

Using s(x) (or equivalently ẽ(x)) to balance subpopulations for all treat-

ments, causal comparisons can be drawn for any 2 or more treatments. If

treatment assignment is strongly ignorable, adjustment for s(x) or ẽ(x) is suf-

ficient to obtain unbiased estimates of the average treatment effect(s).

Proposition 3.5 Suppose that treatment assignment is strongly ignorable (As-

sumption 2) and that a value s0 of s(x) is randomly sampled from the popu-

lation of units with covariates x ∈ C. Units receiving treatments ti and tj are

sampled with s-value for their covariates equal s0, i ̸= j. Then, the expected

difference in response for the units chosen is the expected treatment effect at
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s(x) = s0. The mean of such pair differences over all s(x)-values is unbiased

for the average treatment effect E{r(ti) − r(tj)} and the same holds, concur-

rently given s(x), for any number of average treatment effects.

4 Small sample theory

When p(x|t) is not known, Pt’s available subpopulation P̃t is used to obtain

its estimate p̂t(x), which is either parametric or non-parametric and will play

p(x|t)’s role, t ∈ T = Tk. Then, s(x) in (2) is replaced by ŝ(x) obtained using

p̂t(x), t ∈ Tk. For (6), let p̂i(x) = p̂ti(x),

q̂i(x) =
p̂i(x)

p̂i(x) + p̂1(x)
, i = 2, . . . , k.

Instead of ŝ in (6) we can consider the equivalent statistic

ŝ∗ =

(
log

q̂2(x)

1− q̂2(x)
, . . . , log

q̂k(x)

1− q̂k(x)

)
; (8)

using logit modeling ŝ∗ consists of (k − 1) linear functions of x.

Proposition 4.1 From the available subpopulation P̃t, obtain p̂t(x) and let

p(x|t) = p̂t(x), x ∈ C, t ∈ Tk. Then,

p(x|T = t, ŝ∗) = p(x|ŝ∗),

i.e. ŝ∗ in (8) is balancing score.
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Let MP t denote the units to be matched from P̃t-subpopulation. Use

s = s(1) in (2) (or its estimates ŝ or ŝ∗) to match a unit in MP t having

covariates u with a unit from P̃r having covariates vm,r ∈ C(P̃r), such that

vm,r = arg min
v∈C(P̃r)

||s(u)− s(v)||2, r ∈ T − {t}; (9)

|| · || is the usual Euclidean distance in Rp.

Additional matching sets for MP t can be obtained using s = s(j) (or its

estimates) in (9), j = 2, . . . , k, and the decision maker can select the “best”

matching set, for example, that with the nearest means to theMP t covariates’

means with respect to || · || or the sup-norm distance || · ||∞.

In simulations, matching sets obtained using

ṽm,r = arg min
v∈C(P̃r),1≤j≤k

||s(j)(u)− s(j)(v)||2, r ∈ T − {t},

instead of vm,r in (9) were not satisfactory. For optimal matching methods,

the interested reader is referred to the propensity score related literature, for

example, in Rosenbaum (1989).

Remark 4.1 To avoid the x-curse of dimensionality, the results in this section

can be presented using the similarly obtained ẽ’s estimate ˆ̃e (or ẽ∗) instead of ŝ

(or ŝ∗), using existing methodology for propensity scores’ estimates. However,

available data’s size is critical for the choice between these estimates.
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5 s-matchings with simulated covariates

It should be mentioned in advance that the quality of s-matchings in Examples

5.1 and 5.2 improves as the size N of the available subpopulations increases.

Example 5.1 Each of 3 treatments is to be assigned to n = 20 units with

covariates, respectively, in subpopulations of populations U, V, W. Subpopula-

tions of size N=200 are obtained randomly from the U-population .2N (0, 4) +

.8N (3, 16), the V -population .4N (8, 9) + .6N (10, 25) and the W -population

.6N (11, 16) + .4N (14, 36);N (µ, σ2) denotes the normal population with mean

µ and variance σ2. The first 20 values u1, . . . , u20 from the U-subpopulation

are to be matched with 20 values from the V and the W -subpopulations.

The minimal sufficient statistic s = s(1) from (2) is only used with k =

3; p(x|t1) is the density of the V -population and p(x|t2) and p(x|t3) are the

densities, respectively, of the U-population and the W -population.

Value ui is matched with the value vm,i from the V -subpopulation, obtained

with replacement, such that

vm,i = arg min
1≤j≤200

||s(ui)− s(vj)||2, i = 1, . . . , 20.

Matching for ui from the W -subpopulation is similarly obtained, i = 1, . . . , 20.

Box-plots for subpopulations and the matched u, v and w values are, respec-

tively, in Figures 1 and 2. Densities’ plots for u1, . . . , u20 and for the matched
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v and w values are in Figure 3, obtained with the R-function “density( )”. The

averages of the U, V, W populations are, respectively, 2.4, 9.2 and 12.2, and

the matched samples’ averages are ū = 2.251, v̄m = 3.018 and w̄m = 3.193.

Example 5.2 Repeat Example 5.1 with covariates U, V, W the 3-dimensional

normal distributions with means respectively (3, 6, 8), (4, 2, 7) and (5, 7, 4) and

covariance matrix 12∗I, where I is the matrix identity. Subpopulations of size

N = 2000 are obtained randomly from the U, V, W populations and n = 20

units are randomly chosen with covariates u1, . . . , u20 in the U-subpopulation

to be matched with covariates in the V and the W -subpopulations.

The means of u1, . . . , u20 are ū = (3.39, 7.63, 7.87). Sets of matched covari-

ates from the V and W -subpopulations are obtained using s = s(j), j = 1, 2, 3.

We select the matching set with means at minimum || · ||-distance from ū. The

means of the so-obtained v and w-matches are v̄ = (3.84, 7.31, 8.03) and w̄ =

(3.85, 7.55, 8.01). Box-plots of the marginals of the U, V, W -subpopulations

are in Figure 4 and those of the matched covariates in Figure 5. The corre-

sponding densities are in Figure 6 and a 3-dimensional plot of the matched

covariates from the U, V and W -subpopulations is in Figure 7.
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6 Appendix

Proof of Proposition 3.1: It is direct consequence of Theorem 6.12, in

Lehmann and Casella, 1998, p. 37. The same holds for treatments with

continuous values in some situations; recall, for example, that if p(x|t) follows

a normal distribution with mean t and variance (say) 1, one can determine

the one-dimensional minimal sufficient statistic via the likelihood ratio for any

two values t1 and t2, using related Theorems in Lehmann and Casella (1998).

Proof of Proposition 3.2: Since s(u) = s(v), it holds

p(u|ti)
p(u|t1)

=
p(v|ti)
p(v|t1)

, i = 2, . . . , k. (10)

In (10), divide the i-th equality with the j-th equality, i ̸= j, and invert the

j-th equality to obtain

p(u|ti)
p(u|tj)

=
p(v|ti)
p(v|tj)

, i ̸= j, or s(j)(u) = s(j)(v).

Proof of Proposition 3.3: From Proposition 3.2, it is enough to prove

that s(k) is equivalent to ẽ, i.e. that s(k)(u) = s(k)(v) if and only if ẽ(u) = ẽ(v).
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It hods

s(k)(u) =

(
p(u|t1)
p(u|tk)

, . . . ,
p(u|tk−1)

p(u|tk)

)
=

(
P (T = tk)

P (T = t1)

P (T = t1|u)
P (T = tk|u)

, . . . ,
P (T = tk)

P (T = tk−1)

P (T = tk−1|u)
P (T = tk|u)

)
, or

s(k)(u) =

(
P (T = tk)

P (T = t1)
ẽ1(u), . . . ,

P (T = tk)

P (T = tk−1)
ẽk−1(u)

)
.

It follows that s(k)(u) = s(k)(v) if and only if ẽ(u) = ẽ(v).

Proof of Proposition 3.4: The proof follows the lines in Imai and Van

Dyk (2004),

p{x, t,R|s(x) = s} = p{x, t|s(x) = s} · p{R|x, t, s(x) = s}

= p{t|s(x) = s} · p{x|t, s(x) = s} · p{R|x, t, s(x) = s}

= p{t|s(x) = s} · p{x|s(x) = s} · p{R|x, s(x) = s}.

The third equality is obtained using Proposition 3.1 and strong ignorability of

treatment assignment given x (Assumption 2). It follows that

p{t, x,R|s(x) = s} = p{t|s(x) = s} · p{x,R|s(x) = s}

Integrating both sides of the last equation over the x’s for which s(x) = s, we

obtain that given s(x) = s, R and T are independent.

Proof of Proposition 3.5: From Assumption 2,

E{r(ti)|s(x) = s, T = ti} − E{r(tj)|s(x) = s, T = tj}
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= E{r(ti)|s(x) = s} − E{r(tj)|s(x) = s} = E{r(ti)− r(tj)|s(x) = s}

and it follows that

Es [E{r(ti)− r(tj)|s(x) = s}] = E{r(ti)− r(tj)};

Es denotes expectation with respect to all values s of s(x), x ∈ C.

Proof of Proposition 4.1: Follows from sufficiency of ŝ∗ for the family

of probabilities/densities {p̂t(x), t ∈ Tk}.
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MATCHED u, v, v

FIGURE 7
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