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Summary

Pitman’s closeness criterion (PCC) became a controversial topic since some

statisticians expressed their wish to exclude it from the evaluation criteria of

estimates. Herein, PCC is studied for an estimate t and its shrinkage ct,

when the unknown parameter of interest θ is positive; 0 < c < 1. PCC is

transitive for shrinkage estimates with decreasing shrinkage coefficients and

only t’s distribution is needed to compute its value. When θ is the variance σ2

or the standard deviation σ, exact calculations and simulations confirm that

ct, which improves t’s mean square error, may not improve often t’s distance

from θ and PCC takes large values. Consequently, some statisticians, their

clients and some statistics’ users will not use shrinkage estimates of σ2 and

of σ. For this group, PCC is a useful information tool to be used along with

other evaluation criteria, as suggested by Rao (1993).

Some key words: Error reduction, Pitman’s closeness criterion, Shrinkage

estimates
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1 Introduction

A common statistical problem is the estimation of an unknown, real-valued

parameter θ (∈ Θ) of a density f, using n independent, identically f -distributed

observations. Assume that potential estimates of θ are t1 and t2, and that cal-

culations show that for all θ ∈ Θ

P [|t1 − θ| < |t2 − θ|] (1)

equals .7. Then, at least some statisticians, their clients and statistics’ users,

including the author, would choose t1 over t2. This decision will remain un-

changed for most of them if, in addition, for the mean square error (MSE) of

t1 and of t2 it holds

E(t2 − θ)2 < E(t1 − θ)2 (2)

and the difference E(t1 − θ)2 −E(t2 − θ)2 is small. However, the decision will

be different if the value of (1) is not known: t2 will be preferred over t1 because

of (2)1. Do you believe (1) provides helpful information in this problem?

Probability (1) is Pitman’s closeness criterion (PCC, Pitman, 1937) and is

vital for the choice of the estimate t1 in the problem described above. When

this probability is larger than .5, t1 is “Pitman closer” (to θ) than t2. Rao

1High value in (1) and (2) hold for various models when estimating the variance and the

standard deviation, t2 = ct1, 0 < c < 1; see Table 1 and Figure 1.
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(1980, 1981) stimulated interest for the use of (1) as an information tool.

Robert et al. (1993) pointed some PCC’s drawbacks: (1) is difficult to

compute because it depends on the joint distribution of t1 and t2; with three

estimates t1, t2 and t3 of θ, PCC may not be transitive, namely, it may occur

that t1 is Pitman closer than t2 and t2 is Pitman closer than t3 but t1 is not

Pitman closer than t3; PCC may “take into account a subset of the sample

space that occurs only with probability slightly greater than 50%.” In the

examples presented, PCC’s values were less than .62 (p. 76).

Other views, in PCC’s favor or against it, were presented in the paper’s

discussion by Blyth, Casella and Wells, Ghosh, Keating and Sen, Peddada,

and Rao. In the rejoinder, the authors agreed with Casella and Wells (1993),

hoping that “the use of Pitman closeness as an evaluation criterion will finally

cease”. If their wish was binding, we would not have the information given by

(1) !

In his comments to the paper by Robert et al. (1993), Professor Rao (1993)

altered the probabilities in Example 2.1 and obtained the value 1−10−23 for (1)

(the PCC). He asked whether t2 should be used, having smaller risk than t1 for

the Lp loss, p > 1. Professor Rao answered his question: “The authors would

perhaps recommend t2, but a shrewd businessman may prefer t1.” Professor

Rao also wrote:“I believe that the performance of an estimator should be
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examined under different criteria to understand the nature of the estimator

and possibly to provide information to the decision maker. I would include

PCC in my list of criteria, except perhaps in the rare case where the customer

has a definite loss function.”2

In this work, PCC is studied for shrinkage estimates of a positive parameter

θ. When θ is the variance or the standard deviation, PCC takes values between

.55 and .9 for various distributions, thus providing useful information for some

decision makers, at least when PCC is high. The interested reader may consult

Nayak (1994) and references therein for different PCC studies related with σ2.

2 PCC for shrinkage estimates of θ > 0

We use PCC to obtain information for shrinkage estimates of θ. For this

problem, a competing estimate of t1 has the form t2 = ct1, c > 0. Hence,

the first consequence is that (1) is calculated from the distribution of t1 only.

Observe also that for c > d > 0, θ > 0 and t1 > 0,

P (|ct1 − θ| < |dt1 − θ|) = P (t1 <
2θ

c+ d
). (3)

Then, for 1 > c > d > 0, if t1 is Pitman closer than ct1 and ct1 is Pitman

closer than dt1, it follows from (3) that t1 is Pitman closer than dt1. Thus,

2No comments on these issues raised by Professor Rao appear in the rejoinder.
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for this estimation problem, PCC is transitive for shrinkage estimates with

decreasing shrinkage coefficients.

3 Shrinkage estimates of σ2 and σ

For a sample X1, . . . , Xn from the normal model with mean µ and variance

σ2 both unknown, the shrinkage estimate 1
n+1

∑n
i=1(Xi − X̄)2 improves the

MSE of the unbiased estimate of σ2 for every n and all parameter values (see

Lehmann 1983, p. 113). Under different models and assumptions, inadmissi-

bility results in variance and standard deviation estimation were proved using

shrinkage estimates, among others, by Stein (1964), Brown (1968) and Arnold

(1970). Estimates that improve the MSE of the unbiased estimate of the vari-

ance and the covariance for every probability model and every n were recently

presented (Yatracos, 2005).

Despite these and other similar results, for many non-academic statisticians

it is not evident one should use shrinkage estimate ct, when it improves t’s

MSE. The reason is that the MSE can be drastically affected by extreme t-

values having low probability, whereas in practice, an estimates’ value is used

and some decision makers, like Professor Rao’s“shrewd businessman”, want to

know the chance t is closer to its target than its competitor ct. This information

is obtained by computing (1).
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4 The Examples

When θ = σ2, σ, (1) is obtained for shrinkage estimates under various

models and for n ≤ 50 takes values between .55 and .9.

Example 4.1. Let X1, ..., Xn be i.i.d. normal random variables with

unknown mean µ and variance σ2. The parameter of interest θ = σ2, and

estimates of the form b
∑n

k=1(Xk − X̄n)
2 are considered: the MLE t̂n with

b = 1
n
, the unbiased (jacknife) estimate tn,J with b = 1

n−1
, and the minimum

risk equivariant estimate t̃n minimizing the MSE uniformly in n and σ with

b = 1
n+1

. t̃n is a shrinkage estimate of t̂n and of tn,J , t̃n = n
n+1

t̂n = n−1
n+1

tn,J , and

from (3) it holds

P
[

(t̃n − σ2)2 > (t̂n − σ2)2
]

= P

[

χ2
n−1 <

2n(n + 1)

2n + 1

]

, (4)

P
[

(t̃n − σ2)2 > (tn,J − σ2)2
]

= P

[

χ2
n−1 <

(n2 − 1)

n

]

, (5)

since
∑n

i=1(Xi − X̄)2/σ2 follows a chi-square distribution with (n− 1) degrees

of freedom, denoted χ2
n−1. Tables 1 and 2 provide probabilities (4) and (5) for

some n-values, 2 ≤ n ≤ 50. The MLE t̂n has more often smaller actual error

than t̃n.

The same phenomenon is observed for T -distributions, for which t̃n im-

proves the MSE of t̂n and tn,J when estimating σ2 (Yatracos, 2005, Remark 7,

p. 1174). Using 1000 simulations from Tm-distributions with degrees of free-
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dom m = 3, 10, 20, 30, probability (4) is estimated for n ≤ 30 and the results

are in Figure 1 (after the references). The probabilities decrease slower than

those in Table 1. The largest probability is .908, obtained for a T -distribution

with 3 degrees of freedom and n = 2.

COMPARING t̃n WITH t̂n

PROBABILITIES (4) FOR 2 ≤ n ≤ 50

n 2 5 8 15 36 50

0.8787 0.7562 0.7071 0.6541 0.6008 0.5858

Table 1

COMPARING t̃n WITH tn,J

PROBABILITIES (5) FOR 2 ≤ n ≤ 50

n 2 4 8 21 37 50

0.7793 0.7102 0.6563 0.6001 0.5762 0.5658

Table 2

Example 4.2. Let X1, ..., Xn be i.i.d. random variables with density

f(x;µ, σ) = σ−1e−(x−µ)/σ, x > µ,with−∞ < µ < +∞, σ > 0 andX(1), . . . , X(n)

the order statistics. The parameter of interest θ = σ and estimates of the form

b
∑n

k=2(X(k)−X(1)) are considered: the MLE t̂n with b = 1
n−1

that is also min-

imum variance unbiased and the estimate t̃n with b = 1
n
that improves t̂n

8



uniformly. t̃n is a shrinkage estimate of t̂n, t̃n = n−1
n
t̂n, and from (3) it holds

P
[

(t̃n − σ)2 > (t̂n − σ)2
]

= P

[

Γn−1 <
2n(n− 1)

2n− 1

]

, (6)

since
∑n

k=2(X(k) −X(1))/σ follows a Gamma distribution with n − 1 degrees

of freedom, denoted Γn−1. Table 3 provides probability (6) for some n-values,

2 ≤ n ≤ 50.

COMPARING t̃n WITH t̂n

PROBABILITIES (6) FOR 2 ≤ n ≤ 50

n 2 3 11 30 44 50

0.7364 0.6916 0.6001 0.5607 0.5501 0.5470

Table 3

Remark 4.1 From the findings for the models in this section, it seems that

at least for n ≤ 10, some statisticians, their clients and some statistics’ users

will not use shrinkage estimates of the variance or of the standard deviation.

5 Concluding Remarks

A controversy started when some statistical decision theorists took the ex-

treme position that PCC should not be used as an estimates’ evaluation cri-

terion. Examples have been presented herein showing that, for small and

moderate sample size, PCC provides useful information for deciding whether
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to use or not shrinkage estimates of σ2 and of σ. The message is twofold: PCC

should be used along with all available evaluation criteria and shrinkage esti-

mates of σ2 and of σ should not be used unless proved successful for additional

evaluation criteria. Some decision theorists will not be pleased on both counts.
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