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Summary

Matching methodology from causal inference is used to obtain a

new, improved classifier for the Covariate Shift Machine Learning

Problem. Let x be the covariate to be y-labeled and let S(x) be

the likelihood ratio of the x-covariates’ densities in the training and

the test populations, that is equivalent to the propensity score. For

loss l a classifier δs is obtained which minimizes, among all classi-

fiers d ∈ D, l’s risk in the training population for covariates with

equal S-importance, E[l(d(x), y)|S(x) = s]. Classifier δ = {δs} re-

duces the minimum of the unconditional l-risks for both populations.

If S(x1) = s̃, δs̃ labels x1 and is used for x2 when they S-match,

i.e. S(x1) ≈ S(x2). When samples are available, S is used to group

learning covariates relevant to the test data and obtain a classifier.

The same holds with more than one learning populations or samples

and the minimal sufficient statistic, or equivalently ratios of gener-

alised propensity scores, allow for the fusion of learning data having

covariates with equal importance.

Some key words: Covariate Shift Problem, Machine Learning, Matching,

Minimal Sufficient Statistic
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1 Introduction

In Machine Learning (ML), the x-covariate and its y-label may have different

joint probability distributions in the learning (called also training) and the

test populations. This situation occurs often in practice and is studied, among

others, in the covariate shift problem (Bickel et al., 2007), sample selection bias

(Zadrozny, 2004), domain adaptation (Daumé and Marcu, 2006) and distance

ML (Cao et al., 2009). For any loss l, the classifier minimizing, over a collection

of classifiers of interest d ∈ D the (statistical) risk El(d(x), y) in the training

population may not be the risk’s minimizer over D in the test population;

see, for example, Bickel et al. (2007, section 2). An additional problem not

addressed is whether the whole learning population or its available subset

(called learning “data” or sample) are relevant when obtaining a classifier for

the test population or the test data.

Both problems are solved herein using tools from causal inference, the min-

imal sufficient statistic S or equivalently ratios of generalized propensity scores

(Yatracos, 2011), to identify relevant “matching” groups of x-covariates; x1

and x2 belong to the same matching group when S(x1) ≈ S(x2). Due to suffi-

ciency, the conditional risks on each S-matching group coincide for the learning

and the test distributions of (x, y) and are minimized by the same classifier

that is used to predict the y-label in the test population. When D consists, for
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example, of linear classifiers in x, the classifier obtained herein via matching

will consist of piecewise linear classifiers, one for each matching group. This

approach solves directly the problem of obtaining the same piecewise classifier

both for the training and the test populations and reduces the mean square

error.

The above description is now supplemented with the comments of a reader

trained in ML: “the basic idea of the paper seems sensible: learn localized

models for different regions of the input space, as defined by similarity to the

test distribution. Then, pick the appropriate model for a given test example,

and use this to make a prediction.”

Previously, S(x) was used as weight to adjust the log-likelihood function

for covariate shift and improve predictive inference (Shimodaira, 2000, p. 231);

x-covariates with the same S-value have equal “importance” (see, for example,

Shimodaira, 2000 or Zadrozny, 2004). More recently, S has been used to adjust

loss function l to randomized l∗ = Sl and obtain the same optimal classifier

in the l∗-risk and l-risk minimization problems (Bickel et al, 2007).

In applications with learning and test data, conditional risk minimization

via S allows for the use of learning data relevant to the test data and reduces

potential sampling bias as well as the intensity of the optimization problem

when the sizes of the training data and the covariates’ dimension are large.

4



With k (> 1) learning (x, y)-populations and the test population, the use

of Shimodaira’s S factor is not possible unless the mixture distribution of the

learning populations is available. In this case, for several related “tasks”, i.e.

parameters in the densities of the learning populations, Bickel et al. (2009)

provided for task t the Shimodaira-type weight rt(x, y) and its estimate, in

order to “train a hypothesis for task t by minimizing the expected loss over

the distributions of all tasks”, i.e. for the learning mixture distribution. It is

seen herein that rt is the minimal sufficient statistic for the test distribution

of task t and the learning mixture distribution.

When the learning mixture distribution is unknown but the covariate shift

distributional assumption holds for the (k+1) populations, the k-dimensional

minimal sufficient statistic S is used to obtain matching groups of x-covariates

and the corresponding classifiers. With learning samples, conditional risk min-

imization on S-matched groups pooled together from all learning populations

is used to obtain the corresponding classifiers as in the case k = 1. This match-

ing approach has been recently used with multiple treatments (“tasks” in ML),

when the data is obtained from an observational study (Yatracos, 2011).

For the interested reader, a recent review on matching, propensity scores

and causal inference is presented in Stuart (2010). In sections 2-4, results are

presented for k = 1; a brief description of the results for k > 1 is in section 5.
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The Figures are after the references and the proofs are in the Appendix.

2 The set-up, the assumption and the tool S

In machine learning, the training sample TR consists of the x-covariates

(∈ Rp) with the corresponding y-labels (∈ R), TR = {(x1, y1), . . . , (xm, ym)},

and the test sample TE consists only of covariates, TE = {xm+1, . . . ,xm+n}.

The goal is to predict the y-label for each x ∈ TE,“ learning” from the training

sample. Without loss of generality, let f(x, y|θ1) and f(x, y|θ2) be the densities

of (x, y), respectively, in the training and the test populations; θ1, θ2 are generic

parameters that need not be specified, i.e. one can use f1(x, y) and f2(x, y)

instead.

The main distributional assumption in covariate shift is that

f(x, y|θi) = p(x|θi)q(y|x), i = 1, 2; (1)

p(x|θ1) and p(x|θ2) are the densities of the x-covariates, respectively, of the

training and the test samples, and q is the conditional density of y given x

that is independent of θi, i = 1, 2.

When p(x|θ1) and p(x|θ2) have either common support or the support of

the test distribution is a subset of the support of the training distribution, the
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minimal sufficient statistic

S(x) =
f(x, y|θ2)
f(x, y|θ1)

=
p(x|θ2)
p(x|θ1)

, (2)

provides all the information for the densities of the covariates x and of (x, y).

Hence, S can be used to group (i.e. match) covariates from both populations

with the same or similar information (or importance) and the so-obtained

risk minimizer in this group is identical for the test and training populations

(Proposition 3.1).

Assume that any class of classifiers, D, includes also randomized classifiers

with form d = {ds, s ∈ S}. For example, D could consist of local linear

classifiers depending on the S-values or not. One classifier δs is obtained herein

that minimizes the conditional risk E[l(d(x), y)|S = s] over all classifiers d ∈ D

for both populations, due to sufficiency. The randomized classifier δ = {δs ∈

D, s ∈ S}, obtained via S and its values S, minimizes the unconditional l-

risks in the treatment and test populations and the minimum risk is smaller

than that obtained using the same classifier from D for all x. If x1 is in the

treatment population and x2 in the test population and S(x1) = S(x2) = s̃,

then δs̃ labels both x1 and x2. When S(x2) is not equal to any of the S-values

on the training population, approximate matching can be used to obtain x2’s

class label from the training population, at least when the classifier is smooth

function of S.
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When the x-covariates’ densities have no common support, see Lehmann

and Casella (1998, p. 70, Theorem 9.1) for the minimal sufficient statistic.

Definition 2.1 With the set-up already presented and m learning and test

populations with densities indexed by parameters θ1, . . . , θm which are realiza-

tions of a random variable Θ, the generalized propensity score (Imbens, 2000)

is the probability

P (Θ = θi|x), i = 1, . . . ,m. (3)

Observe that when m = 2,

S(x) =
p(x|θ2)
p(x|θ1)

=
P (Θ = θ1)

P (Θ = θ2)

P (Θ = θ2|x)
P (Θ = θ1|x)

∝ P (Θ = θ2|x)
P (Θ = θ1|x)

(4)

which implies due to the equality

P (Θ = θ1|x) + P (Θ = θ2|x) = 1

that the minimal sufficient statistic (2) is equivalent to the propensity score

P (Θ = θ1|x) and the latter can be modeled in order to avoid the curse of

dimensionality, as it is done in causal inference; see, for example, Rosenbaum

and Rubin, 1983, and Stuart, 2010.
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3 Large sample theory

The densities and the minimal sufficient statistic S(x) are considered known

and the results are applicable for large samples. Let S denote the set of values

s of S(x) for all x-covariates. Following the literature in machine learning,

x and y are used to denote either random variables or their realizations. No

assumptions are made on the uniqueness of risk minimizers.

From sufficiency, p(x|θi, S(x)) = p(x|S(x)) is independent of θi, i = 1, 2.

Eθi is used below to denote expected value with respect to a density having θi

as parameter but there is no dependence on θi when conditioning on S, i = 1, 2.

The propositions that follow help solving the Covariate Shift Machine

Learning problem.

Proposition 3.1 Let l(d(x), y) be the loss between the classifier d evaluated

at x and y, x’s class label. For any s ∈ S, a classifier δs minimizes both risks

Eθi [l(d(x), y)|S(x) = s], i = 1, 2,

over all classifiers in D and the classifier δ = {δs, s ∈ S} minimizes

Eθil(d(x), y), i = 1, 2.

For a given x-covariate for which S(x) = s̃, its predicted class label is δs̃(x).
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Proposition 3.1 shows that with conditional l-risk minimization given S(x) =

s, the obtained classifier δ = {δs, s ∈ S} minimizes the unconditional global

l-risk in the learning and test populations.

We now relate risk minimization of the “loss” l∗ = Sl with that of l.

Proposition 3.2 The risks Eθil(d(x), y), i = 1, 2, and the scale adjusted Shi-

modaira’s risk Eθ1S(x)l(d(x), y) are all minimized over D by the same classi-

fier δ = {δs, s ∈ S}; δs minimizes conditional risks Eθi [l(d(x), y)|S], i = 1, 2.

4 Some small sample theory-An Example

When p(x|θ), θ ∈ Θ̃, belong to the same family parametrized by θ, known

theorems in statistics (for example, in Lehmann and Casella, 1998, or Dawid,

2011) allow to obtain the minimal sufficient statistic S. For independent x-

samples from nonparametric models, one for each θ ∈ Θ̃, the class of empirical

distributions is minimal sufficient statistic S. In both situations S is used for

S-conditional minimization of the training sample and for matching various

x-covariates and predicting their labels. When a covariate in the test sample

cannot be matched exactly with those in the training sample, approximate

S-matching methods can be used, for example, nearest neighbor matching,

sub-classification, full matching and weighting described in Stuart (2010) .
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In the example that follows, the densities of the learning sample and the

test sample are assumed to be known for the S-matching.

Example 4.1 The learning x-covariates are 100 i.i.d. observations x1, x2, . . . , x100

from the normal distribution, p1(x) = N(3, 4), with mean 3 and variance

4. Obtain 100 random i.i.d. errors ε1, ε2, . . . , ε100 from a standard normal,

N(0, 1), distribution. The learning y-labels are

yi = 1.2 + 3xi + 0.8x2
i + εi, i = 1, 2, . . . , 100,

and will be approximated conditionally and unconditionally with linear classi-

fiers.

The test x∗-covariates are 20 i.i.d. observations x∗
1, x

∗
2, . . . , x

∗
20 from the

normal, p2(x) = N(6, .25), distribution.

Compute the S-values for the learning and the test covariates; S(x) =

p2(x)/p1(x). The relevant matched learning data have x-covariates with S-

values in the interval of the x∗-covariates’ S-values.

In Figure 1, observe the (x, y)-learning data (the dots) and the correspond-

ing linear classifier, i.e. the simple linear least squares regression (OLS) of y

on x. Undoubtedly, the OLS-classifier (in bold), based on the relevant matched

learning data, provides more accurate y-labels for the test data; the ticks on

the x-axis indicate the x∗-covariates. In Figure 2, the S-values for the learning

and test covariates can be seen.
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5 The k-covariate shift problem

We consider first our proposed setting and then the setting in Bickel et al.

(2009). Measurements (x, y) are available from k learning populations with

joint probability densities, respectively, f(x, y|θ1), . . . , f(x, y|θk). From the test

population x-covariates are only observed, having with y joint probability

density f(x, y|θk+1). The goal is to find a y-predictor δ(x) minimizing over D

the risks associated with the populations, and for each of the x covariates in

the test population predict its label y.

Assume that the x-covariates in the test population are included in the

supports of x-covariates in the k training populations, and that (1) holds for

each of the densities of (x, y). The minimal sufficient statistic is

S(x) =

(
p(x|θ2)
p(x|θ1)

, . . . ,
p(x|θk+1)

p(x|θ1)

)
∝

(
P (Θ = θ2|x)
P (Θ = θ1|x)

, . . . ,
P (Θ = θk+1|x)
P (Θ = θ1|x)

)
,

(5)

with the proportionality obtained as in (4). In Yatracos (2011), it is shown

that the matching is not changed when using in (5) as divisor p(x|θj) instead

of p(x|θ1), j ̸= 1, and directions are given for its implementation. From

sufficiency,

p(x|θi, S(x)) = p(x|S(x)), i = 1, . . . , k + 1.

A loss function l is available and it is desired to obtain δ(x) that minimizes
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over d ∈ D the risk Eθil(d(x), y) for all i = 1, ..., k + 1. The conditional risks

Eθi [l(d(x), y)|S(x) = s] coincide, are independent of θi, i = 1, . . . , k+1, are all

minimized by δs and the risk minimizer δ = {δs, s ∈ S}; S are the S-values.

S in (5) is k-dimensional but in reality its dimension may be reduced.

Think, for example, that when estimating the mean θ of a normal distribution

with possible values θ1, . . . , θk and known variance, the minimal sufficient is

one-dimensional. The proof, using Θ̃0 = {θ1, θ2} and Θ̃ = {θ1, . . . , θk}, is

based on a known result (see, e.g., Lehmann and Casella, 1998) according to

which if S is minimal sufficient for Θ̃0(⊂ Θ̃) and sufficient for Θ̃ then it is also

minimal sufficient for Θ̃.

With small samples, S is obtained via (5) and x-covariates from the k

learning populations are pooled in groups determined by their S-values com-

bining the available information in order to solve the corresponding relevant,

conditional minimization problems.

The setting in Bickel et al.(2009), inspired by the targeted advertising prob-

lem, is now described using the terminology in this section. “Transfer learning

in which classifiers for multiple tasks have to be learned for biased sample” is

the problem. Let u = 1 denote “learning” and u = −1 denote “test” and let

the learning populations have densities f(x, y|θ1, u = 1), . . . , f(x, y|θk, u = 1)

with θ1, . . . , θk denoting different tasks; densities of the test populations are
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similarly denoted but with u = −1. The conditional densities of y given x and

θi are assumed to be independent of u and it holds

f(x, y|θi, u =+
− 1) = p(x|θi, u =+

− 1) · q(y|x, θi), i = 1, . . . , k. (6)

By pooling the learning tasks populations the learning mixture distribution

is

f(x, y|u = 1) =
k∑

j=1

P (Θ = θj|u = 1)f(x, y|θj, u = 1). (7)

To determine the test classifier for task θi, the densities involved are

f(x, y|θi, u = −1), f(x, y|u = 1) and the minimal sufficient statistic

Si =
f(x, y|θi, u = −1)

f(x, y|u = 1)
=

f(x, y|θi, u = 1)

f(x, y|u = 1)

p(x|θi, u = −1)

p(x|θi, u = 1)
= ri,1(x, y) · ri,2(x);

(8)

the second equality in (8) is due to (6), the ratios denoted in Bickel et al.(2009),

respectively, ri,1(x, y) and ri,2(x) are resampling weights and it is shown that

ri,1(x, y) ∝ P (Θ = θi|x, y, u = 1), ri,2(x) ∝
1

P (u = 1|x, θi)
− 1,

i.e. ri,1(x, y) and ri,2(x) can be modeled as the propensity score, i = 1, . . . , k.

With the Bickel et al.(2009) setting and the approach in this work, the

test classifier for task θi is obtained with conditional minimization given Si as

described in section 3, for one learning and one test population, i = 1, . . . , k.
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Appendix

Proof of Proposition 3.1. Minimization of the risks

Eθil(d(x), y) = E{Eθi [l(d(x), y)|S]}, i = 1, 2, (9)

over d ∈ D is equivalent to minimization of the conditional risks

Eθi [l(d(x), y)|S = s], i = 1, 2, (10)

for all values of s ∈ S. Since S is sufficient for the (x, y)-distributions, (10) is

independent of θi and identical for i = 1, 2. In the right side of (9), the outer

expectation over the S-values depends on θi but the inner expectation due to

sufficiency is independent of θi, i = 1, 2.

Therefore, there is a classifier δs minimizing both conditional risks in (10)

and the classifier δ = {δs, s ∈ S} minimizes both (unconditional) risks in (9).

2

Proof of Proposition 3.2. Observe that

Eθil(d(x), y) = E[Eθi(l(d(x), y)|S)], i = 1, 2. (11)
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Reproducing Shimodaira’s scale factor adjustment calculations we obtain

Eθ1S(x)l(d(x), y) =

∫ ∫
p(x|θ2)
p(x|θ1)

p(x|θ1)q(y|x)l(d(x), y)dxdy

=

∫ ∫
p(x|θ2)q(y|x)l(d(x), y)dxdy = Eθ2l(d(x), y),

and it holds

Eθ1S(x)l(d(x, y)) = ESEθ1 [l(d(x), y)|S]. (12)

The risks in the left side of equalities (11) and (12) are all minimized

when the identical conditional risks Eθi(l(d(x), y)|S), i = 1, 2, are minimized.

2
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          Figure 1        
   Test data: the ticks on the x−axis
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S−values for the x−learning and the x*−test covariates
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