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Summary Fluid flows around obstacles constitute a classic problem in fluid dynamics. Steady two-dimensional fluid flows over an obstacle 

can be solved using complex variable methods. In particular, the impact of free-surface flows hitting a vertical wall of finite extent is studied 

here, for an inviscid and incompressible fluid; the flow is steady and irrotational. The flows are uniform far upstream and far downstram 

with constant but different velocities and depths. The solution of such problems depends on the depth ratios and on the dimensionless 

upstream and downstream Froude numbers. Various numerical solutions of the problem are presented. Relevant pressure and forces are also 

addressed with regard to the “boulder” problem 

 

INTRODUCTION 
 

   Fluid flow around an obstacle constitutes a classical problem in applied mathematics and fluid dynamics. Such flows 

include flows past semi-circles, semi-ellipses, ramps, triangles, rectangles and other, which may be considered as two-

dimensional approximations of realistic regimes in nature [1],[2],[3]. A limiting example of an obstacle is a vertical wall 

that forces the fluid to move upward.  

   Using the dimensionless Froude number, the solutions to the steady two-dimensional flows of such problems can be 

classified into 11 basic steady flow types, namely 2 types of supercritical, 4 types of critical and 3 types of subcritical 

with or without waves, and 2 types of hydraulic falls [4]. One may be interested in the impact pressure against the vertical 

wall [5]. The wave may or may not be breaking, and this fundamentally changes the types of force exerted on the wall. 

   In the current study we are interested in the impact of a flow hitting a vertical wall of finite extent. This can be a 

simplification of a rectangular boulder lodged against a platform step. This is actually a problem considered in [6], where 

no free surface was considered nor any influence by gravity.  
    

 METHODOLOGY 
 

Problem formulation 

   As shown in Figure 1, the fluid moves over a finite vertical wall of height W. The fluid is inviscid and incompressible 

and the flow is assumed to be steady and irrotational. Far upstream the flow is uniform of constant velocity U1 and depth 

W + H1, H1 being the vertical coordinate of the free surface. Far downstream the flow is also uniform of constant velocity 

U2 and depth H2. The incoming and outcoming mass flux is defined as 

Q = U1(W + H1) = U2H2.         (1) 

 
Figure 1. Sketch of the flow and of the coordinates. Special points are labeled on the boundary. 

   It turns out that the solution of such a problem depends on the ratios W/H2 and H1/H2 and on the dimensionless 

upstream and downstream Froude numbers, respectively, 
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where g is the acceleration due to gravity. The flows considered here are supercritical both upstream and downstream, 

i.e., F1 > 1, F2 > 1 [2]. Note that the two Froude numbers are interlinked through equation (1). The system is governed by 

Bernoulli’s equation that, assuming that the pressure is constant on all free surfaces, yields (upon taking H2 and U2 as the 

unit length and velocity respectively) in dimensionless form (u and v are the x- and y-components of the fluid velocity), 
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   The problem in question can be solved with the use of conformal mappings, using the velocity potential (x, y) (see 

irrotational flow) and streamfunction (x, y) respectively and defining complex variables z = x + iy and f =  + i. The 

(conformal) transformation from the [f]-plane to the [t]-plane (upper half of unit circle - details omitted here) can be 

written in differential form as (where t = eiσ, σ[0, π], denote the points on the free surfaces in the [t]-plane) 

__________________________________________ 
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   The problem reduces to finding hodograph variable ζ(z) = df/dz as an analytic function of t, satisfying Bernoulli’s 

equation (3) and a kinematic boundary condition. An analysis of singularities at points A and B (see Figure 1), leads to 

the relation (for an analytic function Ω(t), λ1, λ2 related to F1, F2 at infinity respectively, K some constant) 
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Numerical method 

   The coefficients an in the power series above can be determined by collocation, upon applying series truncation after 

N – 2 terms and introducing N – 2 mesh points σM = π(Μ – 0.5)/(Ν – 2) on the free surfaces. The values of x and y in 

Bernoulli’s equation (2), are computed through integration of relation: 
dt

df

dt

dz
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   Substituting the expressions of x, y and ζ into equation (3) at mesh points σM yields N – 2 nonlinear algebraic equations 

for the N unknowns a0, … aN–3, K and λ1,. The last two equations are obtained by satisfying upstream and downstream 

conditions (see equation (1)). Note that λ1, λ2 are interlinked through equation (1). 

   This system of N nonlinear equations in N unknowns is solved by Newton’s method for given values of Froude number 

F2 and tA, using MATLAB. Most computations were performed with N = 201, except when higher regional accuracy was 

required, N = 401 was used. 
 

RESULTS AND DISCUSSION 
 

Exponential decay of the solution 

   As a first step, the exponential decay of the solution at x  −∞ was considered, following the procedure described above. 

Using N = 401, for F2
2 = 2, tA = –0.95, the flow free surface profile is shown in Figure 2; note that λ1 = 1.519, F1

2 = 12.654. 

 
Figure 2. Free surface with exponential decay at x  −∞ for N = 401, F2

2 = 2, tA = –0.95. 

  

   For cases where exponential decay is not considered, the system is simpler as the corresponding equation (5) for Ω(t) should 

not contain λ1. Accurate numerical profiles can be obtained using N = 201. 

Pressure and forces 

   The pressure in the fluid can be determined through Bernoulli’s equation, 
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Following [6], one can compute the pressure on a boulder, described here as a two-dimensional predetermined rectangular 

block. It turns out that the pressure is negative (see equation (3)). Subsequently, as the pressure is integrable, one can 

further determine the forces exerted on the boulder. 

   Based on the obtained results, limiting and other relevant flows can also be addressed. Some notable examples open 

channel flows with submerged obstructions as well as well as a flow hitting a wall, with the fluid splitting into two parts.   
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