
Citation: Caro-Alvaro, S.;

Garcia-Lopez, E.; Brun-Guajardo, A.;

Garcia-Cabot, A.; Mavri, A.

Gesture-Based Interactions:

Integrating Accelerometer and

Gyroscope Sensors in the Use of

Mobile Apps. Sensors 2024, 24, 1004.

https://doi.org/10.3390/s24031004

Academic Editors: Maja Pušnik and

Boštjan Šumak

Received: 26 December 2023

Revised: 1 February 2024

Accepted: 2 February 2024

Published: 4 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Gesture-Based Interactions: Integrating Accelerometer and
Gyroscope Sensors in the Use of Mobile Apps
Sergio Caro-Alvaro 1 , Eva Garcia-Lopez 1,* , Alexander Brun-Guajardo 1 , Antonio Garcia-Cabot 1

and Aekaterini Mavri 2

1 Universidad de Alcalá, Departamento de Ciencias de la Computación, 28805 Madrid, Spain;
sergio.caro@uah.es (S.C.-A.); alexander.brun@edu.uah.es (A.B.-G.); a.garciac@uah.es (A.G.-C.)

2 Cyprus Interaction Lab, Department of Multimedia and Graphic Arts, Cyprus University of Technology,
30 Archbishop Kyprianou Str., Limassol 3036, Cyprus; aekaterini.mavri@cut.ac.cy

* Correspondence: eva.garcial@uah.es

Abstract: This study investigates the feasibility and functionality of accelerometer and gyroscope
sensors for gesture-based interactions in mobile app user experience. The core of this innovative
approach lies in introducing a dynamic and intuitive user interaction model with the device sensors.
The Android app developed for this purpose has been created for its use in controlled experiments.
Methodologically, it was created as a stand-alone tool to both capture quantitative (time, automat-
ically captured) and qualitative (behavior, collected with post-task questionnaires) variables. The
app’s setting features a set of modules with two levels each (randomized presentation applied,
minimizing potential learning effects), allowing users to interact with both sensor-based and tradi-
tional touch-based scenarios. Preliminary results with 22 participants reveal that tasks involving
sensor-based interactions tend to take longer to complete when compared to the traditional ones.
Remarkably, many participants rated sensor-based interactions as a better option than touch-based
interactions, as seen in the post-task questionnaires. This apparent discrepancy between objective
completion times and subjective user perceptions requires a future in-depth exploration of factors
influencing user experiences, including potential learning curves, cognitive load, and task complexity.
This study contributes to the evolving landscape of mobile app user experience, emphasizing the
benefits of considering the integration of device sensors (and gesture-based interactions) in common
mobile usage.

Keywords: user experience; HCI; mobile apps; gyroscope; accelerometer; gesture-based interactions

1. Introduction

Modern smartphones have a diverse array of internal sensors, spanning from capaci-
tive sensors (responsible for tactile screen functionality), to GPS, fingerprint readers, iris
scanners, and proximity or brightness sensors. Gyroscope and/or accelerometer sensors
are commonly included among device capabilities.

The accelerometer serves as a sensor capable of detecting the direction and intensity
of the device’s movement. Technically, it measures the linear acceleration of movement
(i.e., gravity) [1]. However, it is not a very accurate sensor for determining orientation, as
it is usually built as a basic hardware component with electrically sensitive elements and
capacitors [2]. The gyroscope comes into play for greater accuracy, allowing the rotation of
the device around its axes to be calculated in a simpler way (by calculating the angular rate
of rotation) [1]. In summary (see Figure 1), the accelerometer sensor measures the speed
and direction of movement of the device and the gyroscope sensor measures the rotation of
the device about the Cartesian axes.

Sensors 2024, 24, 1004. https://doi.org/10.3390/s24031004 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24031004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3192-8499
https://orcid.org/0000-0002-7598-3289
https://orcid.org/0009-0007-5666-6142
https://orcid.org/0000-0002-0298-3237
https://orcid.org/0000-0002-5076-5891
https://doi.org/10.3390/s24031004
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24031004?type=check_update&version=2

Sensors 2024, 24, 1004 2 of 18

Sensors 2024, 24, x FOR PEER REVIEW 2 of 19

Figure 1. Conceptual design of the accelerometer (left) and gyroscope (right) sensors.

The vast majority of available devices on the market today have both the gyroscope
and the accelerometer sensor pair, although it is true that low-end devices may not have
the gyroscope, since it requires hardware with a higher unit price than the accelerometer
sensor hardware. We can also find some devices, such as the Motorola Moto G3 (launched
in 2015), that included two accelerometers (without a gyroscope), with the aim of improv-
ing the precision that a single accelerometer would provide [3].

While it is true that Google does not require brands to include accelerometers when
certifying a mobile device as compatible with the Android operating system, it is a hard-
ware feature that Google strongly recommends [4]. The gyroscope sensor is also an op-
tional component for certification.

On the other hand, Apple has included an accelerometer in its devices since the first
iPhone model (launched in 2007) [5]. In addition to the accelerometer, Apple has included
a gyroscope sensor in all new iPhone models since the iPhone 4 was launched, in 2010 [6].

The main visible usage of these sensors, when integrated in a smartphone, is that the
device automatically adjusts the orientation of the User Interface (UI) to the physical po-
sition of the device. This means that, when the device is rotated from vertical to horizontal,
or vice versa, the UI is set in the corresponding landscape or portrait mode, according to
the values obtained from the accelerometer and gyroscope sensors, if present. The aim of
this automatic adaptation is to provide the user with a more comfortable experience with
the device.

Our research is therefore linked to the Human–Computer Interaction (HCI) field, de-
voted on enhancing products by understanding how individuals interact with computers
[7]. It is commonly applied to enhance the user experience (UX) with specific software
products. UX explores how individuals perceive and respond to software usage to en-
hance product design [8–10]. Usability, a component of UX, is commonly used to assess
the user experience [8]. ISO defines usability as “the effectiveness, efficiency, and satisfac-
tion with which specified users achieve specified goals in particular environments” [11].

In this study, we run a pilot experimentation to assess the feasibility and functionality
of gesture-based interactions in mobile apps, in which traditional touch-based interactions
prevails. When these sensors are integrated into a smartphone, there are a number of util-
ities that are available both to the operating system and to the application developers:
• Automatic UI orientation. Previously introduced, it allows the UI to adapt its dis-

played content according to the detected orientation of the device.
• Pedometer. As these sensors can measure movement, they are used as pedometers to

count steps and allow users to make a detailed analysis of calories burned, distance,
etc. As a result, these sensors are now widely used in health and sports applications.

• Image stabilization. Prevents the quality of the captured image from being affected
by the shaking of the user’s hand. The effect of vibrations is reduced both in photos
and videos.

• Inertial Navigation. Thanks to the information obtained from these sensors, GPS can
still provide navigation information in the event of a loss of GPS service or cellular
coverage (e.g., inside tunnels or buildings).

• Games (motion control). It allows game controls to be triggered by gestures—for ex-
ample, using the phone as a steering wheel while driving a car. The game replicates

Figure 1. Conceptual design of the accelerometer (left) and gyroscope (right) sensors.

The vast majority of available devices on the market today have both the gyroscope
and the accelerometer sensor pair, although it is true that low-end devices may not have the
gyroscope, since it requires hardware with a higher unit price than the accelerometer sensor
hardware. We can also find some devices, such as the Motorola Moto G3 (launched in 2015),
that included two accelerometers (without a gyroscope), with the aim of improving the
precision that a single accelerometer would provide [3].

While it is true that Google does not require brands to include accelerometers when
certifying a mobile device as compatible with the Android operating system, it is a hardware
feature that Google strongly recommends [4]. The gyroscope sensor is also an optional
component for certification.

On the other hand, Apple has included an accelerometer in its devices since the first
iPhone model (launched in 2007) [5]. In addition to the accelerometer, Apple has included
a gyroscope sensor in all new iPhone models since the iPhone 4 was launched, in 2010 [6].

The main visible usage of these sensors, when integrated in a smartphone, is that the
device automatically adjusts the orientation of the User Interface (UI) to the physical posi-
tion of the device. This means that, when the device is rotated from vertical to horizontal,
or vice versa, the UI is set in the corresponding landscape or portrait mode, according to
the values obtained from the accelerometer and gyroscope sensors, if present. The aim of
this automatic adaptation is to provide the user with a more comfortable experience with
the device.

Our research is therefore linked to the Human–Computer Interaction (HCI) field,
devoted on enhancing products by understanding how individuals interact with comput-
ers [7]. It is commonly applied to enhance the user experience (UX) with specific software
products. UX explores how individuals perceive and respond to software usage to enhance
product design [8–10]. Usability, a component of UX, is commonly used to assess the user
experience [8]. ISO defines usability as “the effectiveness, efficiency, and satisfaction with
which specified users achieve specified goals in particular environments” [11].

In this study, we run a pilot experimentation to assess the feasibility and functionality
of gesture-based interactions in mobile apps, in which traditional touch-based interactions
prevails. When these sensors are integrated into a smartphone, there are a number of
utilities that are available both to the operating system and to the application developers:

• Automatic UI orientation. Previously introduced, it allows the UI to adapt its displayed
content according to the detected orientation of the device.

• Pedometer. As these sensors can measure movement, they are used as pedometers to
count steps and allow users to make a detailed analysis of calories burned, distance,
etc. As a result, these sensors are now widely used in health and sports applications.

• Image stabilization. Prevents the quality of the captured image from being affected by
the shaking of the user’s hand. The effect of vibrations is reduced both in photos and
videos.

• Inertial Navigation. Thanks to the information obtained from these sensors, GPS can
still provide navigation information in the event of a loss of GPS service or cellular
coverage (e.g., inside tunnels or buildings).

• Games (motion control). It allows game controls to be triggered by gestures—for
example, using the phone as a steering wheel while driving a car. The game replicates
the movements/gestures made with the phone into the game, without tapping on the

Sensors 2024, 24, 1004 3 of 18

screen (which reduces the visible percentage of the screen, as the hands block part of
the view).

• Gesture-based interactions. This involves interacting with the UI through motion/ges
ture detection, and is perhaps the least implemented application in mobile apps [12,13].
Informally, this could be seen as the non-game version of interacting with the device
(i.e., using the movement of the device as a game control). Compass or level applica-
tions are the most typical examples of usage.

Of the above applications, using accelerometers and gyroscopes as in-game controllers
has been the most common implementation in recent years. The popular mobile game
“Pokémon GO” (released in 2016) uses this technology to immerse the player, using the
device’s camera as a window into a parallel world. Using accelerometer and gyroscope
sensors, it allows the players to “see” the world around them by moving the device, without
needing touch interaction (see Figure 2). This combination (real world combined with
virtual objects, interacted in real time) is defined as Augmented Reality (AR) [14]. This
popularity is reflected in the fact that in the following year (2017), Apple launched ARKIT
and Google released ARCore, both development tools that are specifically designed to
facilitate the development of AR applications. It should be noted that to achieve the
immersion provided by AR is where accelerometer and gyroscope sensors come into play
as essential sensors [15].

Sensors 2024, 24, x FOR PEER REVIEW 3 of 19

the movements/gestures made with the phone into the game, without tapping on the
screen (which reduces the visible percentage of the screen, as the hands block part of
the view).

• Gesture-based interactions. This involves interacting with the UI through mo-
tion/gesture detection, and is perhaps the least implemented application in mobile
apps [12,13]. Informally, this could be seen as the non-game version of interacting
with the device (i.e., using the movement of the device as a game control). Compass
or level applications are the most typical examples of usage.
Of the above applications, using accelerometers and gyroscopes as in-game control-

lers has been the most common implementation in recent years. The popular mobile game
“Pokémon GO” (released in 2016) uses this technology to immerse the player, using the
device’s camera as a window into a parallel world. Using accelerometer and gyroscope
sensors, it allows the players to “see” the world around them by moving the device, with-
out needing touch interaction (see Figure 2). This combination (real world combined with
virtual objects, interacted in real time) is defined as Augmented Reality (AR) [14]. This
popularity is reflected in the fact that in the following year (2017), Apple launched ARKIT
and Google released ARCore, both development tools that are specifically designed to
facilitate the development of AR applications. It should be noted that to achieve the im-
mersion provided by AR is where accelerometer and gyroscope sensors come into play as
essential sensors [15].

Figure 2. Details of Pokémon GO Augmented Reality interface and the real world.

Beyond the gaming industry, many applications that use the accelerometer and gy-
roscope sensors can be found on current smartphones. The most characteristic applica-
tions of this type of sensors are compass apps (providing orientation) (see Figure 3, left)
or level apps (measuring surface’s horizontality or verticality) (see Figure 3, right).

Figure 2. Details of Pokémon GO Augmented Reality interface and the real world.

Beyond the gaming industry, many applications that use the accelerometer and gyro-
scope sensors can be found on current smartphones. The most characteristic applications
of this type of sensors are compass apps (providing orientation) (see Figure 3, left) or level
apps (measuring surface’s horizontality or verticality) (see Figure 3, right).

Natively, iPhone devices also include two features related to these sensors: “shake
to undo” and “shake to shuffle”. The first one, “shake to undo”, allows the user to delete
the last thing he/she typed by giving the iPhone a quick shake (user is always asked for
confirmation). It has been available since iOS 3.0 (build 7A341, 2009), although without
official confirmation of its existence [16,17]; and at least until iOS 9 (build 13A340, 2015) [18].
The second one, “shake to shuffle”, allows the user to skip the current playing song by
shaking the device (also since the build 7A341, 2009) [19].

Sensors 2024, 24, 1004 4 of 18Sensors 2024, 24, x FOR PEER REVIEW 4 of 19

Figure 3. Detail of the compass (left) and level (right) apps on the iPhone (own sources).

Natively, iPhone devices also include two features related to these sensors: “shake to
undo” and “shake to shuffle”. The first one, “shake to undo”, allows the user to delete the
last thing he/she typed by giving the iPhone a quick shake (user is always asked for con-
firmation). It has been available since iOS 3.0 (build 7A341, 2009), although without official
confirmation of its existence [16,17]; and at least until iOS 9 (build 13A340, 2015) [18]. The
second one, “shake to shuffle”, allows the user to skip the current playing song by shaking
the device (also since the build 7A341, 2009) [19].

Alternatively, there are several applications in both the Android and iOS stores that
use the accelerometer and/or gyroscope sensors for their basic operation, such as “Mouse-
Mote AirRemote” (which allows using the smartphone as a remote mouse for the com-
puter) [20] or “SkyView” (star map that updates visible sky based on device rotation and
orientation) [21].

This clearly demonstrates the opportunities of integrating accelerometers and gyro-
scopes in the development of mobile applications. However, interacting with UIs through
motion and/or gesture detection, i.e., gesture-based interactions [22], is a research area
with very little coverage [23]. According to Sun et al. [12] this could be due to unknown
hardware availability, difficulties to transform abstract gestures into meaningful ones or
difficulties delivering gestures to generic scenarios. Gesture-based interactions could be
seen as non-regular tasks with mobile apps. Therefore, a higher cognitive load is expected
for users when engaging with novel tasks (as derived from Banu, Al Siyabi and Al Minje
[24], and Kosch et al. [25]).

From our proposed research line, however, the focus of the literature diverges. Here,
we are centered on the interaction with the device’s UI through the accelerometer and the
gyroscope sensors. Nonetheless, the main research found is focused on more specific ar-
eas, such as the classification of motion and movement [13,26,27], the analysis of road
conditions [28,29], medical applications [30,31], and even cyber security [32]. Because of
the relatively innovative nature of our research, the focus of this study will be on the de-
tailed analysis of how traditional (touch-based) interaction can be converted to gesture-
based interactions, so that the User Experience with UIs will be improved.

According to Sun et al. [12], there are three main types of gestures to interact with
electronic devices (either smartphones, smartwatches, glasses or mixed devices): Device
based, touch based and vision based. Device-based gestures imply physically moving the
device (driven by three key features: “Ensure basic functionality”, “enhance accessibility”
and “assign meaning and value”); the touch-based ones are the traditional way of interact,
using the hand to interact with the screen; and the vision-based ones imply mid-air ges-
tures made with body parts, mainly with the user’s hand or head.

Figure 3. Detail of the compass (left) and level (right) apps on the iPhone (own sources).

Alternatively, there are several applications in both the Android and iOS stores that use
the accelerometer and/or gyroscope sensors for their basic operation, such as “MouseMote
AirRemote” (which allows using the smartphone as a remote mouse for the computer) [20]
or “SkyView” (star map that updates visible sky based on device rotation and orienta-
tion) [21].

This clearly demonstrates the opportunities of integrating accelerometers and gyro-
scopes in the development of mobile applications. However, interacting with UIs through
motion and/or gesture detection, i.e., gesture-based interactions [22], is a research area
with very little coverage [23]. According to Sun et al. [12] this could be due to unknown
hardware availability, difficulties to transform abstract gestures into meaningful ones or dif-
ficulties delivering gestures to generic scenarios. Gesture-based interactions could be seen
as non-regular tasks with mobile apps. Therefore, a higher cognitive load is expected for
users when engaging with novel tasks (as derived from Banu, Al Siyabi and Al Minje [24],
and Kosch et al. [25]).

From our proposed research line, however, the focus of the literature diverges. Here,
we are centered on the interaction with the device’s UI through the accelerometer and
the gyroscope sensors. Nonetheless, the main research found is focused on more specific
areas, such as the classification of motion and movement [13,26,27], the analysis of road
conditions [28,29], medical applications [30,31], and even cyber security [32]. Because of the
relatively innovative nature of our research, the focus of this study will be on the detailed
analysis of how traditional (touch-based) interaction can be converted to gesture-based
interactions, so that the User Experience with UIs will be improved.

According to Sun et al. [12], there are three main types of gestures to interact with
electronic devices (either smartphones, smartwatches, glasses or mixed devices): Device
based, touch based and vision based. Device-based gestures imply physically moving the
device (driven by three key features: “Ensure basic functionality”, “enhance accessibility”
and “assign meaning and value”); the touch-based ones are the traditional way of interact,
using the hand to interact with the screen; and the vision-based ones imply mid-air gestures
made with body parts, mainly with the user’s hand or head.

It is a fact that current smartphones have larger and larger screens. This makes it
difficult for the user to interact with the device with only one hand. The work of Chang
et al. [33] proposed that an application would change the available UI so that it can be
reached with a finger without the need to tilt the device or force the position of the hand.
This was performed by using the accelerometer and the gyroscope for detecting when the
mobile enters into a forced position. They designed three novel interactions: “TiltSlide”,
“TiltReduction” and “TiltCursor”. In “TiltSlide”, the screen is moved by the user to a more

Sensors 2024, 24, 1004 5 of 18

finger-accessible zone (here, the UI keeps moving with sensors’ inputs until one of the UI
corners moves to the center of the screen). In “TiltReduction”, the UI is zoomed-out (i.e.,
size reduction) and adjusted to a more accessible zone. Finally, in “TiltCursor”, the user
does not directly interact with the UI; instead, the user’s finger moves a virtual pointer
through the UI. Looking at their results, only “TiltReduction” interaction has better results
than touch-based interactions.

A more recent study, by Lee et al. [34], proposed alternative hardware to replace the
most basic interactions (that is, selection and movement) by detecting hand pressure on
this alternative hardware sensors.

As aforementioned, AR is currently experiencing a growth in popularity. This is
also reflected in the scientific literature. There are several studies, such as Huang, Li and
Hui [35], Vatavu [36], Di Geronimo et al. [37] or Mich et al. [38]; that use accelerometer
and gyroscope sensors and hand gestures (detected by the camera) to find new ways of
interacting with non-gaming AR applications. The goal is to make AR apps more intuitive
for the users.

However, even though it is limited, it is possible to find some literature that is more in
line with what is proposed in our research.

In 2009, the work of Boring, Jurmu and Butz [39] used one of the first generation of
smartphones (previous to the iPhone/Android) as a pointer on a plasma screen. Interaction
was based on detecting information from the accelerometer and gyroscope sensors and
translating them into the remote mouse motion.

In 2016, Serackis et al. [40] presented a study that investigated replacing traditional
smartphone keyboards with another keyboard, also virtual, but interacted through tilting
and rotating the phone. This proposed keyboard translates the movements obtained
through the accelerometer and gyroscope sensors into a pointer across a virtual keyboard.
However, this was only a prototype. The authors did not include how this compares to
using a traditional keyboard, as it was presented as a very specific topic without proper
research to compare with. Nevertheless, they stated that all participants were able to
successfully complete all the required tasks.

In 2017, Yu et al. [41] proposed a new way of interacting with smartphones. They
took advantage of the boom in popularity of smartwatches. They used the accelerometer
sensor of the smartwatch itself to detect when the device is moving in a certain direction.
They captured these movements and translated them to interactions on the smartwatch
app. The authors even demonstrated multi-device compatibility with an example of using
these detected movements on the smartwatch in a simple navigation through a list of items
displayed on the smartphone.

Given the lack of studies on the use of accelerometer and gyroscope sensors in interact-
ing with UIs, this research serves as a novel approach to explore the impact of gesture-based
interactions on smartphone apps. Overall, this research contributes to a better understand-
ing of the complex dynamics between gesture-based interactions and user experiences,
with implications for the design and evaluation of future mobile applications using sensors.

The rest of this paper is organized as follows: Section 2 presents the proposed Android
app, how it works and how the sensors are integrated in the app. In Section 3, the
preliminary results are illustrated by showing the outcomes from a pilot experiment. Finally,
Section 4 presents the discussion, and Section 5 shows conclusions and future works.

2. Materials and Methods

To investigate the potential enhancement of mobile app user experience through
accelerometer and gyroscope sensors, we developed an Android app designed for its usage
in controlled experiment sessions with participants. The following sections detail the
design and development procedures employed in the creation of this app.

Sensors 2024, 24, 1004 6 of 18

2.1. Description of the Mobile Application

The app developed comprises various modules with levels that use the gyroscope
and accelerometer sensors to investigate gesture-based and traditional-based interactions
through the UI. The utilization of these interactions in the available levels enables the
autonomous collection of quantitative data, in the form of required time to complete a
given task. Qualitative data, in the form of user behavior, are collected with an in-app
post-task questionnaire. The application has been designed as a stand-alone app, i.e., no
human is needed for data collection. The experiment’s instructor should be in charge of
guiding participants on performing the selected tasks. Figure 5 (at the end of this section)
shows the main windows and the basic workflow of the application.

The development of the activity encompasses various aspects and methodologies. The
application features an integrated login system with Google, using Google Firebase as the
platform for managing user authentication, as seen in Figure 5b. Upon initial registration,
users are redirected to an initial questionnaire designed to collect demographic data and
information about previous experiences with sensors. This questionnaire includes questions
related to the use of sensors integrated into the phone (noticeable in Figure 5c). Users
are also queried about the use of motion sensors found in video game consoles, such as
“Joy-Cons”, and virtual reality headsets, such as “Oculus VR” or “PlayStation VR”.

As seen in Figure 4, the logical structure of the application’s levels is designed to ensure
an unbiased exploration of user interactions. There are four available modules in the app:
“Tutorial”, “GyroList”, “GryoAvoid” and “Survival”. Each module within the application
is composed of two distinct levels, each representing a set of challenges related to a device
sensor or touch interactions. Importantly, the first level of every module is intentionally
selected at random for each user, effectively minimizing potential learning effects that
could arise with device-based and traditional touch-based interactions. By introducing this
element of unpredictability in level selection, we aim to capture experiences free from the
influence of pre-existing patterns or expectations.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 19

Figure 4. Flow of actions with the app modules.

In addition, there is a “Survival” module (Figure 5h), which also involves controlling
a ball to evade falling blocks. Unlike the previous activity, in “Survival” the blocks come
from all directions, so the movement is no longer limited to just left and right; instead, the
ball can move in any direction, similar to the tutorial activity. As with the other activities,
there is both a traditional form, where the ball’s movement is achieved using the finger
(i.e., touch based), and with the device sensors (i.e., gesture based), where, once again,
tilting the phone in the desired direction achieves the movement.

It should be highlighted that, in the “Tutorial” and “GyroLists” modules, the primary
objective for users is to maximize speed, with faster completion times indicating a better
user performance. On the other hand, “GyroAvoid” and “Survival” modules present us-
ers with a different challenge: The objective here is time endurance, skipping through as
many elements as possible. In this context, higher completion times denote a better user
performance. These scenarios aim to capture a comprehensive spectrum of user behaviors
on the dynamics of gesture-based and touch-based interactions and their impact on mo-
bile app usage.

After completing each module level, users are prompted to take a satisfaction ques-
tionnaire (Figure 5i). This questionnaire displays the time taken to complete the activity,
asks users to rate the difficulty of the activity in its respective mode, and provides an op-
portunity to add additional comments about their experience. These data, like those from
the initial survey, are stored in different collections in Google Firebase’s cloud storage, in
a different storage location than the Google login data.

Figure 5 shows the main windows and the basic workflow of the application.

Figure 4. Flow of actions with the app modules.

Once the initial questionnaire is completed, users are directed to the “Tutorial” module,
(Figure 5e), designed to familiarize them with the use of the sensors. This activity involves
guiding a ball from a starting point to a goal while avoiding collisions with walls along
the way, simulating a maze. The tutorial provides an interactive introduction to the

Sensors 2024, 24, 1004 7 of 18

accelerometer and gyroscope sensors, thus helping users understand how to use them
while controlling the ball’s movement.

Upon completion of the tutorial, new modules are unlocked (Figure 5d), with levels
that can be performed either in a traditional way (i.e., using the touch controls) or by using
the device sensors, depending on the level. One of these modules is called “GyroLists”,
(Figure 5f), where the goal is to navigate through a list of hundreds of elements until
reaching a predefined element. In the traditional level, users manually scroll and select the
target element by swiping with their finger. In the sensorized level, scrolling is performed
automatically through an “autoscroll”, and the element is selected automatically.

Another module, named “GyroAvoid”, (Figure 5g), involves maneuvering a ball to
avoid falling blocks descending from the top of the screen. In this scenario, the user moves
the ball solely left and right using his or her finger in the traditional form. However, in the
gesture-based form, the movement is achieved by tilting the phone in the desired direction.

In addition, there is a “Survival” module (Figure 5h), which also involves controlling
a ball to evade falling blocks. Unlike the previous activity, in “Survival” the blocks come
from all directions, so the movement is no longer limited to just left and right; instead, the
ball can move in any direction, similar to the tutorial activity. As with the other activities,
there is both a traditional form, where the ball’s movement is achieved using the finger (i.e.,
touch based), and with the device sensors (i.e., gesture based), where, once again, tilting
the phone in the desired direction achieves the movement.

It should be highlighted that, in the “Tutorial” and “GyroLists” modules, the primary
objective for users is to maximize speed, with faster completion times indicating a better
user performance. On the other hand, “GyroAvoid” and “Survival” modules present
users with a different challenge: The objective here is time endurance, skipping through as
many elements as possible. In this context, higher completion times denote a better user
performance. These scenarios aim to capture a comprehensive spectrum of user behaviors
on the dynamics of gesture-based and touch-based interactions and their impact on mobile
app usage.

After completing each module level, users are prompted to take a satisfaction ques-
tionnaire (Figure 5i). This questionnaire displays the time taken to complete the activity,
asks users to rate the difficulty of the activity in its respective mode, and provides an
opportunity to add additional comments about their experience. These data, like those
from the initial survey, are stored in different collections in Google Firebase’s cloud storage,
in a different storage location than the Google login data.

Figure 5 shows the main windows and the basic workflow of the application.

2.2. Integrating Gyroscope and Accelerometer Sensors in the Application

The application developed employs a dynamic technique for using the accelerometer
and gyroscope sensors to facilitate gesture-based interactions. For example, in the gesture-
based level of the “GyroList” module, participants are prompted to tilt the mobile device
forward (causing UI elements to move upward), and, respectively, tilting the device back-
ward (causing a downward movement of the UI elements). The gyroscope sensor detects
the tilting degree applied to the device, allowing the movement direction. Greater tilting
degrees correspond to an increased speed in the on-screen movement. Simultaneously, the
accelerometer sensor gauges the force of the tilt movement, thus influencing the impulse’s
magnitude. That is, stronger force movements result in more pronounced on-screen speed,
while slower movements yield lower GUI movement response. To enhance the user experi-
ence, a dead zone has been incorporated into the sensors’ detection mechanism. Within ten
degrees from the baseline (both positive and negative pitch motion), no movement is regis-
tered, offering users a dead zone to facilitate a smoother and more controlled interaction
with the application. This behavior is graphically explained in Figure 6.

Sensors 2024, 24, 1004 8 of 18Sensors 2024, 24, x FOR PEER REVIEW 8 of 19

Figure 5. Windows workflow of the application: (a) Splash screen, (b) login page, (c) registration
page, (d) activities screen, (e) tutorial screen, (f) gyrolist screen, (g) gyroavoid screen, (h) survival
screen, and (i) survey screen.

2.2. Integrating Gyroscope and Accelerometer Sensors in the Application
The application developed employs a dynamic technique for using the accelerometer

and gyroscope sensors to facilitate gesture-based interactions. For example, in the gesture-
based level of the “GyroList” module, participants are prompted to tilt the mobile device
forward (causing UI elements to move upward), and, respectively, tilting the device back-
ward (causing a downward movement of the UI elements). The gyroscope sensor detects
the tilting degree applied to the device, allowing the movement direction. Greater tilting
degrees correspond to an increased speed in the on-screen movement. Simultaneously,
the accelerometer sensor gauges the force of the tilt movement, thus influencing the im-
pulse’s magnitude. That is, stronger force movements result in more pronounced on-
screen speed, while slower movements yield lower GUI movement response. To enhance
the user experience, a dead zone has been incorporated into the sensors’ detection mech-
anism. Within ten degrees from the baseline (both positive and negative pitch motion), no
movement is registered, offering users a dead zone to facilitate a smoother and more con-
trolled interaction with the application. This behavior is graphically explained in Figure
6.

Figure 5. Windows workflow of the application: (a) Splash screen, (b) login page, (c) registration
page, (d) activities screen, (e) tutorial screen, (f) gyrolist screen, (g) gyroavoid screen, (h) survival
screen, and (i) survey screen.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 19

Figure 6. Concept image of sensor usage in “GyroList” module, gesture-based level. This level only
features pitch motion.

As seen before, gesture-based levels involve dynamically detecting the tilting degree
with the gyroscope sensor to determine the movement direction and speed. Simultane-
ously, the accelerometer contributes by assessing the force of the movement, modulating
the magnitude of on-screen actions based on user’s input. There are modules with only
vertical movement, and modules with both vertical and horizontal movements. Algorithm
1 shows the pseudocode of the algorithm for the vertical-only movement, applied in the
“GyroList” module:

Algorithm 1. “GyroList” pseudocode for vertical-only movement.
1. Accelerometer Data Processing: The value of the variable x is updated by sub-
tracting the integer value of the X-axis accelerometer.
2. Low-Pass Filter for Smoothing Y-coordinate (i.e., dead zone): The value of the
variable filteredY is updated using a low-pass filter. The new value is a weighted sum of
the current filteredY and the new accelerometer reading on the Y-axis. Variable y is also
updated by subtracting the integer value of the filtered Y-coordinate. This is based on
the following code:

Low-pass filter: filteredY = α·filtered + (1 − α)·event.values[1] 1

Update y: y = y − filteredY.toInt()
3. Scrolling Behavior: The scrolling amount is determined based on the Y-coordinate
of the filtered Y-coordinate, depending on whether the device is in a moving state (i.e.,
increasing or maintaining speed) or in a braking state (i.e., reducing speed). This scroll-
ing is applied to the UI. Here is the used code:

For moving: scrollAmount = (−y)·sensitivity 2

For breaking: scrollAmount = (−yDifference)·sensitivity 2

4. Filtering for Braking: For updating the filtered Y-coordinate for braking using a
low-pass filter: Applied by the following code:

Low-pass filter: filtered = (α·filtered) + ((1 − α)·y)
5. Handling Previous Filtered Y-coordinate: yDifference is calculated as the differ-
ence between the current and previous filtered Y-coordinates. previousFilteredY is then
updated with the current value. To achieve this, the following code is used:

yDifference = filtered − previousFilteredY
1 Array position for the desired reading from the sensor, as specified by Android SDK. 2 “sensitivity”
is a constant value that we use to manually adjust the sensitivity of the scrolling behavior without
changing the algorithm.

Figure 6. Concept image of sensor usage in “GyroList” module, gesture-based level. This level only
features pitch motion.

Sensors 2024, 24, 1004 9 of 18

As seen before, gesture-based levels involve dynamically detecting the tilting degree
with the gyroscope sensor to determine the movement direction and speed. Simultaneously,
the accelerometer contributes by assessing the force of the movement, modulating the
magnitude of on-screen actions based on user’s input. There are modules with only vertical
movement, and modules with both vertical and horizontal movements. Algorithm 1 shows
the pseudocode of the algorithm for the vertical-only movement, applied in the “GyroList”
module:

Algorithm 1. “GyroList” pseudocode for vertical-only movement.

1. Accelerometer Data Processing: The value of the variable x is updated by subtracting the
integer value of the X-axis accelerometer.

2. Low-Pass Filter for Smoothing Y-coordinate (i.e., dead zone): The value of the variable
filteredY is updated using a low-pass filter. The new value is a weighted sum of the current
filteredY and the new accelerometer reading on the Y-axis. Variable y is also updated by
subtracting the integer value of the filtered Y-coordinate. This is based on the following
code: Low-pass filter: filteredY = α·filtered + (1 − α)·event.values[1] 1 Update y: y = y −
filteredY.toInt()

3. Scrolling Behavior: The scrolling amount is determined based on the Y-coordinate of the
filtered Y-coordinate, depending on whether the device is in a moving state (i.e., increasing
or maintaining speed) or in a braking state (i.e., reducing speed). This scrolling is applied to
the UI. Here is the used code: For moving: scrollAmount = (−y)·sensitivity 2 For breaking:
scrollAmount = (−yDifference)·sensitivity 2

4. Filtering for Braking: For updating the filtered Y-coordinate for braking using a low-pass
filter: Applied by the following code: Low-pass filter: filtered = (α·filtered) + ((1 − α)·y)

5. Handling Previous Filtered Y-coordinate: yDifference is calculated as the difference between
the current and previous filtered Y-coordinates. previousFilteredY is then updated with the
current value. To achieve this, the following code is used: yDifference = filtered −
previousFilteredY

1 Array position for the desired reading from the sensor, as specified by Android SDK. 2 “sensitivity” is a constant

value that we use to manually adjust the sensitivity of the scrolling behavior without changing the algorithm.

On the other hand, Algorithm 2 is the algorithm for the gesture-based levels with free
movement, applied in the “Tutorial” “GyroAvoid” and “Survival” modules:

Algorithm 2. “Tutorial”, “GyroAvoid” and “Survival” pseudocode for free movement.

1. Gyroscope and Accelerometer Data Processing: The position based on x and y variables is
updated based on the data readings from the sensors by the following code: newX = view.x
− (event.values[0] 1·sensitivity 2) newY = view.y + (event.values[1] 1·sensitivity 2)

2. Updating View Position: UI’s x and y positions are updated with the previously calculated
values: view.x = newX.toFloat() view.y = newY.toFloat()

1 Array positions for the desired reading from the sensor, as specified by Android SDK. 2 “sensitivity” is a constant

value that we use to manually adjust the sensitivity of the scrolling behavior without changing the algorithm.

3. Results

In this section, we present the outcomes of a pilot experimentation conducted with
the Android application developed. The primary objective was to assess the feasibility
and functionality of the app in capturing both quantitative (i.e., time) and qualitative (i.e.,
behavior) variables related to gesture-based and traditional touch-based interactions.

The pilot experimentation involved a group of 22 participants engaging with the app
(see Table 1); recruited via random sampling within a college environment (no prerequisites
were asked). We looked for valuable preliminary insights into the usability dynamics of
gesture-based interactions. The results presented herein encapsulate the initial findings,
demonstrating the practicality of our experimental design. They also open the way for a
more comprehensive examination of the user experience in future studies.

Sensors 2024, 24, 1004 10 of 18

Table 1. Participant demographics.

Characteristic Quantity (N = 22) Percentage

Age

18–25 7 31.81%
26–35 3 13.64%
36–45 4 18.18%
+46 8 36.36%

Gender
Masculine 11 50%

Female 10 45.45%
Other 1 4.55%

How old is the smartphone

Less than a year 5 22.73%
1–2 years 3 13.64%
3–5 years 11 50%

More than 5 years 3 13.64%

Location

North America 0 0%
South America 0 0%

Europe 22 100%
Asia 0 0%

Africa 0 0%
Oceania 0 0%

Have you used any app that
uses sensors?

Yes 10 45.45%
No 12 54.55%

Have you used any
motion sensors?

Yes 9 40.91%
No 13 59.09%

Have you use any VR headset? Yes 11 50%
No 11 50%

When was the last time you used
these sensors?

Less than 6 months 4 18.18%
6–12 months 1 4.55%

1–2 years 1 4.55%
+3 years 6 27.27%

I have never used
those sensors 10 45.45%

In the pilot environment, participants were introduced to the primary objectives of
the application, emphasizing the exploration of potential differences between using device
sensors for gesture-based interactions and the traditional touch-based approach. With the
aim of simulating real-world usage scenarios, participants were granted the freedom to
navigate through the various levels and modules of the app independently. The minimal
intervention from supervisors was intentional, as we sought to encourage participants to
provide qualitative feedback based on their experiences, allowing us to improve the app
for future studies. Prior to use the app, participants were informed about the anonymous
treatment of generated data, ensuring that the information collected would not be associated
with their personal identities. Verbal consent was obtained from each participant.

3.1. Analyzing Quantitative Data from the Pilot Study

When analyzing the different times obtained in the “Tutorial” module (i.e., first
activity of the app, a maze-like scenario with gesture-based level only) (see Figure 7
and Table 2), it can be seen that, in many cases, users have made a first attempt with a
longer time (MEANFirstAttempt = 177.32; SDFirstAttempt = 470.05) than in subsequent attempts
(MEANFollowingAttempts = 73.04; SDFollowingAttempts = 56.19). This may be due to the initial
lack of knowledge about the use of sensors and the corresponding adaptation to them. Users
were granted the freedom to explore and engage with the app at their own pace during the
experimentation. Subsequent attempts mean any number of additional interactions beyond
the first attempt, providing users with the flexibility to revisit and practice using the app.
For the majority of users, we have captured between two and four subsequent attempts.

Sensors 2024, 24, 1004 11 of 18

Sensors 2024, 24, x FOR PEER REVIEW 11 of 19

Have you use any VR
headset?

Yes 11 50%
No 11 50%

When was the last
time you used these

sensors?

Less than 6 months 4 18.18%
6–12 months 1 4.55%

1–2 years 1 4.55%
+3 years 6 27.27%

I have never used
those sensors 10 45.45%

In the pilot environment, participants were introduced to the primary objectives of
the application, emphasizing the exploration of potential differences between using de-
vice sensors for gesture-based interactions and the traditional touch-based approach. With
the aim of simulating real-world usage scenarios, participants were granted the freedom
to navigate through the various levels and modules of the app independently. The mini-
mal intervention from supervisors was intentional, as we sought to encourage participants
to provide qualitative feedback based on their experiences, allowing us to improve the
app for future studies. Prior to use the app, participants were informed about the anony-
mous treatment of generated data, ensuring that the information collected would not be
associated with their personal identities. Verbal consent was obtained from each partici-
pant.

3.1. Analyzing Quantitative Data from the Pilot Study
When analyzing the different times obtained in the “Tutorial” module (i.e., first ac-

tivity of the app, a maze-like scenario with gesture-based level only) (see Figure 7 and
Table 2), it can be seen that, in many cases, users have made a first attempt with a longer
time (MEANFirstAttempt = 177.32; SDFirstAttempt = 470.05) than in subsequent attempts (MEAN-
FollowingAttempts = 73.04; SDFollowingAttempts = 56.19). This may be due to the initial lack of
knowledge about the use of sensors and the corresponding adaptation to them. Users
were granted the freedom to explore and engage with the app at their own pace during
the experimentation. Subsequent attempts mean any number of additional interactions
beyond the first attempt, providing users with the flexibility to revisit and practice using
the app. For the majority of users, we have captured between two and four subsequent
attempts.

Figure 7. Data distribution of time taken for the tutorial module.

Regarding the “GyrosLists” module (i.e., navigation through a list of elements), we
can see that, in the touch-based level, the times obtained are slightly lower (MEANtouch-based
= 31.32; SDtouch-based = 25.49) than those obtained in the gesture-based level (MEANgesture-based
= 41.73; SDgesture-based = 20.33) (see Figure 8 and Table 2). That is, the traditional way is ob-
jectively more efficient for navigating through a list.

Figure 7. Data distribution of time taken for the tutorial module.

Table 2. Summary of statistics for all modules.

Module Level MEAN SD MEDIAN

Tutorial
1st Attempt 177.32 s 470.05 s 56.66 s

Following Attempts
(n = 14) 73.04 s 56.20 s 63.74 s

GyroList Touch-based level 31.32 s 25.49 s 23.64 s
Gesture-based level 41.73 s 20.34 s 32.40 s

GyroAvoid Touch-based level 5.54 s 2.66 s 5.18 s
Gesture-based level 5.62 s 3.88 s 4.62 s

Survival
Touch-based level 25.45 s 31.09 s 11.58 s

Gesture-based level 17.61 s 18.48 s 6.43 s

Regarding the “GyrosLists” module (i.e., navigation through a list of elements), we can see
that, in the touch-based level, the times obtained are slightly lower (MEANtouch-based = 31.32;
SDtouch-based = 25.49) than those obtained in the gesture-based level (MEANgesture-based = 41.73;
SDgesture-based = 20.33) (see Figure 8 and Table 2). That is, the traditional way is objectively
more efficient for navigating through a list.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 19

Figure 8. Data distribution of time taken for the “GyroLists” module.

As for corresponding to the “GyroAvoid” module (i.e., avoiding collisions with only
left and right movements), we can see how both levels have quite similar timing records
(Figure 9 and Table 2). We can conclude that both the touch-based (MEANtouch-based = 5.54;
SDtouch-based = 2.66) and the gesture-based (MEANgesture-based = 5.62; SDgesture-based = 3.88) levels
have the same performance in this game-like scenario.

Figure 9. Data distribution of time taken for the “GyroAvoid” module.

Finally, the results for the “Survival” module (i.e., avoiding collisions with free move-
ments), depicted in Figure 10 and Table 2, demonstrate a slightly better performance (in
time) by users in the touch-based level (MEANtouch-based = 25.44; SDtouch-based = 31.09). On the
other hand, in the gesture-based level, there is a worse performance in the times for the
participants (MEANgesture-based = 17.61; SDgesture-based = 18.48).

Figure 8. Data distribution of time taken for the “GyroLists” module.

As for corresponding to the “GyroAvoid” module (i.e., avoiding collisions with only
left and right movements), we can see how both levels have quite similar timing records
(Figure 9 and Table 2). We can conclude that both the touch-based (MEANtouch-based = 5.54;
SDtouch-based = 2.66) and the gesture-based (MEANgesture-based = 5.62; SDgesture-based = 3.88)
levels have the same performance in this game-like scenario.

Sensors 2024, 24, 1004 12 of 18

Sensors 2024, 24, x FOR PEER REVIEW 12 of 19

Figure 8. Data distribution of time taken for the “GyroLists” module.

As for corresponding to the “GyroAvoid” module (i.e., avoiding collisions with only
left and right movements), we can see how both levels have quite similar timing records
(Figure 9 and Table 2). We can conclude that both the touch-based (MEANtouch-based = 5.54;
SDtouch-based = 2.66) and the gesture-based (MEANgesture-based = 5.62; SDgesture-based = 3.88) levels
have the same performance in this game-like scenario.

Figure 9. Data distribution of time taken for the “GyroAvoid” module.

Finally, the results for the “Survival” module (i.e., avoiding collisions with free move-
ments), depicted in Figure 10 and Table 2, demonstrate a slightly better performance (in
time) by users in the touch-based level (MEANtouch-based = 25.44; SDtouch-based = 31.09). On the
other hand, in the gesture-based level, there is a worse performance in the times for the
participants (MEANgesture-based = 17.61; SDgesture-based = 18.48).

Figure 9. Data distribution of time taken for the “GyroAvoid” module.

Finally, the results for the “Survival” module (i.e., avoiding collisions with free move-
ments), depicted in Figure 10 and Table 2, demonstrate a slightly better performance (in
time) by users in the touch-based level (MEANtouch-based = 25.44; SDtouch-based = 31.09). On
the other hand, in the gesture-based level, there is a worse performance in the times for the
participants (MEANgesture-based = 17.61; SDgesture-based = 18.48).

Sensors 2024, 24, x FOR PEER REVIEW 12 of 19

Figure 8. Data distribution of time taken for the “GyroLists” module.

As for corresponding to the “GyroAvoid” module (i.e., avoiding collisions with only
left and right movements), we can see how both levels have quite similar timing records
(Figure 9 and Table 2). We can conclude that both the touch-based (MEANtouch-based = 5.54;
SDtouch-based = 2.66) and the gesture-based (MEANgesture-based = 5.62; SDgesture-based = 3.88) levels
have the same performance in this game-like scenario.

Figure 9. Data distribution of time taken for the “GyroAvoid” module.

Finally, the results for the “Survival” module (i.e., avoiding collisions with free move-
ments), depicted in Figure 10 and Table 2, demonstrate a slightly better performance (in
time) by users in the touch-based level (MEANtouch-based = 25.44; SDtouch-based = 31.09). On the
other hand, in the gesture-based level, there is a worse performance in the times for the
participants (MEANgesture-based = 17.61; SDgesture-based = 18.48).

Figure 10. Data distribution of time taken for the “Survival” module.

3.2. Analyzing Qualitative Data from the Pilot Study

At the conclusion of each level, participants contribute to the quantitative analysis
of user behavior through a post-task questionnaire. This questionnaire encompasses a
twofold assessment, starting with a level rating on a Likert scale from 1 (very easy) to
5 (very hard), including intermediate points, gauging their perceived complexity of the
level. Additionally, participants are encouraged to express their opinions freely through a
commentary section. This open-text format allows participants to provide detailed insights,
comments, and suggestions based on their individual experiences with the gesture-based
and touch-based interactions.

The “Tutorial” module (i.e., first activity of the app, a maze-like scenario with gesture-
based level only) shows that pilot participants value it in an intermediate complexity level
(MEAN = 3.34; SD = 1.30) (see Figure 11). 23% of the participants noted that it is and
interesting module to understand the possibilities of the device sensors. Also, 36% of
participants highlighted that we need to smooth the precision in the movement when using
the sensors, as sometimes it is difficult to move the ball precisely through the scenario if
the device has to be placed at almost 90 degrees from the baseline position.

Sensors 2024, 24, 1004 13 of 18

Sensors 2024, 24, x FOR PEER REVIEW 13 of 19

Figure 10. Data distribution of time taken for the “Survival” module.

Table 2. Summary of statistics for all modules.

Module Level MEAN SD MEDIAN

Tutorial
1st Attempt 177.32 s 470.05 s 56.66 s

Following Attempts
(n = 14) 73.04 s 56.20 s 63.74 s

GyroList
Touch-based level 31.32 s 25.49 s 23.64 s

Gesture-based level 41.73 s 20.34 s 32.40 s

GyroAvoid
Touch-based level 5.54 s 2.66 s 5.18 s

Gesture-based level 5.62 s 3.88 s 4.62 s

Survival
Touch-based level 25.45 s 31.09 s 11.58 s

Gesture-based level 17.61 s 18.48 s 6.43 s

3.2. Analyzing Qualitative Data from the Pilot Study
At the conclusion of each level, participants contribute to the quantitative analysis of

user behavior through a post-task questionnaire. This questionnaire encompasses a two-
fold assessment, starting with a level rating on a Likert scale from 1 (very easy) to 5 (very
hard), including intermediate points, gauging their perceived complexity of the level. Ad-
ditionally, participants are encouraged to express their opinions freely through a com-
mentary section. This open-text format allows participants to provide detailed insights,
comments, and suggestions based on their individual experiences with the gesture-based
and touch-based interactions.

The “Tutorial” module (i.e., first activity of the app, a maze-like scenario with ges-
ture-based level only) shows that pilot participants value it in an intermediate complexity
level (MEAN = 3.34; SD = 1.30) (see Figure 11). 23% of the participants noted that it is and
interesting module to understand the possibilities of the device sensors. Also, 36% of par-
ticipants highlighted that we need to smooth the precision in the movement when using
the sensors, as sometimes it is difficult to move the ball precisely through the scenario if
the device has to be placed at almost 90 degrees from the baseline position.

Figure 11. Data distribution for the rating variable in the “Tutorial” module.

Regarding the “GyrosLists” module (i.e., navigation through a list of elements), the
touch-based level has a lower perceived complexity (MEANtouch-based = 2.07; SDtouch-based =
2.10) than the gesture-based level (MEANgesture-based = 2.80; SDgesture-based = 1.78) to find the
required element in the list (see Figure 12). This may be possibly due to a latent learning
effect with the traditional touch-based ways of interacting with the GUI. As seen before,

Figure 11. Data distribution for the rating variable in the “Tutorial” module.

Regarding the “GyrosLists” module (i.e., navigation through a list of elements), the touch-
based level has a lower perceived complexity (MEANtouch-based = 2.07; SDtouch-based = 2.10)
than the gesture-based level (MEANgesture-based = 2.80; SDgesture-based = 1.78) to find the
required element in the list (see Figure 12). This may be possibly due to a latent learning
effect with the traditional touch-based ways of interacting with the GUI. As seen before,
participants required less time to complete the touch-based level. This is reflected in the fact
that 38% of the participants said that touch-based level was quick and easy. Nonetheless,
the gesture-based level was said to be slower but a more convenient way to interact with a
list of elements.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 19

participants required less time to complete the touch-based level. This is reflected in the
fact that 38% of the participants said that touch-based level was quick and easy. Nonethe-
less, the gesture-based level was said to be slower but a more convenient way to interact
with a list of elements.

Figure 12. Data distribution for the rating variable in the “GyroList” module.

The “GyroAvoid” module (i.e., avoiding collisions with only left and right move-
ments), presents a rather similar perceived complexity, both in touch-based level (MEAN-
touch-based = 2.75; SDtouch-based = 1.99) and in gesture-based level (MEANgesture-based = 2.82; SDgesture-

based = 1.96) (see Figure 13). The comments do not show a clear preference: 29% of partici-
pants liked more the gesture-based level, while 14% of participants preferred the touch-
based level. In addition, like in other modules, comments encouraged to make the gesture-
based interaction smoother for better interactions with the device sensors.

Figure 13. Data distribution for the rating variable in the “GyroAvoid” module.

Finally, in the “Survival” module (i.e., avoiding collisions with free movements), the
touch-based level presents a similar perceived complexity (MEANtouch-based = 2.36; SDtouch-

based = 1.94) than the gesture-based level (MEANgesture-based = 2.33; SDgesture-based = 1.98) (see
Figure 14). The trend is similar to the previous module, maybe because both of these mod-
ules are game-like scenarios and the differences between forms of interactions is not so
relevant in these cases. Similarly to the previous level, the comments do not show a clear
preference: 18% of participants liked more the gesture-based level, while 27% of partici-
pants preferred the touch-based level.

Figure 12. Data distribution for the rating variable in the “GyroList” module.

The “GyroAvoid” module (i.e., avoiding collisions with only left and right movements),
presents a rather similar perceived complexity, both in touch-based level (MEANtouch-based = 2.75;
SDtouch-based = 1.99) and in gesture-based level (MEANgesture-based = 2.82; SDgesture-based = 1.96)
(see Figure 13). The comments do not show a clear preference: 29% of participants liked
more the gesture-based level, while 14% of participants preferred the touch-based level.
In addition, like in other modules, comments encouraged to make the gesture-based
interaction smoother for better interactions with the device sensors.

Sensors 2024, 24, 1004 14 of 18

Sensors 2024, 24, x FOR PEER REVIEW 14 of 19

participants required less time to complete the touch-based level. This is reflected in the
fact that 38% of the participants said that touch-based level was quick and easy. Nonethe-
less, the gesture-based level was said to be slower but a more convenient way to interact
with a list of elements.

Figure 12. Data distribution for the rating variable in the “GyroList” module.

The “GyroAvoid” module (i.e., avoiding collisions with only left and right move-
ments), presents a rather similar perceived complexity, both in touch-based level (MEAN-
touch-based = 2.75; SDtouch-based = 1.99) and in gesture-based level (MEANgesture-based = 2.82; SDgesture-

based = 1.96) (see Figure 13). The comments do not show a clear preference: 29% of partici-
pants liked more the gesture-based level, while 14% of participants preferred the touch-
based level. In addition, like in other modules, comments encouraged to make the gesture-
based interaction smoother for better interactions with the device sensors.

Figure 13. Data distribution for the rating variable in the “GyroAvoid” module.

Finally, in the “Survival” module (i.e., avoiding collisions with free movements), the
touch-based level presents a similar perceived complexity (MEANtouch-based = 2.36; SDtouch-

based = 1.94) than the gesture-based level (MEANgesture-based = 2.33; SDgesture-based = 1.98) (see
Figure 14). The trend is similar to the previous module, maybe because both of these mod-
ules are game-like scenarios and the differences between forms of interactions is not so
relevant in these cases. Similarly to the previous level, the comments do not show a clear
preference: 18% of participants liked more the gesture-based level, while 27% of partici-
pants preferred the touch-based level.

Figure 13. Data distribution for the rating variable in the “GyroAvoid” module.

Finally, in the “Survival” module (i.e., avoiding collisions with free movements), the touch-
based level presents a similar perceived complexity (MEANtouch-based = 2.36; SDtouch-based = 1.94)
than the gesture-based level (MEANgesture-based = 2.33; SDgesture-based = 1.98) (see Figure 14).
The trend is similar to the previous module, maybe because both of these modules are
game-like scenarios and the differences between forms of interactions is not so relevant in
these cases. Similarly to the previous level, the comments do not show a clear preference:
18% of participants liked more the gesture-based level, while 27% of participants preferred
the touch-based level.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 19

Figure 14. Data distribution for the rating variable in the “Survival” module.

4. Discussion
Gyroscope and accelerometer sensors are widely applied across diverse domains in

mobile applications, and their effectiveness can vary significantly based on the specific
tasks and applications. Consequently, it becomes challenging to draw generalizable con-
clusions or find direct equivalences among different types of research works.

De Sun et al. [12] created a support tool for gesture-based interaction design that con-
nects gestures, actions, objects, and meanings through a database. They identified three
key features for UX with gesture-based interactions: “Ensure basic functionality”, “en-
hance accessibility” and “assign meaning and value”. We believe our app is easy, intuitive
and fulfills a need, thus covering all of these key features for this type of interaction. And,
in some ways, looking at what people said, we can see that using sensors to navigate the
UI is potentially attractive.

Chang et al. [33] applied the gyroscope and accelerometer sensors in an experiment
to help reach screen targets with one hand. They lead to the design of three novel mobile
interaction techniques, based on users’ natural tilting behavior with smartphones:
“TiltSlide” (screen moved to a more accessible zone), “TiltReduction” (screen adjusted to
a smaller size) and “TiltCursor” (use of a pointer controlled by the user’s finger). There
are no similar implementations to ours in what these authors propose. While we move UI
elements, the other authors move the screen. However, it should be noted that our appli-
cation does not lose any of the visible or useful space of the screen. This is contrary to
what these authors apply. Looking at the results, only TiltReduction (i.e., minimizing the
usable screen area, thus no tilt is applied in the final interaction) showed better results
than the traditional direct input. Somehow this coincides with what we found in our pilot
results. However, following the authors ideas, we found our research valuable given that
authors found that users tend to tilt the smartphone when the situation is uncomfortable
(mainly, left side of the screen and the screen edges).

Gesture-based interaction activities presented in our app are not integrated within
the typical mental activities with smartphones, so task complexity differs from traditional
forms of interaction (i.e., touch based). Therefore, as derived from Banu, Al Siyabi and Al
Minje [24], and Kosch et al. [25]; there is an expected higher cognitive load required on the
users’ brain to complete new tasks. Perhaps this is why participants took longer to com-
plete our gesture-based tasks. Authors pointed out that usability and standardization
would help to a better relationship between users and gesture-based HCI.

Inherently, there is a novelty in our proposed gesture-based interaction usage.
Touch-based interaction is the base form of interaction with smartphones. Our app (and,
therefore, users) faces learnability effects, like first time performance or ability to remem-
ber skills over time [42]. In gesture-based interactions with sensors, users meet a first-time

Figure 14. Data distribution for the rating variable in the “Survival” module.

4. Discussion

Gyroscope and accelerometer sensors are widely applied across diverse domains in
mobile applications, and their effectiveness can vary significantly based on the specific tasks
and applications. Consequently, it becomes challenging to draw generalizable conclusions
or find direct equivalences among different types of research works.

De Sun et al. [12] created a support tool for gesture-based interaction design that
connects gestures, actions, objects, and meanings through a database. They identified three
key features for UX with gesture-based interactions: “Ensure basic functionality”, “enhance
accessibility” and “assign meaning and value”. We believe our app is easy, intuitive and
fulfills a need, thus covering all of these key features for this type of interaction. And, in
some ways, looking at what people said, we can see that using sensors to navigate the UI is
potentially attractive.

Sensors 2024, 24, 1004 15 of 18

Chang et al. [33] applied the gyroscope and accelerometer sensors in an experiment to
help reach screen targets with one hand. They lead to the design of three novel mobile in-
teraction techniques, based on users’ natural tilting behavior with smartphones: “TiltSlide”
(screen moved to a more accessible zone), “TiltReduction” (screen adjusted to a smaller
size) and “TiltCursor” (use of a pointer controlled by the user’s finger). There are no similar
implementations to ours in what these authors propose. While we move UI elements, the
other authors move the screen. However, it should be noted that our application does not
lose any of the visible or useful space of the screen. This is contrary to what these authors
apply. Looking at the results, only TiltReduction (i.e., minimizing the usable screen area,
thus no tilt is applied in the final interaction) showed better results than the traditional
direct input. Somehow this coincides with what we found in our pilot results. However,
following the authors ideas, we found our research valuable given that authors found that
users tend to tilt the smartphone when the situation is uncomfortable (mainly, left side of
the screen and the screen edges).

Gesture-based interaction activities presented in our app are not integrated within
the typical mental activities with smartphones, so task complexity differs from traditional
forms of interaction (i.e., touch based). Therefore, as derived from Banu, Al Siyabi and Al
Minje [24], and Kosch et al. [25]; there is an expected higher cognitive load required on
the users’ brain to complete new tasks. Perhaps this is why participants took longer to
complete our gesture-based tasks. Authors pointed out that usability and standardization
would help to a better relationship between users and gesture-based HCI.

Inherently, there is a novelty in our proposed gesture-based interaction usage. Touch-
based interaction is the base form of interaction with smartphones. Our app (and, therefore,
users) faces learnability effects, like first time performance or ability to remember skills
over time [42]. In gesture-based interactions with sensors, users meet a first-time experi-
ence mixed with the known touch-based interaction skills. To perform under the same
conditions as touch-based, there is a learning curve that gesture-based users must over-
come. Therefore, the results that we have obtained are better (quantitative variable) in the
touch-based scenarios. However, we can see the potential of this gesture-based interac-
tions with smartphones, as we have seen in the opinions expressed by the participants
(qualitative variable).

However, understanding gesture-based interactions still requires future work. The
small sample size is the main limitation of the results shown here. This may impact the
generalizability of the findings to a broader audience and real-world scenarios. Moreover,
conclusions concerning long-term learning effects should be approached with caution,
given that the experimentation conducted here did not exceed one hour per participant.
Another limiting factor in discussing the significance of this study is the difficulty in
comparing the results with the limited number of similar studies in the literature. While
this study provides valuable insights into the integration of device sensors for enhanced use
of mobile apps, it is true that scarcity of similar studies in the existing literature complicates
the comparison and assessment of the results within the context of established knowledge.

5. Conclusions

In conclusion, this study presents a novel exploration of smartphone user experience
(UX) through the integration of gyroscope and accelerometer sensors for gesture-based
interactions with mobile User Interfaces (UIs). The development of an Android application
allowed us to create a pilot experimentation, revealing intriguing insights into the usabil-
ity dynamics of gesture-based interactions. Despite gesture-based tasks showing longer
completion times than touch-based tasks, participants consistently perceived these gesture-
based interactions as more appealing for UI interactions, suggesting a notable discrepancy
between efficiency metrics and user perceptions. This dichotomy highlights the need for a
deeper understanding of gesture-based UX beyond traditional touch-based interactions.

Moreover, the challenge of presenting a comprehensive discussion arises from the
context-specific nature of gesture-based applications with these sensors, making it difficult

Sensors 2024, 24, 1004 16 of 18

to generalize findings across diverse research studies and the limited number of works.
The limited similar literature underscores the novelty of our findings, as the absence of
analogous research highlights our contribution to the field. While the small sample size
and scarcity of comparable studies are limitations, this also emphasizes the pioneering
nature of our exploration into gesture-based interactions, offering fresh perspectives and
future research lines in the dynamic landscape of mobile app usage and usability.

This study contributes valuable considerations for the design and usage of mobile
applications with sensors as a main interaction element. Moving forward, the field may
benefit from tailored future work approaches that acknowledge the special feature of sensor
applications in different domains.

First, conducting larger-scale studies with a more diverse participant pool could
provide a more robust understanding of the generalizability of the observed trends and
user preferences. This would involve engaging users demographically broader to ensure
the applicability of the findings across various user profiles.

Second, investigate the long-term effects of gesture-based interactions by extending
the study duration and assessing user experiences over an extended period. This approach
would capture potential learning curves, usage patterns, and real-world scenarios.

In addition, it should be very important to extend and refine the developed Android
application. Currently, the app has limited user cases tailored to browsing lists and avoiding
failing blocks. It is required to add new modules to the app, each carefully designed to
further investigate specific facets of gesture-based interactions—for example, back and forth
navigation, interacting with contextual menus, or interacting with buttons, among other
app interactions. Furthermore, a crucial expansion lies in the exploration of cross-platform
integration, analyzing sensor usage in iOS and other platforms.

These potential avenues for future work aim to further refine our understanding of the
complex interplay between sensors, user interactions, and mobile app design, contributing
to the enhancement of user experiences in the evolving digital landscape.

Author Contributions: Conceptualization, S.C.-A. and E.G.-L.; data curation, A.M.; formal anal-
ysis, A.G.-C.; funding acquisition, A.G.-C.; investigation, E.G.-L.; methodology, A.G.-C.; project
administration, E.G.-L.; resources, A.B.-G.; software, S.C.-A. and A.B.-G.; supervision, E.G.-L.; valida-
tion, S.C.-A., E.G.-L. and A.M.; visualization, A.B.-G.; writing—original draft, S.C.-A. and A.G.-C.;
writing—review and editing, E.G.-L. and A.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: Data are contained within this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Y.; Rong, H. A Customized Extended Kalman Filter for Removing the Impact of the Magnetometer’s Measurements

on Inclination Determination. Sensors 2023, 23, 9756. [CrossRef] [PubMed]
2. Fan, B.; Li, Q.; Wang, C.; Liu, T. An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of

Magnetic Disturbances. Sensors 2017, 17, 1161. [CrossRef]
3. XDA-Developers. Sensors in Moto G 3rd Gen. 2015. Available online: https://forum.xda-developers.com/t/sensors-in-moto-g-

3rd-gen.3169020/ (accessed on 9 September 2021).
4. Google. Android Compatibility Definition. 2021. Available online: https://source.android.com/compatibility/android-cdd

(accessed on 9 September 2021).
5. Apple. iPhone—Technical Specifications. 2007. Available online: https://support.apple.com/kb/SP2 (accessed on 9 September

2021).
6. Apple. iPhone 4—Technical Specifications. 2010. Available online: https://support.apple.com/kb/SP587 (accessed on 9

September 2021).

https://doi.org/10.3390/s23249756
https://www.ncbi.nlm.nih.gov/pubmed/38139602
https://doi.org/10.3390/s17051161
https://forum.xda-developers.com/t/sensors-in-moto-g-3rd-gen.3169020/
https://forum.xda-developers.com/t/sensors-in-moto-g-3rd-gen.3169020/
https://source.android.com/compatibility/android-cdd
https://support.apple.com/kb/SP2
https://support.apple.com/kb/SP587

Sensors 2024, 24, 1004 17 of 18

7. Dix, A. Human-computer interaction. In Encyclopedia of Database Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp.
1327–1331.

8. ISO 9241–210:2010; Ergonomics of Human System Interaction—Part 210: Human-Centred Design for Interactive Systems.
International Standardization Organization (ISO): Geneva, Switzerland, 2009.

9. Norman, D.; Nielsen, J. The Definition of User Experience (UX). 1998. Available online: https://www.nngroup.com/articles/
definition-user-experience/ (accessed on 28 June 2018).

10. Law, E.L.C.; Roto, V.; Hassenzahl, M.; Vermeeren, A.P.; Kort, J. Understanding, scoping and defining user experience: A survey
approach. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009;
ACM: New York, NY, USA, 2009.

11. ISO 9241-11:1998; Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)—Part 11: Guidance on
Usability. International Organization for Standardization: Geneva, Switzerland, 1998.

12. Sun, Z.; Wang, S.; Liu, C.; Ma, X. Metaphoraction: Support Gesture-based Interaction Design with Metaphorical Meanings. ACM
Trans. Comput. -Hum. Interact. 2022, 29, 33. [CrossRef]

13. Meyer, A. Using Gyroscopes to Enhance Motion Detection; Valparaiso University: Valparaiso, IN, USA, 2020.
14. Sünger, I.; Çankaya, S. Augmented reality: Historical development and area of usage. J. Educ. Technol. Online Learn. 2019, 2,

118–133. [CrossRef]
15. Sushil, C.; Sonkar, R.; Sanghmitra; Srivastava, P.; Ayusi. Development of Android-Based Mobile Application Using Gyroscope

Sensor. Int. J. Innov. Res. Comput. Sci. Technol. 2022, 10, 138–141. [CrossRef]
16. Pogue, D. iPhone: The Missing Manual, 9th ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.
17. Undefined. Shake to undo in iOS. In Mac OSX Hints. 2010.
18. Wikipedia. iOS 9—Build 13A340. 2021. Available online: https://en.wikipedia.org/wiki/IOS_version_history (accessed on 8

September 2021).
19. Apple. iPhone OS 3.0 Software Update. 2009. Available online: www.apple.com/iphone/softwareupdate/ (accessed on 10

September 2021).
20. Ville-Immonen. MouseMote AirRemote. 2016. Available online: https://play.google.com/store/apps/details?id=com.vi.

mousemote (accessed on 10 September 2021).
21. Terminal-Eleven-LLC. SkyView. 2010. Available online: https://apps.apple.com/us/app/skyview/id404990064 (accessed on 10

September 2021).
22. Oviatt, S.; Cohen, P. Perceptual user interfaces: Multimodal interfaces that process what comes naturally. Commun. ACM 2000, 43,

45–53. [CrossRef]
23. Hare, J.; Karam, M.; Lewis, P. iGesture: A Platform for Investigating Multimodal, Multimedia Gesture-Based Interactions; University of

Southampton: Southampton, UK, 2005.
24. Banu, R.A.; Al Siyabi, W.S.A.; Al Minje, Y. A conceptual review on integration of cognitive load theory and human-computer

interaction. In Proceedings of the 2021 International Conference on Software Engineering & Computer Systems and 4th
International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), Pekan, Malaysia, 24–26
August 2021.

25. Kosch, T.; Karolus, J.; Zagermann, J.; Reiterer, H.; Schmidt, A.; Woźniak, P.W. A survey on measuring cognitive workload in
human-computer interaction. ACM Comput. Surv. 2023, 55, 1–39. [CrossRef]

26. Wu, W.; Dasgupta, S.; Ramirez, E.E.; Peterson, C.; Norman, G.J. Classification accuracies of physical activities using smartphone
motion sensors. J. Med. Internet Res. 2012, 14, e2208. [CrossRef]

27. Vavoulas, G.; Pediaditis, M.; Chatzaki, C.; Spanakis, E.G.; Tsiknakis, M. The mobifall dataset: Fall detection and classification
with a smartphone. Int. J. Monit. Surveill. Technol. Res. 2014, 2, 44–56. [CrossRef]

28. Douangphachanh, V.; Oneyama, H. Exploring the use of smartphone accelerometer and gyroscope to study on the estimation of
road surface roughness condition. In Proceedings of the 2014 11th International Conference on Informatics in Control, Automation
and Robotics (ICINCO), Vienna, Austria, 2–4 September 2014.

29. Hernández Sánchez, S.; Fernández Pozo, R.; Hernández Gómez, L.A. Estimating Vehicle Movement Direction from Smartphone
Accelerometers Using Deep Neural Networks. Sensors 2018, 18, 2624. [CrossRef] [PubMed]

30. Kos, A.; Tomažič, S.; Umek, A. Suitability of smartphone inertial sensors for real-time biofeedback applications. Sensors 2016, 16,
301. [CrossRef] [PubMed]

31. Umek, A.; Kos, A.; Tomaic, S. Validation of smartphone gyroscopes for angular tracking in biofeedback applications. In
Proceedings of the 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI),
Beijing, China, 22–23 October 2015.

32. Al-Haiqi, A.; Ismail, M.; Nordin, R. On the best sensor for keystrokes inference attack on android. Procedia Technol. 2013, 11,
989–995. [CrossRef]

33. Chang, Y.; L’Yi, S.; Koh, K.; Seo, J. Understanding users’ touch behavior on large mobile touch-screens and assisted targeting by
tilting gesture. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of
Korea, 18–23 April 2015.

https://www.nngroup.com/articles/definition-user-experience/
https://www.nngroup.com/articles/definition-user-experience/
https://doi.org/10.1145/3511892
https://doi.org/10.31681/jetol.615499
https://doi.org/10.55524/ijircst.2022.10.6.21
https://en.wikipedia.org/wiki/IOS_version_history
www.apple.com/iphone/softwareupdate/
https://play.google.com/store/apps/details?id=com.vi.mousemote
https://play.google.com/store/apps/details?id=com.vi.mousemote
https://apps.apple.com/us/app/skyview/id404990064
https://doi.org/10.1145/330534.330538
https://doi.org/10.1145/3582272
https://doi.org/10.2196/jmir.2208
https://doi.org/10.4018/ijmstr.2014010103
https://doi.org/10.3390/s18082624
https://www.ncbi.nlm.nih.gov/pubmed/30103422
https://doi.org/10.3390/s16030301
https://www.ncbi.nlm.nih.gov/pubmed/26927125
https://doi.org/10.1016/j.protcy.2013.12.285

Sensors 2024, 24, 1004 18 of 18

34. Lee, H.; Yoong, A.C.H.; Lui, S.; Vaniyar, A.; Balasubramanian, G. Design exploration for the “squeezable” interaction. In
Proceedings of the 28th Australian Conference on Computer-Human Interaction, Launceston, Tasmania, Australia, 29 November–
2 December 2016.

35. Huang, Z.; Li, W.; Hui, P. Ubii: Towards seamless interaction between digital and physical worlds. In Proceedings of the 23rd
ACM international conference on Multimedia, Brisbane, Australia, 26–30 October 2015.

36. Vatavu, R.-D. Nomadic gestures: A technique for reusing gesture commands for frequent ambient interactions. J. Ambient. Intell.
Smart Environ. 2012, 4, 79–93. [CrossRef]

37. Di Geronimo, L.; Husmann, M.; Patel, A.; Tuerk, C.; Norrie, M.C. CTAT: Tilt-and-tap across devices. In Proceedings of the
International Conference on Web Engineering, Lugano, Switzerland, 6–9 June 2016; Springer: Berlin/Heidelberg, Germany, 2016.

38. Mich, O.; Schiavo, G.; Ferron, M.; Mana, N. Framing the design space of multimodal mid-air gesture and speech-based interaction
with mobile devices for older people. Int. J. Mob. Hum. Comput. Interact. (IJMHCI) 2020, 12, 22–41. [CrossRef]

39. Boring, S.; Jurmu, M.; Butz, A. Scroll, tilt or move it: Using mobile phones to continuously control pointers on large public
displays. In Proceedings of the 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group:
Design: Open 24/7, Melbourne, Australia, 23–27 November 2009.

40. Serackis, A.; Miniotas, D.; Katkevičius, A.; Krukonis, A.; Plonis, D. The study of extraneous conditions that affect tilt-based
pointer movements. In Proceedings of the 11th International Conference Biomdlore, Druskininkai, Lithuania, 20–22 October 2016.

41. Yu, S.-B.; Yoon, H.; Park, S.-H.; Lee, K.-T. Motion UI: Motion-based user interface for movable wrist-worn devices. In Proceedings
of the 2017 IEEE 7th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 3–6 September
2017.

42. Grossman, T.; Fitzmaurice, G.; Attar, R. A survey of software learnability: Metrics, methodologies and guidelines. In Proceedings
of the CHI ′09: SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009; Association for
Computing Machinery: Boston, MA, USA, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3233/AIS-2012-0137
https://doi.org/10.4018/IJMHCI.2020010102

	Introduction
	Materials and Methods
	Description of the Mobile Application
	Integrating Gyroscope and Accelerometer Sensors in the Application

	Results
	Analyzing Quantitative Data from the Pilot Study
	Analyzing Qualitative Data from the Pilot Study

	Discussion
	Conclusions
	References

