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Abstract: In this work, conceptual approximations of the Boussinesq equation were introduced and
analyzed, resulting into a very accurate and well-applicable model for horizontal unconfined aquifers
during the pure drainage phase, without any recharge and zero-inflow conditions. The model was
constructed by employing a variety of methods that included wave solution, variable separation, and
series expansion, and its analysis and performance against the Boussinesq equation, at early and later
times, providing fruitful insights enlightening the main mechanisms and physical characteristics of
the drainage phase. The modeled non-linear forms were finally linearized, concluding with explicit
analytical expressions that accurately incorporated most of the basic characteristics regarding the
evolution of the water table and the outflow from the exact Boussinesq equation under different
initial conditions. The endeavors of this work can be utilized for theoretical and modeling purposes
related to this problem.

Keywords: analytical solutions; approximate solutions; wave; separation of variables; series-expansion;
early times; late times; unconfined aquifer; drainage phase

1. Introduction

Understanding groundwater dynamics is crucial in hydraulic engineering in order to
describe and analyze fluid flow through aquifers, whether they are horizontal or inclined.
The Boussinesq equation [1,2] effectively models water flow in aquifers. The equation
is derived using the classical Dupuit–Forchheimer assumptions [3–5], considering a two-
dimensional, horizontally infinite, homogeneous aquifer under fully saturated conditions,
involving horizontal flow with a negligible vertical component.

In reality, vertical flow often varies with depth due to factors like aquifer heterogeneity,
anisotropy, and varying hydraulic conductivity, which affect the accuracy of the model.
Additionally, real aquifers are finite, and ignoring boundary effects can lead to inaccurate
predictions of groundwater behavior, particularly near the edge. However, such assump-
tions provide a simplified framework for analyzing groundwater flow under idealized
conditions and facilitate the derivation of analytical solutions. The primary challenge in
obtaining solutions is the equation’s nonlinearity. This arises from dimensional considera-
tions and the assumption that vertical flow can be treated as homogeneous, making the
fluid flux proportional to the free-surface height times the hydraulic gradient.

Due to the dynamic nature of the Boussinesq equation in various groundwater flow
applications, extensive theoretical and experimental efforts have been made [6–22] to find
both exact and approximate solutions tailored to specific scenarios, after defining the math-
ematical problem with appropriate boundary conditions. New models of the Boussinesq
equation for water flow accurately simulate groundwater dynamics, offering analytical
and numerical solutions for unconfined aquifers during drainage, with applications in
hydrology and engineering. According to [23], water motion involves the flow of water
molecules, driven by forces like gravity, pressure gradients, and wind through various
mediums such as rivers, oceans, aquifers, and atmospheric systems.
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Finding solutions to the Boussinesq equation is vital, and the pursuit of both analytical
and approximate solutions remains an active research area. When feasible, approximate
solutions offer the benefits of simplicity and ease of mathematical treatment, making them
straightforward to implement. Although not entirely capturing the complexity of real
cases in the field, such solutions offer clear insights into the main mechanisms and physics
behind the problem and can be used as building blocks in understanding and modeling
more complicated and representative examples. This is precisely the motivation driving
this research.

Specifically, in this study, naturally applicable approximations were employed to
construct a new model for subsurface flow over a horizontal bed during the pure drainage
phase of unconfined aquifers under steady hydraulic conditions. Both numerical and
analytical solutions were derived, and it was shown that they accurately captured the
main nonlinear Boussinesq equation characteristics, decoding changes in the water table
shape and depth, while handling different initial conditions in contrast to former works. In
the problem at hand, the case may start with a full aquifer at a steady state, created after
uniform recharge at a constant rate [24–26]. Stopping recharging leads to the transition to
the pure drainage phase, which is the topic of the present work.

Similarly, drainage can be conceptually forced by applying a sudden drawdown,
which is a well-studied case for a semi-infinite aquifer, modified to approximate the finite
one [7,27–33] in a quite cumbersome way that obscures the main mechanisms driving the
flow. Furthermore, such solutions, although very accurate, are tailored to a very specific
initial condition, not allowing for their general applicability.

In general, for the case of groundwater flowing in a horizontal finite aquifer at a
zero-recharge rate, the solution of the equation can be obtained by assuming separation of
the variables [2,7], which is actually an exact asymptotic solution of the horizontal aquifer
recession phase for late times. However, the intermediate behavior of the flow and its
response to different initial conditions is not well-known, which is where this work is trying
to offer some insights.

The rest of this paper is organized as follows. In Section 2, we present the derivation of
the Boussinesq equation during drainage and proceed with dimensionless formulation and
analysis of the late-time behavior of the drainage phase, linking the findings with the series
expansion of the profile. In Section 3, we introduce and analyze a novel approximate model
for solving the drainage phase for several different initializations using the methods of
wave approximation and series expansion. The model encapsulates the main characteristics
of Boussinesq and satisfies mass-balance, furthermore, after linearization, it allows for a
clear, explicit, and very accurate approximation. Finally, in Section 4, the major results of
this work are summarized and emphasized.

2. Pure Drainage Flow in Horizontal Unconfined Aquifers

This section aims to summarize the established results to ensure that our presentation
is comprehensive. The formulation to be presented incorporates common assumptions
in aquifer modeling, particularly addressing the drainage phase of a horizontal aquifer
following the recharge period. The aquifer was assumed to be horizontal with a flat bed and
uniform hydraulic properties both spatially and temporally. We also assumed uniform and
constant hydraulic conductivity (k) and drainable porosity (n) throughout the aquifer, with
the resulting flow considered saturated and effectively one-dimensional. The impermeable
bottom of the aquifer was also assumed to be flat and horizontal. A diagram of the aquifer
with its main characteristics is provided in Figure 1.
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Figure 1. Cross-sectional schematic diagram of a horizontal soil layer with constant and uniform 

hydraulic conditions during the pure drainage period. 

The Dupuit–Forchheimer approximation links the flow per unit of width for each 

time instant, T, and for each position, X, over the application area (0 < X < L), with the 

hydraulic parameters and the water profile depth [3–5] through 

𝑄 = −𝑘 𝐻
𝜕𝐻

𝜕𝑋
 (1) 

where H(X,T) is the water table’s depth at position X at time T and k is the hydraulic con-

ductivity. The continuity equation (describing the mass conservation) expresses that the 

total amount of water flowing in any part of the aquifer locally (zero in the case of pure 

drainage) equals the sum of the amount of water flowing through it, ∂Q/∂X, plus the 

change in the storage capacity, 𝑛 ∂H/∂T, which in the case of pure drainage without any 

recharging, is written as follows: 

𝑛 
∂𝐻

∂𝑇
+

∂𝑄

∂𝑋
= 0 (2) 

where n is the drainable porosity. Combining Equations (1) and (2) allows us to obtain the 

Boussinesq equation [1–3] for the horizontal aquifer during pure drainage as follows 

𝑛
∂𝐻(𝑋, 𝑇)

∂𝑇
 =

𝑘

2

∂2𝐻2(𝐻, 𝑇)

∂𝑋2
 (3) 

where k (m s−1) is the hydraulic conductivity, H (m) is the water profile depth as a function 

of time, T (s), and of the horizontal dimension 0 < X (m) < L, over the whole application 

area. The previous nonlinear differential equation may be subjected to various boundary 

conditions depending on the nature of the problem, with the most common approxima-

tions the imposing of a zero depth at the outer bound, 

𝐻(𝐿, 𝑇) = 0 (4) 

and a zero-flow, Q = 0, condition at the beginning, implying a locally horizontal profile, 

𝐻′(0, 𝑇) = 0. 

𝑄(0, 𝑇) =
𝜕𝐻

𝜕𝑋
|

𝑋=0
= 0 (5) 

These boundary conditions (4) and (5) will be used in the analysis that follows. Inte-

grating Equation (3) (local conservation of mass) along the entire aquifer and considering 

the zero-inflow boundary condition (4) implies that 

𝑑�̃�(𝑇)

𝑑𝑇
+ 𝑄𝑜𝑢𝑡(𝑇) = 0 (6) 

Figure 1. Cross-sectional schematic diagram of a horizontal soil layer with constant and uniform
hydraulic conditions during the pure drainage period.

The Dupuit–Forchheimer approximation links the flow per unit of width for each time
instant, T, and for each position, X, over the application area (0 < X < L), with the hydraulic
parameters and the water profile depth [3–5] through

Q = −k H
∂H
∂X

(1)

where H(X,T) is the water table’s depth at position X at time T and k is the hydraulic
conductivity. The continuity equation (describing the mass conservation) expresses that
the total amount of water flowing in any part of the aquifer locally (zero in the case of
pure drainage) equals the sum of the amount of water flowing through it, ∂Q/∂X, plus the
change in the storage capacity, n ∂H/∂T, which in the case of pure drainage without any
recharging, is written as follows:

n
∂H
∂T

+
∂Q
∂X

= 0 (2)

where n is the drainable porosity. Combining Equations (1) and (2) allows us to obtain the
Boussinesq equation [1–3] for the horizontal aquifer during pure drainage as follows

n
∂H(X, T)

∂T
=

k
2

∂2H2(H, T)
∂X2 (3)

where k (m s−1) is the hydraulic conductivity, H (m) is the water profile depth as a function
of time, T (s), and of the horizontal dimension 0 < X (m) < L, over the whole application
area. The previous nonlinear differential equation may be subjected to various boundary
conditions depending on the nature of the problem, with the most common approximations
the imposing of a zero depth at the outer bound,

H(L, T) = 0 (4)

and a zero-flow, Q = 0, condition at the beginning, implying a locally horizontal profile,
H′(0, T) = 0.

Q(0, T) =
∂H
∂X

∣∣∣∣
X=0

= 0 (5)
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These boundary conditions (4) and (5) will be used in the analysis that follows. Inte-
grating Equation (3) (local conservation of mass) along the entire aquifer and considering
the zero-inflow boundary condition (4) implies that

dS̃(T)
dT

+ Qout(T) = 0 (6)

where the total water storage S̃(T) is

S̃(T) = n
∫ L

0
H(X, T) dX (7)

and the outflow is

Qout(T) = Q(L, T) = − k
2

∂H2(H, T)
∂X

∣∣∣∣
X=1

(8)

The total mass conservation (6) is a useful guide both in the construction of approxi-
mate solutions and models [23–25] as well as in phenomenological analyses with realistic
applications in hydrology (e.g., as in [25]) and serves as an important tool in our present
work. In order to complete the description of the problem at hand, an initial condition
must be specified. The most interesting and clearly well-separated initial conditions found
in the literature for the pure drainage case is either the steady state after infinite constant
recharge analyzed in detail in [23,24]

H(X, 0) = H0

√
1 − X2

L2 (9)

or a uniform initial water depth [7,26–30], in other words

H(X, 0) = H0 (10)

In the following sections, we present a novel method for approximating the solution
of Equation (3) using the boundary conditions (4) and (5) with the initial conditions as (9)
and (10), which are presented in Figure 2. The applicability of our solution to reasonable
initial conditions between these two will also be discussed.
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hydraulic conditions during the pure drainage period with two well-separated initial conditions.
The steady state (9) after constant recharge of an infinite period (continuous line) and a uniform
horizontal water table (10) (dashed line).
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2.1. Dimensionless Form of the Boussinesq Equation During Pure Drainage

The dimensional hydraulic and geometrical parameters employed in the Boussinesq
Equation (3) setup are the horizontal aquifer’s length, L (m), the hydraulic conductivity,
k (m s−1), and the initial depth at X = 0, H0 = H(0,0) (m). In a sense, the latter can be
interpreted as a reminiscence of the recharging phase that led to each specific initial
condition of the pure drainage to be studied. Making use of these basic scales allows us to
rewrite Boussinesq Equation (3) during pure drainage in its dimensionless form

h(x, t) =
1
2

∂2h2(x, t)
∂x2 (11)

where the main dimensional parameters H, X, T are replaced by their dimensionless analogs

h =
H
H0

, x =
X
L

, t =
kH0T
nL2 (12)

In this dimensionless form, the flow rate becomes

q =
QL
kH2

0
= −h

∂h
∂x

(13)

The boundary conditions in the dimensionless form read

h(1, t) = 0, q(0, t) =
∂h
∂x

∣∣∣∣
x=0

= 0 (14)

and the initial conditions (9) and (10) that will be mainly studied become

h(x, 0) =
√

1 − x2 (15)

for an initially steady state flow after recharging for an infinite time, and

h(x, 0) = 1 (16)

for an initially uniform horizontal water table. Integrating Equation (11) along the en-
tire aquifer and utilizing the zero-inflow boundary condition (14) concludes with the
dimensionless form of the water balance Equation (6), that is

dS(t)
dt

+ qo(t) = 0 (17)

where the dimensionless storage S(t) is

S(t) =
∫ 1

0
h(x, t) dx (18)

and the dimensionless outflow is

qo(t) = q(1, t) = −1
2

∂h2(x, t)
∂x

∣∣∣∣
x=1

(19)

2.2. Series Expansion and Late-Time Asymptotic Analysis of the Water Table During Pure Drainage

For the case of groundwater flowing in a horizontal finite aquifer at a zero-recharge
rate, the solution of the Boussinesq equation can be obtained by assuming the separation
of variables [2,3,7]. This is actually an exact asymptotic solution of the horizontal aquifer
recession phase for late times. Following a slightly modified, for the needs of the work that



Water 2024, 16, 2984 6 of 23

will follow, but equivalent analysis with Boussinesq [1,2], in this work, the water profile
was written in the form

h(x, t) = ho(t) s(x, t) (20)

where ho(t) is the water depth at x = 0,

ho(t) = h(0, t) (21)

which reflects the evolution of the relative depth of the water table, which normally
decreases during the pure drainage phase. On the other hand, s(x, t) incorporates any
change in the shape of the water table during the drainage phase. Noting that h(x, t) and,
correspondingly, s(x, t) and s2(x, t) are even functions of x, helps us proceed with the series
expansion of s(x, t) as follows.

s2(x, t) = 1 − a1(t) x2 + a2(t) x4 + a3(t) x6 + . . . (22)

where, in order to satisfy all the proper boundary conditions,

s(0, t) = 1, s(1, t) = 0,
∂s
∂x

∣∣∣∣
x=0

= 0 (23)

the sum of the parameters ai(t), should equal

a1(t) = 1 +
∞

∑
i=2

ai(t) (24)

After substituting h(x, t) given by Equation (20) in the Boussinesq Equation (11), its
equivalent form is derived

.
ho(t) s(x, t) + ho(t)

.
s(x, t) =

h2
0(t)
2

∂2s2(x, t)
∂x2 (25)

The reader should have noticed that in the previous Equation (25), dot notation is
used to refer to the time derivative d/dt to facilitate the writing of the rather long equations.
This notation will be used for the rest of the work to represent the time derivatives.

Taking the limit of the Boussinesq Equation (25) at x = 0, and noting that s(0, t) = 1
from (23), we can conclude that the evolution of ho(t) depends solely on a1(t) through

.
ho(t)
h 2

o (t)
= −dho

−1(t)
dt

=
1
2

∂2s2(x, t)
∂x2

∣∣∣∣
x=0

= −a1(t) (26)

Calculating higher derivatives of even order, in terms of x, of the Boussinesq Equation
(25) and taking its limit at x = 0, allows one to see that the evolution of the parameters ai(t),
in ascending order, is also linked to the evolution of a1(t). For instance, by calculating the
second derivative versus x of Equation (25) and taking the limit at x = 0 led to the derivation
of a2(t) as a function of a1(t)

12 a2(t) = a1
2(t)− h

−1
o (t)

.
a1(t) (27)

By calculating the fourth derivative, one derives a3(t), as a function of a1(t) and a2(t)

360 a3(t) = 2a3
1(t)− 5a1(t)

.
a1(t) h−1

o (t) + 12
.
a2(t) h−1

o (t) (28)
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and so on. In its general form, the evolution of ai(t) for i > 1 is calculated through the
following limit

1
h 2

o (t)
d
dt

(
ho(t)

∂2i−2s(x, t)
∂x2i−2

∣∣∣∣
x=0

)
=

1
2

∂2is2(x, t)
∂x2i

∣∣∣∣
x=0

=
(2i)!

2
ai(t) (29)

This analysis revealed the central role of a1(t) in controlling the evolution of the water
table, h(x, t) = ho(t) s(x, t). In other words, knowing the exact behavior of a1(t) means
that we can determine the evolution of the shape with the desired accuracy, depending on
the terms that are kept in the series expansion of s(x, t), as will be discussed and applied in
the next section.

When all of the time derivatives in the shape formation vanish (i.e., in Equations (27)
and (28), all ai(t) reach their finite values, resulting in a late-time shape s(x) independent
of time, which is a function of x only. All parameters are taken as finite values that
depend solely on the finite value, α1 f , of the controlling parameter α1, and the shape
function becomes

s(x) =

√
1 − α1 f x2 +

α1 f
2

12
x4 +

α1 f
3

180
x6 +

α1 f
4

720
x8 +

α1 f
5

2025
x10 . . . (30)

where they appear as terms up to the 5th-order.
Unfortunately, Equation (30) cannot be written as an explicit infinite sum. Each term

of order i should be calculated separately, using respectively the (2i−2)-order derivative
versus x of Bousinesq Equation (25), through Equation (29), and all previous terms of lower
order. However, Equation (30), together with Equation (26) and the presented analysis,
offer an interesting interpretation focusing on the main mechanisms of profile deformation
and may serve as a nice and effective modeling tool, as will be shown later.

The late-time behavior of the water table and its constant shape can be explicitly
described by the analysis given in [2,7] by applying the separation of variables in the
Boussinesq equation. Equivalently, in the direction of our interpretation thus far, when the
profile reaches a constant shape s(x), the Boussinesq Equation (25) simplifies to

.
ho(t) s(x) =

h2
0(t)
2

∂2s2(x)
∂x2 (31)

where the separation of the variables is now clear and physically well-justified. Recalling

the result of Equation (26),
.

ho(t)
h 2

o (t)
= −a1(t), one realizes that Equation (31) should satisfy

.
ho(t)
h 2

o (t)
=

1
2

∂2s2(x)
∂x2 = c = −a1 f (32)

where a1 f must be greater than zero, a1 f > 0. Equation (21) can be fed an arbitrary initial
condition

ho(0) = h0 (33)

and boundary conditions as in Equation (23),

s(1) = 0, s(0) = 1, s′(x)
∣∣
x=0 = 0 (34)

The general solution of (32) for the profile, satisfying the first and the third of the
boundary conditions (34), is expressed in the form of the inverse function

x = 1 − s2(x)

√
3 2F1

(
1
2 , 2

3 , 5
3 , s3(x)

)
2
√

2α1 f
(35)
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where 2F1 is the ordinary hypergeometric function. Furthermore, using the boundary
condition at x = 0, s(0) = 1 allows for the calculation of the finite value of α1, which equals

α1 f =

√
3 2F1

(
1
2 , 2

3 , 5
3 , 1
)

√
8

=
3π

8
Γ
( 5

3
)2

Γ
( 7

6
)2 ≈ 1.11552 (36)

After that, the finite shape storage factor (i.e., the storage of the finite shape of the
water table), So f = S/ho =

∫ 1
0 s(x) dx =

∫ 1
0 x ds, can be calculated as

So f =
4 Γ
( 7

6
)

3
√

πΓ
( 5

3
) ≈ 0.773064 (37)

In the other direction, the solution of Equation (32) for the time dependent part, ho(t),
becomes

ho(t) =
1

h−1
0 + a1 f t

(38)

and correspondingly, the storage at late times evolves as

S(t) = So ho(t) =
So f

h−1
0 + a1 f t

(39)

and the outflow, qo(t), associated with the late-time analysis reads

qo(t) = −
.
S(t) =

a1 So f

(h −1
0 + a1 f t

)2 (40)

Of course, the slope of the squared profile at the outer bound, x = 1, satisfies the mass
conservation,

1
2

∂h2(x, t)
∂x

∣∣∣∣
x=1

=
h2

o(t)
2

ds2(x)
dx

∣∣∣∣
x=1

= −qo(t) (41)

concluding that the slope of the squared shape function, s2(x), at x = 1 is

−1
2

ds2(x)
dx

∣∣∣∣
x=1

= a1 f So f ≈ 0.86237 (42)

The above analysis and the findings regarding the central role of a1 in the water profile
formation and the late-time asymptotic character of the solution will serve as the basis for
constructing an accurate model that mimics the exact Boussinesq equation in reproducing
many features of the evolution of the water table during drainage.

3. A New Model for the Drainage Phase of Horizontal Unconfined Aquifer

Capitalizing on the results in Section 2.2, we constructed a model for the accurate
derivation of the evolution of parameter a1(t). As explained in detail, having a1(t) means
determining the evolution of both the water table head ho(t) and the shape of the profile
s(x, t) with an accuracy that depends on how many terms ai(t) are used. To our knowledge,
there are no other works emphasizing the evolution of a1(t), making our findings quite
novel. The model offers new insights in describing and understanding the water table
modifications during drainage and can serve as an efficient modeling tool.

In the direction of the previous analysis, we utilized the expansion presented in
Equations (20)–(22), expressing the water profile as

h(x, t) = ho(t) s(x, t) (43)
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keeping as many terms as needed, up to the desired order x2ν, thus approximating s(x, t) as

s2(x, t) = 1 − a1(t) x2 +
ν−1

∑
i=2

ai(t) x2i +

(
a1 − 1 −

ν−1

∑
i=2

ai(t)

)
x2ν (44)

to conform to all boundary conditions (23). To satisfy mass conservation, (43) was intro-

duced into the mass balance Equation (17), dS
dt = 1

2
dh2(x,t)

dx

∣∣∣
x=1

, deriving

dho(t) So(a1, a2, . . .)
dt

=
1
2

h2
o(t)

∂s2(x, t)
∂x

∣∣∣∣
x=1

(45)

where So(t) is the shape storage factor

So(t) =
∫ 1

0
s(x, t) dx (46)

and is a function of the model’s parameters ai(t). Noting also that the slope of the squared
shape function s2(x, t) by Equation (44) at x = 1 is

∂s2(x, t)
2∂x

∣∣∣∣
x=1

= −ν + (ν − 1)a1 −
ν−1

∑
i=2

(ν − i)ai (47)

and using the result of Equation (26)

∂h−1
o (t)
∂t

= a1(t) (48)

the mass conservation Equation (45) yields

a1So − h−1
o

ν−1

∑
i=1

∂So

∂ai

.
ai = ν − (ν − 1)a1 +

ν−1

∑
i=2

(ν − i)ai (49)

which is the core of the present model’s formulation. Note that although in (49) we
explicitly omitted writing the time dependence, the reader should still consider that all
parameters are functions of time, ai = ai(t). Equation (49) forms a close system together
with the relations for the evolution of ai(t) by the (2i–2)-order derivative versus x of the
Boussinesq Equation (25) through Equation (29), as analyzed in the previous section. This
system constitutes the main modeling idea of this work and will be used extensively in
the following.

At late times, when all time derivatives of ai vanish in the model’s Equation (49), a1
reaches a finite state a1 f , and successively through Equation (29), the rest of the parameters
ai are taken as finite values depending on a1 f ,

a2 f =
α1 f

2

12
, a3 f =

α1 f
3

180
, a4 f =

α1 f
4

720
, a5 f =

α1 f
5

2025
. . . (50)

Thus, the profile takes a constant shape, depending solely on a1 f . The finite value of
a1 then becomes a function of the order ν of the model in Equation (49). In other words, it
depends on the number of the terms that are used in expansion (44) by solving the steady
form of the mass balance Equation (49), which is expressed through

a1 f Sof = ν − (ν − 1)a1 f +
ν−1

∑
i=2

(ν − i)ai f (51)

where any time dependence has been removed. The gradual approach of a1 f to its exact
value given by Equation (36) as the order ν of model (49) increases is shown in Figure 3.
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3.1. Analysis and Application of the New Model

Seeking the best combination between accuracy and the lack of complexity, we present
a full analysis by approximating expansion (44) to the 6th-order of x. In fact, the same
analysis can be undertaken using an approximation of the 8th-order (the upper end of the
meaningful model’s choices, in our opinion) in a similar manner, but the difficulty that is
added while improving accuracy obscures the clarity of the presentation.

Specifically, by setting ν = 3, in Equation (44), we selected a 6th in terms of x, and
expansion of the profile shape of the form

s(x, t) =
√

1 − a1x2 + a2x4 + (a1 − 1 − a 2) x6 (52)

Correspondingly, Equation (48) for the evolution of a1(t) becomes

a1 So(a1, a2)−
(
So,α1

.
a1 + So,α2

.
a2
)

ho
= ( 3 − 2 a1 + a2) (53)

In Equation (53), the storage So(a1, a2) must be calculated numerically through the
integral

So(t) =
∫ 1

0

√
1 − a1 x2 + a2 x4 + (a1 − 1 − a 2) x6 dx (54)

while the partial derivatives So,α1 and So,α2 are calculated respectively through

So,α1 =
∂So

∂a1
=

1
2

∫ 1

0

−x2 + x6√
1 − a1 x2 + a2 x4 + (a1 − 1 − a2) x6

dx (55)

and

So,α2 =
∂So

∂a2
=

1
2

∫ 1

0

x4 − x6√
1 − a1 x2 + a2 x4 + (a1 − 1 − a2) x6

dx (56)

Equation (53) forms a close system in the context that was presented, together with

Equation (48) for
.

h−1
o = a1, and (27) for a2 =

(
a 2

1 − h−1
o

.
a1
)
/12.

Before proceeding with the numerical solution of the defined system of equations, it
is informative to have a closer look at the late-time behavior of this model. As the time
derivatives vanish, the specific system of equations drives a1 to a finite value (Figure 3),
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which can be found by solving Equation (49). With the present setting ν = 3, this corresponds
to solving

a1So = 3 − 2a1 +
a2

1
12

(57)

resulting in a1 f = 1.11966. Then, a2 f =
1.119662

12 =0.10447, and the finite shape function s(x)
corresponds to a finite storage factor that is calculated (numerically) through (54), equal to
So f = 0.77269. Thus, the slope of the squared shape function (42) becomes a1 f So f = 0.86515.
These results are close but not identical to the exact asymptotic values given in Equations
(35), (36), and (41) from the exact solution of the Boussinesq equation.

It is possible to refine the above values by slightly modifying the exact Equation (27),
introducing a parameter c1 as

12 a2 =
(

c1a 2
1 − h−1

o
.
a1

)
(58)

This modification drives a2 to a finite value of

a2 f = c1
a 2

1 f

12
(59)

Although affecting the exact character of Equation (27), one should keep in mind
that the whole procedure that was described is an approximate solution, which is made
as accurate as possible. Using (58) instead of (27) has the advantage of tuning the finite
behavior of the solution toward more accurate values. Furthermore, this modification does
not seriously affect the observed accuracy of the model at early times, where other types of
problems should be handled, as will be shown.

By using c1 as a tuning parameter, one may select the option resulting in the most
accurate finite state through Equation (57), which now reads

a1 f So = 3 − 2a1 f + c1
a 2

1 f

12
(60)

More specifically, we sought the value of c1, producing as accurately as possible
the finite values for a1 f and So f as well as the slope of the squared profile. It was con-
cluded that the best choice was c1 = 0.9. Using this value allowed for the calculations of
a1 f = 1.1156, So f = 0.7731, and the slope of the squared shape a1 f So f = 0.8622, showing
agreement up to the 4th decimal when compared to the respective exact results of the
Boussinesq equation.

At this point, it must be noted that in the case of an 8th-order expansion model
(ν = 4), the added degree of freedom will guarantee the exact match of all three previous
profile features, a1 f , So f , and correspondingly a1 f So f , by properly modifying the extra
Equation (28) for a3 to close the model, with the inclusion of another tuning parameter c2
through

360 a3 = 2c2a3
1 − 5a1

.
a1(t) h−1

o + 12
.
a2 h−1

o (t) (61)

In this case, the finite value of a3 f is a3 f = c2
a3

1
180 , and the finite value for a1 f comes

from solving the analog of Equation (60) for the next higher order,

a1 f So = 4 − 3a1 f + 2c1
a2

1 f

12
+ c2

a3
1 f

180
(62)

finding the pair of (c1,c2) corresponding to the exact Boussinesq values for a1 f and So f .
Figure 4 presents the finite profile shape of the introduced 6th-order model

s(x) =
√

1 − 1.1156 x2 + 0.1037x4 + 0.019x6 (63)
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and the late-time exact Boussinesq solution by Equation (35). The coincidence between
the two profiles was remarkable. In fact, their difference, at its most, did not exceed 1‰.
Additionally, Figures 5–7 provide the numerical solution of the full system of the model’s
Equations (48), (53), and (58) for the evolution of the profile during drainage, where three
different initializations were used to test the model’s efficiency.
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Figure 5. The excellent coincidence between the present model’s (Equation (53)) numerical application
(red dashed lines) and the numerical solution of the exact Boussinesq equation (gray lines) for the
drainage phase after an initial h(x, 0) =

√
1 − x2 profile. The evolution histories for (from the upper

left corner and continuing clockwise) the parameter a1(t), the water table head ho(t) = h(0, t), the
outflow qo(t), and the water table h(x, t) (at times 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2).



Water 2024, 16, 2984 13 of 23Water 2024, 16, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 6. As in Figure 5, for ℎ(𝑥, 0) = √1 − 𝑥4 initially. 

 
Figure 7. As in Figure 5, for ℎ(𝑥, 0) = √1 − 𝑥6 initially. 

Taking a closer look, however, at the behavior of the outflow at very early times (Fig-

ure 8), one realizes that there is some discrepancy that increases as the initial outflow (thus 

the slope of the shape of the squared profile) becomes bigger. 

Figure 6. As in Figure 5, for h(x, 0) =
√

1 − x4 initially.

Water 2024, 16, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 6. As in Figure 5, for ℎ(𝑥, 0) = √1 − 𝑥4 initially. 

 
Figure 7. As in Figure 5, for ℎ(𝑥, 0) = √1 − 𝑥6 initially. 

Taking a closer look, however, at the behavior of the outflow at very early times (Fig-

ure 8), one realizes that there is some discrepancy that increases as the initial outflow (thus 

the slope of the shape of the squared profile) becomes bigger. 

Figure 7. As in Figure 5, for h(x, 0) =
√

1 − x6 initially.

Specifically, in Figure 5, the case starts with the steady state after uniform recharging;
thus, the initial profile is h(x, 0) =

√
1 − x2. The presented results refer to the evolutions

of parameter a1(t), the water table head, ho(t) = h(0, t), water table h(x, t), and outflow
qo(t). As shown, the resemblance of the model’s solution to the exact numerical solution
of the Boussinesq Equation (11) is quite impressive. Even regarding the outflow, the most
difficult parameter to capture accurately, since it is affected by the whole water profile’s
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development, the coincidence was very good. Aside from a relative difference at very early
times that will be discussed next, the model performed very accurately.

Figures 6 and 7 present similar results for the initial water tables of the forms h(x, 0) =√
1 − x4 and h(x, 0) =

√
1 − x6, respectively. The comparison remained adequately good

and in favor of the presented model (49).
Taking a closer look, however, at the behavior of the outflow at very early times

(Figure 8), one realizes that there is some discrepancy that increases as the initial outflow
(thus the slope of the shape of the squared profile) becomes bigger.
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Figure 8. Evolution of outflow qo(t) at very early times from the present model’s (Equation (54))
numerical application (red dashed lines) and the numerical solution of the exact Boussinesq equa-
tion (gray lines) for the drainage phase after the initial profiles h(x, 0) =

√
1 − x2,

√
1 − x4 and√

1 − x6 (left to right).

This deviation can be attributed to the fact that the presented sharp initial water
tables aimed to emulate the end of a recharging period and impose different physical
characteristics compared to drainage profiles since they are not a solution of the same
equation. Specifically, Boussinesq Equation (11) during pure drainage, with a zero-water
depth (constant in the more general case) at the end of the aquifer, at x = 1, implies that
the second derivative of the squared water profile versus x vanishes. This was not the case
during recharge periods in any of the previously presented examples. To then conform with
the imposed initial profile, Boussinesq concludes with a “violent” modification, resulting
in a sudden change in outflow at an infinite rate, as will be shown. Multiplying Boussinesq
Equation (11) during drainage by h(x,t) and differentiating versus x yields

∂

∂x

(
1
2

.
h(x, t)

)
=

∂

∂x
h(x, t)

1
2

∂2h2(x, t)
∂x2 + h(x, t)

1
2

∂3h2(x, t)
∂x3 (64)

Taking the limit of Equation (64) at x = 1 and substituting qo(t) by Equation (19) shows
that the time derivative of the outflow

.
qo(t) equals

.
qo(t) = − ∂h(x, t)

∂x

∣∣∣∣
x=1

1
2

∂2h2(x, t)
∂x2

∣∣∣∣
x=1

(65)

From Equation (65), kit becomes evident that, since the slope of the water profile at
x = 1 is infinite, in order for

.
qo(t) to be definite, the second derivative of the squared profile

must be zero. Otherwise
.
qo(t) is also infinite. Such behavior is, strictly speaking, beyond

the capabilities of the presented model and demands different approximations to evolve
up to a point that the model can accurately handle. Such a case is presented in Figure 9 for
an initial squared profile with zero second derivative at x = 1, slightly different than the
one presented in Figure 5. In this case, the coincidence between the present model and the
Boussinesq solution was almost perfect.
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𝜕

𝜕𝑥
( 

1

2
ℎ̇(𝑥, 𝑡)) =

𝜕

𝜕𝑥
ℎ(𝑥, 𝑡) 

1

2

𝜕2ℎ2(𝑥, 𝑡)

𝜕𝑥2
+ ℎ(𝑥, 𝑡) 

1

2

𝜕3ℎ2(𝑥, 𝑡)

𝜕𝑥3
 (64) 

Taking the limit of Equation (64) at x = 1 and substituting  𝑞𝑜(𝑡) by Equation (19) 

shows that the time derivative of the outflow �̇�o(𝑡) equals 

�̇�o(𝑡) = −
𝜕ℎ(𝑥, 𝑡)

𝜕𝑥
|

𝑥=1

 
1

2

𝜕2ℎ2(𝑥, 𝑡)

𝜕𝑥2
|

𝑥=1

 (65) 

From Equation (65), kit becomes evident that, since the slope of the water profile at x 
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Figure 9. Evolution of outflow qo(t) at very early times from the present model’s (Equation (54))
numerical application (red dashed lines) and the numerical solution of the exact Boussinesq equation
(gray lines) for drainage phase after initial profile h2(x, 0) = 1 − x2 − 1

9 x4 + 1
9 x6.

Modeling the very early time drainage and matching it with the present model later
on is the subject of the following section.

3.2. The Case of a Sudden Drawdown from an Initially Horizontal Water Table

This is a case that has been well-studied in the literature [7,26–33], resembling at
the early stages a semi-infinite aquifer [26,27]. In a sense, it is an extreme example for
applying modeling ideas starting with an infinitely sharp step-change. Still, it offers a
great basis for analytic description and approximate solutions [26,31,33]. Our presented
approximated solution cannot directly handle such extreme profiles accurately, as discussed
earlier. However, intermediate modeling ideas can be used to confront such rough changes
until the profile reaches a smoother shape that can be fed to the newly proposed model.

3.2.1. Early Time Approximation

The early behavior of the drainage can be approximated through a “wave type”
character, in a way that is relatively similar to what [26] presented for the recharging
built-up phase, of the form

h(x, t) =

{
1, x < 1 − ∆

Φ
(

x−1+∆
∆

)
, 1 − ∆ < x < 1

(66)

This means that the profile is uniform at the beginning and deforms gradually from
the end point, x = 1, toward x = 0. The outflow affects the profile at a range ∆, starting from
zero and increasing with time while keeping a constant shape Φ(y) in terms of y = x−1−∆

∆ ,
in a sense resembling a wave, as shown in Figure 10.
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The dimensionless storage S(t) can be calculated by integrating the profile given in
(66) through

S(t) =
∫ 1

0
h(x, t) dx = 1 − ∆(t) + ∆(t)

∫ 1

0
Φ(y) dy (67)

and by differentiation versus time, the outflow rate q(t) = −
.
S(t) reads

q(t) = −
.
S(t) =

.
∆(t)

(
1 −

∫ 1

0
Φ(y) dy

)
(68)

Recalling the detailed analysis given in [7,27], the actual outflow for this specific case
of a sudden drawdown and drainage shows a behavior of the form

q(t) = s1 t−1/2 (69)

with s1 ≈ 0.33206 [7]. In order to reproduce this behavior by the modeled Equation (68),
the velocity of the wave,

.
∆(t), must show a time dependence of the form

.
∆(t) = s1

(
1 −

∫ 1

0
Φ(y) dy

)−1

t−1/2 (70)

which obviously becomes infinite at the beginning of the drainage, in agreement with the
initially infinite outflow rate at this specific case. Integrating Equation (70) over time then
results in the model’s gradual displacement

∆(t) = 2s1

(
1 −

∫ 1

0
Φ(y) dy

)−1

t1/2 (71)

What remains is to specify a proper form for Φ(y). Along the same line as the analysis
followed in the previous section, it was assumed that Φ(y) can be described by a polynomial
of the form

Φ(y) =
√

1 + a2 y4 + a3 y6 . . . + aνy2ν (72)

with aν = −1 − a2 − a3 − . . . − aν−1 . The specific form satisfies the proper boundary
conditions Φ(0) = 1 and Φ(1) = 0, and the absence of the y2 term guarantees the vanishing
of the three first derivatives at y = 0, providing a smooth transition between the two
branches of the model (66). Furthermore, after the end of the functionality of the model
(66), at the time when ∆(t) = 1 and the “wave” reaches the upper end at x = 0, the evolution
of the water profile can be continued using the analysis presented in the previous section.

Making use of the mass-balance integrated Boussinesq equation, the outflow should
match the dimensionless slope of the squared profile at x = 1 through

q(t) = −1
2

lim
x→1

∂h2(x, t)
∂x

= − 1
2∆(t)

∂Φ2(y)
∂y

∣∣∣∣
y=1

(73)

After calculating the dimensionless slope of the modeled Φ2(y) at y = 1

−Φ2′(1)
2

= ν + (ν − 2)a2 + (ν − 3)a3 . . . + 2aν−2 + aν−1 (74)

and introducing it into Equation (73), the mass balance yields

2
(

1 −
∫ 1

0
Φ(y) dy

)−1

=
ν + (ν − 2)a2 . . . + 2aν−2 + aν−1

s 2
1

(75)

which offers a closure of the “wave” model (66), linking the dimensionless storage
∫ 1

0 Φ(y) dy
with the parameters of the model, a2, a3 . . . and so on. In fact, Equation (75) offers many
degrees of freedom, thus, giving the opportunity to investigate and impose several specific
features in the assumed “wave shape”. However, for the sake of simplicity and in the
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context of the previous section, we present the simplest and most meaningful model with
ν = 3, which is expressed as

Φ(y) =
√

1 + a2 y4 + (−1 − a2 )y6 (76)

Through this choice, Equation (75) is reduced to(
1 −

∫ 1

0

√
1 + a2 y4 − (1 + a2 ) y6 dy

)−1

=
3 + a2

2s 2
1

(77)

allowing for the direct numerical estimation of the proper value of a2 = −1.4818945. With
this value of a2, the dimensionnless storage equals, So =

∫ 1
0 Φ(y) dy = 0.854735. The

model is valid up to the limiting time, tmax, when the “wave” reaches the upper end at
x = 0, which is calculated through Equation (71) and equals tmax = 0.0478442, for ∆(t) = 1.

Applying the above, we present the evolution of the water depth (Figure 11) and
the water storage and outflow (Figure 12) from the present “wave” model and the exact
numerical solution of Boussinesq (3), starting from a horizontal initial profile and continuing
up to time t = 0.0478442. The coincidence between the “wave” approximation (66) and
Boussinesq Equation (3) was remarkable regarding the profile evolution (Figure 10), and
became exact in the case of the mass balance and the outflow (Figure 12).
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3.1. As shown in Figure 13, even though parameter 𝑎1(𝑡) started from a zero value in the 

Figure 11. The agreement during the evolution of the water depth h(x, t) at early times between the
full numerical solution (gray lines) and the present “wave” model (red dashed lines) at times 0.001,
0.01, 0.025, 0.0478442 (time increased downward), starting from an initially horizontal profile.
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Figure 12. The exact agreement of the evolution of the water storage S(t) =
∫ 1

0 h(x, t)dx and the
outflow q0(t), at early times between the exact numerical solution of Boussinesq (gray lines) and the
present “wave” model with S(t) = 1 − 2s1

√
t and q(t) = s1 t−1/2 (red dashed lines), starting from an

initially horizontal profile.
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3.2.2. Later Times

At the limiting time tmax = 0.0478442, when the wave reached the upper end at x = 0,
we made use of the new model (54) starting with the profile s(x) = Φ(x) from Equation (76)
and continued by numerically solving the system of equations as analyzed in Section 3.1.
As shown in Figure 13, even though parameter a1(t) started from a zero value in the
modeled solution while the exact Boussinesq proceeded (meaning that the head of the
water table had already started decreasing slightly from 1, at tmax), both solutions very
quickly matched. This matching also correctly drove the general pattern of the water table
evolution, which was impressively captured.
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ior of the outflow, but this is a matter for future research. 

Figure 13. The evolution histories of the parameter a1(t) (left), and the water table h(x, t) (at times
0.025,0.05, 0.1, 0.25, 0.5, 1, 2) by the numerical solution of the exact Boussinesq Equation (3) (gray lines)
and from the present wave approximation, which was continued by the new model’s (Equation (53))
numerical application (red dashed lines).

The outflow qo(t) also showed a nice passage from the “wave” period of the solution
to the new model (53), which almost perfectly matched the exact Boussinesq (Figure 14).
Unlike the cases presented in Section 3.1, the Boussinesq has now entered a more “mature”
state, satisfying the condition (65), thus the behavior of

.
q(t) is much smoother at the

increment of time t = tmax. Such behavior is exactly what the new model can capture
very accurately.
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The above analysis, together with the findings of the previous section regarding the
initial “irregularity” when recharging stops and pure drainage begins, paves the way
for exploring the very early time of departing from any recharging period to drainage.
Intuitively, one can guess departures of the form qo(t) = qo(0)− k tz, 0 < z < 1 into the
behavior of the outflow, but this is a matter for future research.

3.3. An Analytic Explicit Linear Approximation for the Solution of the New Model

In this last section, we present the approximation of the nonlinear system of Equations
(48), (53) and (58) of the previously introduced and analyzed model with a linear form,
allowing for an analytical explicit solution for a1(t) and the rest of the parameters, which
was proven to be accurate and well-understood.

Substituting into the mass balance the main Equation (53) −a1 So + h−1
o
(
So,α1

.
a1 + So,α2

.
a2
)

= −( 3 − 2 a1 + a2) of the model that was presented, a2 =
(
0.9 a 2

1 − h−1
o

.
a1
)
/12 by

Equation (58), and its first derivative
.
a2 by

.
a2 =

(
0.8a1

.
a1 − h−1

o
..
a1
)

12
(78)

one concludes with

a1

(
So + 2 − 0.9 a1

12

)
+

.
a1h−1

o

(
1
12

− So,α1 − So,α2

0.8a1

12

)
+

..
a1

h−2
o So,α2

12
= 3 (79)

Then, dividing (79) with the multiplier of the term a1,
(

So + 2 − 0.9 a1

12

)
, the mass

balance equation equivalently reads

a1 +
.
a1

h−1
o

(
1
12 − So,α1 − So,α2

0.8a1
12

)
(

So + 2 − 0.9 a1
12

) +
..
a1

h−2
o So,α2

12(
So + 2 − 0.9 a1

12

) =
3(

So + 2 − 0.9 a1
12

) (80)

which is obviously a second-order nonlinear differential equation of a1(t) of the form

A(a1)
..
a1 + B(a1)

.
a1 + a1 = C(a1) (81)

When the time derivatives vanish, Equations (79)–(81) yield

a1 = C(a1 ) =
3(

So(a1) + 2 − 0.9 a1
12

) (82)

which is exactly the late-time solution by Equation (60), defining the finite value of param-
eter a1, a1 f . Noting that in Equation (81) the function C(a1) does not vary strongly (i.e.,
the denominator typically varies in a range between 2.6 and 2.9 for most cases), C(a1) in
Equation (81) can be nicely approximated by its finite value C(a1) = a1 f ,

A(a1)
..
a1 + B(a1)

.
a1 + a1 = a1 f (83)

assuring that a1 reaches the correct finite state a1 f . Then, in a rather crude way, Equation (83)
can be simplified further to the linear form

A
..
a1 + B

.
a1 + a1 = a1 f (84)

where the time dependent nonlinear terms A(a1) and B(a1) are approximated with the
constants A, B. Equation (84) is the linear approximation of the exact Equation (80).

We saw, quite intuitively, that the best choice for the linearization constant values
came through demanding Equation (84) satisfy the exact initial values of a1(0), a10, and its
derivatives at time zero,

...
a 10,

..
a10,

.
a10, as they were defined by the exact setup. In this way,
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Equation (84) correctly incorporates the initial and finite behavior of the original nonlinear
system. Specifically, by demanding A and B to satisfy the system

A
..
a10 + B

.
a10 + a10 = a1 f

A
...
a 10 + B

..
a10 +

.
a10 = 0

(85)

and by solving, one concludes with the desirable values

A =
a1 f

..
a10 − a10

..
a10 +

.
a10

.
a10

..
a2

10 −
...
a 10

.
a10

, B =
− .

a10 − A
...
a 10

..
a10

(86)

Noting that A and B are positive and that they differ by two-orders of magnitude, the
solution of (84) is always meaningful and can be expressed straight-forward into the form

a1(t) = a1 f
(
1 − d1 e−w1t − d2e−w2t) (87)

with w1 and w2 to be given by

w1 =
B +

√
B2 − 4A

2A
, w2 =

B −
√

B2 − 4A
2A

(88)

and d1, d2 by

d1 =
B +

√
B2 − 4A

2A
, d2 = 1 − d1 +

a10

a1 f
(89)

After that, the integration of Equation (87) over time gives, through Equation (23), the
evolution of the water table head at x = 0, ho(t), in the form

ho
−1(t) = 1 + a1 f t +

a1 f d1

w1

(
e−w1t − 1

)
+

a1 f d2

w2

(
e−w2t − 1

)
(90)

The remaining parameter a2 is also calculated by Equation (58) as a2 = (0.9 a 2
1 −

h−1
o

.
a1)/12. With these parameters, the analytic approximation for the solution of the model

is now completed, and the work may procced with the testing of its performance.
In Figure 15, we present the comparison between the evolutions of a1(t), a2(t), and

outflow qo(t) = ho
2(t)(3 − 2 a1(t) + a2(t)) as they are calculated numerically from the

exact presented model in Section 3.1, and analytically by its explicit linear approximation
(89)–(90). All previous initializations that have been discussed so far were used, correspond-
ing to an initial s(x, 0) equal to

√
1 − x2,

√
1 − x4,

√
1 − x6, and

√
1 − 1.5x4 + 0.5x6. We also

added a more “exotic”, non-monotonous initial profile equal to
√

1 + 0.5x2 + 1.5x4 − 3x6.
As shown, the performance of the analytical expression (89) in estimating a1(t) was overall
very good, with an accuracy to the order of 5‰ at its worst. This also led to the accurate
calculation of the remaining parameters, especially the outflow, the most difficult one, with
an accuracy to the order of ±1% in the worst case. In this way, expressions (89) and (90)
may serve as easy and accurate representation for both the investigation and understanding
of the drainage flow as well as a modeling basis for handling more real cases.

In conclusion, it should be noted that the same linearization idea can be applied
in the case of a more accurate and detailed model of the 8th-order by calculating three
linearization parameters, in this case

A
...
a 1 + B

..
a1 + C

.
a1 + a1 = a1 f (91)

which yields a solution for a1(t) of the form

a1(t) = a1 f
(
1 − d1 e−w1t − d2e−w2t − d3e−w3t) (92)
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However, finding the proper linearization values for constants A, B, and C is much
more complicated and requires special attention to satisfy much stricter criteria for the
solution to be well-behaved.
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4. Conclusions

In this work, conceptual approximations of the Boussinesq equation for horizontal
unconfined aquifers during the pure drainage phase, without any recharge and zero-inflow
conditions, were introduced and analyzed. A variety of methods were utilized, which
included wave solution, variable separation, and series expansion, to construct a new
model and explore its behavior and performance against the Boussinesq equation and its
exact (non-closed form) solution at early and later times. The new model is based on the
relations between the parameters defining the water table shape as they are implied by the
Boussinesq equation. To close the system of equations, the mass conservation principle was
employed. The model proved to perform quite accurately for several initial water tables,
becoming almost exact at the later times.

At the very early times, there were some affordable deviations from the exact Boussi-
nesq, which were physically attributed to the different natures of the recharging phase
compared to the pure drainage period. As was proven, in order to conform the imposed ini-
tial profile after recharge, Boussinesq concludes with a “violent” modification, resulting in
a sudden change in outflow at an infinite rate. Modeling ideas in the form of a “wave” were
discussed and applied to describe such rough changes until the profile reached a smoother
shape that could be fed to the newly proposed model, resulting in the best accuracy.

The modeled nonlinear forms were finally linearized, concluding with explicit ana-
lytical expressions incorporating most of the basic characteristics regarding the evolution
of the water table and the outflow from the exact Boussinesq equation under different
initial conditions.

The results from this research can be used as benchmarks for numerical modeling
and serve as the basis for further theoretical development in groundwater hydrology with
practical importance. Plausibly, these ideas could be further exploited to build simple but
effective models for the very early behavior of drainage flow after any initial water table is
formed during the recharging period. Furthermore, they can be extended to also describe
the built-up phase during recharge, resulting into a complete tool. This will be the subject
of future work by the authors.
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