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Abstract: This review explores different methods of sustainably introducing nutrients from agro-
industrial waste into the soil. The focus is on sustainable agriculture and how the soil system can
be modified by introducing secondary raw materials and beneficial microorganisms. Soil is a nexus
between plants and microorganisms that must be balanced. The article emphasizes the importance of
maintaining the microbiological balance when supplying nutrients. This review is focused on the
possible techniques involved in the production of biofertilizers and their mode of application into
the soil system and on plants. We addressed several advantages concerning the use of beneficial
microorganisms in waste management by microbial formulation techniques. Not only the advantages
but several limitations and challenges were also discussed in regard to the large scale production of
microbial products. Therefore, the proper treatment of industrial waste is essential so that we can
preserve the environment and human safety and also achieve sustainable agriculture.
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1. Introduction

Considering the exploitation of resources (water, land, energy) related to agricultural
activities, the valorization of agro-food wastes and by-products is necessary from both
an environmental and socio-economic viewpoint. Therefore, many attempts are made
nowadays to develop nutrient (N, P, K, and microelements) recovery techniques from
waste streams to reduce the environmental impacts linked to their dispersion [1,2]. The
currently developed waste treatment methods mainly consider thermal and chemical
processes focused on removing the organic fraction and ensuring biological safety [3]. The
equilibrium of the soil and rhizosphere’s microbiota could be significantly affected, and
nutrient-rich secondary raw materials can offer an improved mineral nutrition, if the new
formulations avoid overloading the soil-plant nexus with potentially toxic substances [4].

The microbiological stability of the soil is another important issue within the sustain-
ability of agriculture, often neglected when discussing nutrient recycling. Soil is the very
rich, complex link connecting two different subsystems. It creates an environment for the
growth of two groups of organisms: saprotrophs and producers. Saprotrophs are responsi-
ble for fostering the releasing nutrients from dead organic matter into the form available
to plants [5]. That is why soil fertility relies not only on a balanced level of nutrients but
also on the richness of the soil biota [6]. Thus, the saprotroph subsystem consists mainly of
microorganisms, and is responsible for re-introducing nutrients into cycling throughout
the ecosystem. However, the function of this link is not limited only to closing the loop
of nutrients. Saprotrophs are also responsible for stabilizing the unwanted toxic elements
present in the soil via bioaugmentation, biosorption, bioaccumulation, and bioremediation
processes [7]. That is why its biodiversity and abundance should be of special concern right
next to nutrient recirculation.

Microorganisms 2024, 12, 541. https://doi.org/10.3390/microorganisms12030541 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms12030541
https://doi.org/10.3390/microorganisms12030541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-0684-6934
https://orcid.org/0000-0003-1205-2070
https://orcid.org/0000-0002-1755-3002
https://doi.org/10.3390/microorganisms12030541
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms12030541?type=check_update&version=1


Microorganisms 2024, 12, 541 2 of 29

The strategy of the simultaneous use of secondary raw material-based fertilizer prod-
ucts with beneficial microorganisms as stabilizers of soil microbiota has not been extensively
discussed or considered so far. However, such integration of the application of the source
of nutrients with microorganisms could enhance their cycle by boosting the stability of the
soil microbiota. One of the few valorization methods of nutrients into fertilizer products
that engage the microbial activators is bio-solubilization [8]. Through microbial metabolic
activity, compounds present in the starting materials are modified, and the substrates
undergo a profound change, leading to the final products with different characteristics.
Furthermore, the products of metabolism, such as amino acids, organic acids, and others,
effectively liberate nutrients making them available for plants.

To ensure the stability of the agricultural system, it is crucial to provide microbial
activators that will increase the availability of nutrients from secondary raw materials. In
addition, they can positively change plant growth capacities and make them more resistant
to biotic and abiotic stresses than applying fertilizer products based on secondary raw
materials [7,9]. Still, very little is known about the relationships that govern the availability
of nutrients in modified soil systems. There is, therefore, a need to increase the knowledge
about how new soil systems would work where secondary raw material-based products
would be used as a source of nutrients simultaneously with beneficial microbes. In addition,
there is a need to elaborate the method for the efficient introduction of microbial activators
to the soil system and understanding how it will influence the release of nutrients and the
equilibrium of the soil microbiota and soil status.

To date, only a few methods of the microbial valorization of ‘waste’ organic matter
for fertilizer preparation have been described. These methods have been used mostly to
determine the total available phosphorus content or to assay the biological response activity
of the used microorganisms in sterile rhizosphere soil. Some of this research showed the bi-
ological activity of amino acids, organic acids, and other extractable components. However,
the absence of thorough studies on non-sterile rhizosphere soil inside the ‘waste’ organic
matter valorization strategy restricts our capacity to identify correlations between microbial
community structure and rhizosphere chemistry [10]. Edaphic and environmental circum-
stances are two significant factors influencing biofertilizer variability and low repeatability
in field experiments. The initial stages of biofertilizer testing are carried out in aseptic
circumstances, which do not allow for an unbiased characterization of the microorganism
under investigation. However, scaling up the growth chamber or greenhouse trials, and
especially to field settings, expands the range of uncontrolled biotic and abiotic elements
that can have a major impact on performance. The most often cited biotic elements that
might influence the outcome include competitors, predators, or other antagonists within the
native microbiome (i.e., indigenous and previously imported bacteria). Abiotic conditions,
whether climatic or edaphic, can also impact the effectiveness of bio-fertilization on crop
nutrient use efficiency and output [4,5].

The bacterial extraction of nutrients from waste streams is currently attracting a lot of
attention due to its sustainability [11,12]. The microbial solubilization process requires an
interaction between the microbes and the substrates. Thus, selecting appropriate strains
is crucial to guarantee the adaptation of microorganisms to the process and complete
bioconversion of the starting materials. Microbially assisted solubilization processed waste
streams can improve microbial stability by supplying specific nutrients and supporting
an ecological niche for inoculated microorganisms. The research scope will assess the
efficacy of different types of groups of microorganisms capable of digesting waste matter,
the mechanism of its digestion/solubilization, the effectiveness of the different methods of
infestation of soil system, and their efficiency in real conditions via a field test.

2. Complexity of the Soil System

The soil system is a complex system of interactions among the three pillars that
influence its qualities as mentioned in Figure 1.
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Figure 1. Graphical representation of below-ground components of the soil system.

The fertility of the soil in the rhizosphere is influenced by plant roots and a group
of soil microorganisms. This eventually affects the growth, yield, composition, and nutri-
tional qualities of the plant biomass that is produced. Each plant shapes the environment
around it in a specific way by influencing its chemical, physical, and biological properties.
Plants stimulate various soil flora and fauna groups through secretions and post-harvest
residues of different chemical compositions. Microorganism metabolism by-products act as
biostimulants, stimulating the release of nutrients present in the soil in an inaccessible form
which the plant root system can take up. In turn, plant roots interact with microorganisms,
improving growth, nutrient acquisition, and protection from different plant bio-aggressors.
At the same time, it was found that a low level of nutrients in the rhizosphere can stimulate
root tissues to release exudates that can stimulate the growth of microorganisms. That, in
turn, increases the availability of missing nutrients [13].

Plant roots exude around 11–40% of their photosynthetically fixed carbon into the
soil, known as root exudates. Root exudates and mucilage serve as nutrition supplies and
signaling molecules for soil microorganisms, altering the microbial population around the
root system. Root exudates could affect rhizosphere interactions through selective biocidal
and/or signaling activities, in addition to being the main source of carbon for rhizosphere
microbes. Rhizosphere interactions have been observed to be influenced by both polar
and non-polar substances. More complex non-polar secondary metabolites, including
flavonoids, coumarins, and benzoxazinoids, have been shown to have a significant impact
on rhizospheric bacteria, in addition to polar primary metabolites like organic and amino
acids. Microbial mechanisms, on the other hand, assist plant development by supporting
nutrient uptake, plant growth hormone synthesis, and pathogen biocontrol [12] (Figure 2).
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Interactions between roots and the microbial community also impact the physico-
chemical properties of the surrounding soil. Spatial and temporal dynamics influence the
interaction of the various rhizospheric components, resulting in dynamic feedback loops
that preserve the complex rhizosphere environment with physical, chemical, and biological
gradients that are different from the bulk soil. Gaining an understanding of these complex
rhizospheric connections is essential to understanding localized biogeochemical processes
and developing ways to boost plant yield [14].

These complex relationships are controlled by the currently prevailing physicochem-
ical conditions in the soil, the type of plant and the biodiversity of the soil flora. Each
of the pillars mentioned above was and is often considered independently of the others.
Therefore, the soil system should be understood as a set of these three to achieve a balance
in the soil system and fully understand the binding relationships. The soil fauna is the most
frequently overlooked in the context of sustainable development in agriculture. However,
it is recognized how soil movement contributes to soil fertility when attempting to explain
how microbial activity might promote plant development, three methods are typically men-
tioned: (i) modifying plant hormone signaling; (ii) preventing or outcompeting pathogenic
microbial strains; and (iii) boosting soil-borne nutrient bioavailability (Figure 3).
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2.1. Bio-Waste Materials as Source of Nutrients

Biofertilizers are widely used in organic farming systems. However, there is still little
known about the mechanisms of the process, especially in the real agricultural environment.
For example, how will the choice of plant cultivars, type of ‘wastes’, microbial inoculants,
and the method of stable introduction of biofertilizers into the soil system influence the
effectiveness of the process? All the proposed waste compounds (Table 1) can be subjected
to microbiological treatment using biofertilizers. As a result, it is possible to release
nutrients/biostimulants from the waste matter matrix. The individual cases have been well
described in the literature, indicating the microorganisms and their effectiveness. However,
in most cases, these are descriptions of the results of laboratory tests using single strains
and one type of waste [8,15]. In this context, detailed research is necessary, including
screening of microorganism systems that will effectively dissolve waste materials in natural
systems, including variations in the method of introducing microorganisms.
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Table 1. The characteristics of waste biomass.

Waste Biomass Possible Source of Nutrients References

Ash Phosphorous, Potassium, and Zinc [16]
Biochar Nitrogen, Phosphorous, Potassium, and Zinc [17]

Bones meat meal Phosphorous, Potassium, Zinc, Iron, and Selenium [18]
Spent coffee grounds Potassium, Magnesium, Selenium, Phosphorus, and Iron [19]

Blood meal Nitrogen, Phosphorous, Potassium, Zinc, Iron, and Selenium [20]
Feathers meal Amino acids and Nitrogen [21]

Spent mushroom substrate Nitrogen, Phosphorous, and Humic acid [22]

For instance, research on keratinases and the in vitro degradation of feathers revealed
that keratin cannot be broken down by a single keratinase enzyme. The activity of ker-
atinases is insufficient to break disulfide bonds. The following processes—sulfitolysis,
proteolysis, and deamination—have been identified as potential contributors to keratin
degradation, and many methods have been put forth. To comprehend the mechanism of
action of keratinases, more research on keratin degradation is necessary [23]. Using many
strains together might be an effective way to break down feathers. In the area of microbial
degradation, it has been observed that microbial consortia, or combined microorganisms,
have distinct impacts than a single microbe. A comparable method may be applied to
choose appropriate stains that effectively break down waste biomass [23].

2.2. Nutrient-Rich Formulations of Biowaste Materials

Over 120 million tons of bio-waste are thought to be produced in Europe each year. A
tiny portion of bio-waste is burned without recovering the abundance of valuable nutrients,
and the remainder is landfilled [24]. The amount of municipal solid trash generated
worldwide is estimated to be 1.3 billion Mg/year, and it is anticipated to grow in the
coming years [25]. A significant portion of municipal waste, which includes food waste and
green & garden waste (leaves, grass), is organic waste. There are several scenarios that may
be used to handle it, depending on its composition and humidity [25]. The treatment of
biowaste can help with the synthesis of new molecules, as well as the recovery of resources
and energy. Additionally, these residues include a wealth of valuable substances, such as
phenolic compounds [26], vitamins, carotenoids [27], as well as proteins [28,29].

The current necessity for enhancing crop productivity, soil fertility, and pest con-
trol in sustainable farming is the use of bio-based supplies to reduce the application of
chemical-based products and their related detrimental effects on the environment. Wasted
coffee grounds, wasted mushroom substrate, paddy straw, blood meal, biochar, and other
significant biowaste substances are recognized to be essential for plant metabolic pathways,
enhancing microbial interaction, and promoting host resistance while inhibiting pathogen
colonization. These characteristics support the potential use of nutrient-rich compounds as
efficient biopesticides and fertilizers [30,31].

The term “soil biofertilizer” refers to microorganisms that enrich soil with nutrients
and carbon substrates, including bacteria, fungi, algae, and cyanobacteria. The most com-
mon and extensively utilized biofertilizers are green manures, which include cyanobacterial
supplements and bioformulations of bacteria like Azotobacter sp., Azospirillum sp., Tricho-
derma sp., and arbuscular mycorrhizal fungus (AMF). Farmers commonly use organic-based
fertilizers, such as crop residues, vermicomposting residues, farmyard manure, and other
waste substrates, in addition to microbial biofertilizers [32,33]. Solid-state fermentation
was used to create a biofertilizer, which was subsequently applied to a vegetable garden.
The physical characteristics of plant samples treated with biofertilizers were positively
represented by the testing results. The two main procedures that utilize the metabolic
potential of the thermophilic and decomposer bacteria populations are composting and
anaerobic digestion (AD) [34]. Native microbial communities have enzymes that support
bioprocesses that turn agricultural waste into biofertilizers [35].
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2.3. Microorganisms

Implementing the assumptions of sustainable agriculture in the European Union re-
quired greater attention to the beneficial effects of using biostimulants, which, by definition,
do not provide nutrients themselves but allow for achieving better crop parameters with
significantly reduced fertilization with chemical fertilizers. Although the term ‘biostimu-
lant’ has become a permanent feature of scientific and professional literature, it was first
used only in 2007 [36]. Earlier, terms such as materials that, in minute quantities, promote
plant growth, ‘hormone-containing products’, or metabolic enhancers were used. Never-
theless, throughout the years, the term “biostimulant” has been used more frequently in
scientific publications, encompassing a wider variety of compounds and mechanisms of
action. Currently, biostimulants are classified into five classes: (i) seaweeds and plant ex-
tracts; (ii) humic substances; (iii) hydrolyzed proteins and nitrogen-containing compounds;
(iv) microorganisms; (v) inorganic compounds with biostimulant action [37].

The increase in their importance in agricultural practice is largely based on their very
favorable properties, which concern not only the crop quality and improved performance
under stress conditions [38,39], but also the reduction of the negative load on the natural
environment, achieved by reducing the need to use artificial fertilizers, contributed to the
change in the fertilization law. Biostimulants are included in the new Regulation (EU)
2019/1009 of the European Parliament and of the Council, which was published on 5
June 2019. It also makes a distinction between microorganisms and their exclusion from
the regulations. Presently, the following goods fall under the purview of the relevant EU
regulation when it comes to fertilizer products: (i) fertilizer; (ii) liming material; (iii) soil
improver; (iv) growing medium; (v) inhibitor; (vi) plant biostimulant; (a) microbial plant
biostimulant; (b) non-microbial plant biostimulant; (vii) fertilizing product blend.

According to the aforementioned EU legislation, a plant biostimulant is any substance
that enhances the plant’s feeding process regardless of its nutritional content, with the ex-
press purpose of enhancing one or more of the following traits of the plant or its rhizosphere:
(i) efficiency in using nutrients; (ii) ability to withstand abiotic stress; (iii) characteristics of
high quality; (iv) accessibility of restricted nutrients in soil or rhizosphere. In other words,
it is the group of preparations that improve plant growth but do not provide nutrients
themselves. Biostimulants support the natural processes in plant tissue due to the presence
of such substances as beneficial soil microorganisms, and phytohormones such as auxins,
cytokinins, or amino acids. In this class of compounds/substances, we distinguish a group
of products referred to as bio-fertilizers.

Microbial biofertilizers are made up of beneficial microorganism cells that interact with
the rhizosphere or endosphere of plants and have the ability to promote plant development.
They use elements already found in the soil to supply materials that promote plant devel-
opment. By encouraging nutrient absorption and ultimately increasing productivity, they
enhance soil fertility [8,40]. There are many commercial products formulated using selected
soil microorganisms, whose main purpose is to increase the availability of nutrients. In
addition, some preparations contain growth biostimulants that increase biotic and abiotic
stress resistance, although they do not provide nutrients themselves [7,9].

3. Overview of Different Forms of Microbial Formulations
3.1. Microbial Formulation Technology

A significant obstacle in soil ecology is the diverse and dynamic soil microbial popula-
tion, which varies in composition between various compartments and layers. The possible
effects of inoculation on the environment were never taken into consideration. Inoculation
would cause at least a temporary disturbance of the balance of soil microbial communities
since it provides large densities of effective and viable microorganisms for fast colonization of
the host rhizosphere. If significant native species disappear, it might negatively impact future
harvests by altering the microbiota and causing unfavorable changes. However, the degree
of variety and interactions among the plant, soil, and microbiota may function as a buffer
against inoculation-induced alterations in the microbe population structure [41]. Because
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several bacterial species may perform the same tasks, bacterial redundancy may prevent the
loss of certain species from impairing the system’s ability to function properly [42]. Microbial
formulations are a viable substitute for chemical inputs as microbial inoculants are ecolog-
ically benign, or “eco-friendly”. They could be microbial biocontrol agents, biofertilizers,
or phytostimulants. Bioherbicides can also be made from naturally occurring bacteria that
have been separated from their natural environment and sprayed on plants. Relatively
large quantities of microbial cells are added to the competitive soil environment in order to
employ microbial inoculants [43]. A variety of microorganisms have been investigated and
are often employed as microbial antagonists. The discovery of new species, the selection
and enhancement of established strains, and the introduction of non-native genes to obtain
expressed products or novel functional features have all contributed to recent advancements
in classical microbiology. We refer to this intricate and useful branch of microbiology as
technological advances in microbiology [44]. Different organic and inorganic carriers are
used in the formation of the prospective microbial isolates utilizing either liquid or solid
formulation techniques. They are applied by soil and foliar application, seed treatment,
biopriming, seedling dip, or combinations of strains as co-inoculants or consortiums [45].

3.1.1. Single Inoculants

Nowadays, a wide variety of single microorganisms are sold as microbial inoculants.
Several fungi pathogenic to insects are also being used as control agents, including Beauveria,
Metarhizium, Verticillium, and Paecilomyces. These are most commonly used in greenhouses
and other locations with reasonably high humidity to combat leaf caterpillars. Numerous
arthropod species are susceptible to Beauveria bassiana’s effects. When employing preparations
of fungal spores, the effectiveness of fungal microbiological therapies is significantly influenced
by environmental parameters, including temperature and humidity. Establishing the infection,
however, may cause insects to die long before chemical controls take effect. Both the impacts
on non-target species and the likelihood of resistance developing are significantly lower.
Spores often adhere, germinate, and penetrate insect cuticles when they come into contact
with them. Naturally, a large range of toxins and molecules that cause behavioral changes or
modifications are known to be released by several entomopathogenic fungi (Cordycipitales,
Trichocomaceae, etc.). Several Lepidopteran insect larvae have been effectively controlled by the
fungus [46]. C. F. Von Tubeuf was the first to create the phrase “biological control” as a viable
aspect of plant disease management in 1914. Since then, it has been discovered that a variety
of biocontrol agents are highly successful at managing plant diseases. Sanford [47] discovered
that green manuring antagonistic activities inhibited potato scab. Weindling [48] showed that
Trichoderma lignorum is a parasite on a number of plant diseases. Grossbard [49], Wright [50]
and others showed that Penicillium, Aspergillus, Trichoderma, and Streptomyces species generated
antibiotics in soil. Kloepper [51] showed how important the siderophores produced by Erwinia
carotovora are. Howell [52] reported P and Q strains of Trichoderma sp. [53]. A suspension of
Phytophthora palmivora’s chlamydospores was the first commercially registered mycoherbicide,
used to control Morrenia odorata [54].

Several microorganisms such as Trichoderma harzianum [55] Pseudomonas fluorescens [56],
and Bacillus subtilis [57] can control many foliar and soil-borne fungi, i.e., Fusarium spp., Rhi-
zoctonia solani, Pythium spp., Sclerotium rolfsii in vegetables, fruits, and industrial crops [58].
The goal of Trichoderma is to produce mycoparasitic strains that are efficient in controlling
plant fungal diseases in a variety of environmental settings [59]. It was discovered that
some Bacillus species penetrate the root surface, promote plant development, and induce
fungal mycelia to lyse [60,61]. Because, B. subtilis cells can produce dormant spores that
withstand harsh environments, they are simple to prepare and store [62]. Additionally, B.
subtilis generates a wide range of physiologically active substances that exhibit a broad
range of actions against phytopathogens and have the ability to cause systemic resistance
in the host [63]. It has also been demonstrated that a number of B. subtilis strains are able to
create multicellular structures, or biofilms [63]. These advantageous characteristics make
B. subtilis a possible candidate for use as a biological control agent. According to reports,
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certain strains of B. subtilis can successfully control the wilt disease caused by Ralstonia spp.
in a variety of plant hosts. [64–66]. In agricultural environments, bacteria, mycorrhiza, and
other fungi may all help to promote growth while providing biocontrol. These organisms
may function as biocontrol agents, minimizing pathogenic agent damage to plants, or they
may modify the levels of critical plant hormones such as auxin and ethylene. They may also
assist the plant in acquiring necessary resources like iron, phosphate, nitrogen, or water [67].
The genera Rhizobium, Sinorhizobium, Mesorhizobium, Bradyrhizobium, Azorhizobium, and
Allorhizobium include the most effective N-fixing strains [68]. Pochonia chlamydosporia [69,70],
and P. fluorescens [71] can effectively control diseases caused by nematodes [72]. Significant
advancements have been made in the development and distribution of bionematicides
in recent years [73]. Avermectin chemicals, which are the secondary metabolites of the
bacterium Streptomyces avermitilis, serve as model pesticides because they are effective
against nematodes even at extremely low dosages and are not harmful to mammals. There-
fore, adult nematodes and larvae, such as Radopholus similis, Meloidogyne incognita, and
Ditylenchus dipsaci, become immobile and die when exposed to filtrates of Bacillus firmus
cultures. This indicates that the production of hazardous compounds has a role in the
management of these pests [74].

3.1.2. Co-Inoculants

The reported variations in the field may be somewhat explained by the fact that
most inoculants frequently rely on administering a single strain. Adding many beneficial
microbial species or strains to the same microbial mixture is one method to overcome
this issue. Without requiring genetic engineering, co-inoculation combines many ways to
improve plant performance and the effectiveness and dependability of beneficial impacts
on crops [75]. In order to improve plant production and physiological parameters and
to regulate plant health, co-inoculation of biocontrol agents and biophytostimulators is
considered to be a beneficial strategy. By utilizing a variety of modes of action, the applica-
tion of distinct microbes can increase the range of biocontrol activity, improve the efficacy
and dependability in suppressing disease incidence, and promote plant growth without
the need for the use of genetic engineering techniques [76]. Soil contains an indefinite
number of microbes, including deleterious organisms. The isolation and evaluation of
several beneficial microbes with various modes of action concerning biological control and
plant growth promotion is an emerging area of research. The introduction of beneficial
microbes isolated from the soil ecosystem closely represents the natural situation and can
replace deleterious microbes when applied at higher inoculum levels. Moreover, applying
mixtures of beneficial microbial cultures enhances the efficacy and reliability of plant health
management [77]. However, certain mixtures of microbial strains negatively affect the
suppression of pathogen infection and plant growth promotion [78]. Additionally, co-
inoculants made up of many AM (Arbuscular Mycorrhiza) fungi can be created. For instance,
it has been demonstrated that the AM fungus Funneliformis mosseae can systematically lower
the disease infection in barley caused by Gaeumannomyces graminis var. tritici [79]. Thyge-
sen et al. [80] discovered a potential mycorrhiza-induced resistance against the pathogen
Aphanomyces euteiches’ ability to cause pear root rot. In addition, differences in the level of
tolerance induction were observed between the two AM fungi that were employed, Glomus
claroideum and G. intraradices. Abdel-Fattah et al. [81] reported that in both greenhouse
and field experiments, treatment with a combination of AM fungi (Glomus intraradices, G.
mosseae, G. clarum, Gigaspora margarita, and G. gigantea) effectively decreased the white root
disease in onions caused by Sclerotium cepivorum.

3.1.3. Microbial Consortia

Since bacteria do not exist in isolation in the natural environment, a group of bacteria
may be more beneficial for promoting plant development than a single bacterium [82,83].
The development of bacterial consortia and their composition, however, is a difficult
task as the members of the bacterial mixture must be compatible with one another. The
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bacteria selected for the bacterial consortium should also be adaptable to the unfavorable
circumstances present in agricultural fields and have a variety of capacities to promote
plant development and perform bioremediation. There is a greater likelihood that one
bacterium in the bacterial combination will carry out the functional gene expression needed
for plant growth promotion, which is another significant reason why bacterial consortiums
may operate better than single-bacterium formulations [84].

Several studies have demonstrated that a single strain cannot completely degrade
contaminants. As various strains have diverse metabolic pathways, bacteria that have
various reduction capabilities are combined, and the microbial consortium may incorporate
each strain’s advantages to ensure effective pollutant degradation [85]. Mixed microbial
consortia demonstrated high performance in substrate tolerance and enhanced pollutant
breakdown [86–92]. The consortia of microorganisms outperform single-strain cultures.
The microbial consortium demonstrated apparent impacts in the degradation of contami-
nants [86]. Some relevant microbial strains isolated from the intestinal flora and natural
flora have the intrinsic potential to breakdown contaminants [86,93]. Lactobacilli, Actinobac-
teria, Pseudomonas, Clostridium, Salmonella, and E. coli have been found to have the inherent
ability to degrade pollutants [86]. These strains are suitable for the bioremediation of
pollutants [86,94]. The microbial consortium has developed into a vital tool since it reduces
contaminants more effectively than a single strain [86,93]. Bioremediation is often carried
out by a microbial consortium rather than individual species in the natural environment,
and various strains or species perform distinct functional tasks. Co-cultivating the micro-
bial consortium is more effective than single bacteria, destroys pollutants more quickly,
and may considerably boost the bio-degradation of contaminants in the soil [91].

Considering both economic and environmental perspectives, sterilizing biomass
wastes is impracticable. Therefore, research in the applied sciences of synthetic micro-
bial consortia (SMC) should focus on non-sterile conditions. However, the native microbial
structure in biomass wastes is complex and variable, particularly in continuous or semi-
continuous processing where continuous substrate addition significantly influences the
existing microbial community structure. This implies higher requirements for the robust-
ness and resistance of SMC to perturbations. Immobilization methods may reduce or
eradicate this problem. Moreover, commercialization, which provides notable benefits in
preserving microbial activity during the storage and transportation of SMC, depends on
immobilization as well [95]. In Table 2 shows some examples of successful applications
of microbial consortia in the degradation of various waste materials and the release of
useful compounds.

Table 2. Application of synthetic microbial consortia in the degradation of various waste compounds
(adapted from [95]).

Wastes Compound Composition of Consortia Performance Reference

Cattle manure Methanosarcina acetivorans and
Methanosaeta thermophila Biogas production increased by 45% [96]

Chicken manure Nitrogen-converting bacteria Reduced ammonia loss by 59% [97]

Biogas residue Bacteria, fungi, actinomycetes, and yeasts Drying contribution accounted for 79% [98]

Food waste
Bacillus amyloliquefaciens B59, Bacillus
licheniformis B58, Bacillus haynesii A31,
and Bacillus amyloliquefaciens B11

The volatile solids removal improved by 10% [99]

Municipal waste Six plastic-degrading bacterial Improved degradation of different plastics [100]

Mustard biomass Saccharomyces cerevisiae and Fusarium
incarnatum Bioethanol production increased 33 mg/mL [101]

Poultry manure Six strains including Bacillus subtilis and
Streptomyces rutgersensis The concentration of odorants reduced 58–73% [102]
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3.2. Delivery Methods of Microbial Inoculants

Microbial inoculants can be applied to plants through various methods depending
on the pathogen’s survival and mode of infection. These methods include seed treatment,
root dip, soil application, and irrigation water. Effective formulations should ensure
that the biocontrol agents are delivered in their active state at the right time and place.
The microbial products should also adhere to plant components such as seeds, tubers,
cuttings, seedlings, trans-plants, and mature plants, and they should be simple to apply
and consistent with agronomic procedures. Even under adverse biotic and abiotic stress
conditions, the microbial products should be available in the soil for an extended period
of time.

3.2.1. Seed Treatment

The delivery of the agents to the spermosphere of plants, where generally very favor-
able conditions predominate, will be substantially aided by the biofortification of seeds.
Thus, the BCAs are given a great chance to endure, proliferate, and exert control on soil-
borne bacterial and fungal phytopathogens [103]. Microbial agents may be delivered “in
the right amount, at the right place, and at the right time” with the use of precise treatment
methods. The use of microbial inoculants in seeds is anticipated to rise in the future due to
growing public awareness of the possible risks of agrochemicals pose to the environment
and human health as well as the advancements in biotechnology that can enhance the
performance of microbial products [104]. End users are continuing to pay special attention
to this approach, which aims to deliver the active substances as near to the objective as
feasible. Consistent work performed globally has led to significant advancements in seed
treatment technology. This approach is appealing for introducing biological control agents
into the soil–plant environment because it provides the introduced organisms the selective
advantage of being leading colonizers of plant roots and increasing their number in the
rhizosphere. The prepared product (liquids, powders) may be applied directly to seedlings
without the need for adhesives. In order to promote product adherence to seeds, powders
for seed treatment are created by combining an active agent with an inert carrier [105].
Additives like xanthan gum and gum arabic are frequently utilized to boost the microbial
agents rate of survival when applied to seeds. When employed as a seed encapsulation
medium, alginate hydrogel keeps the entity alive and shields it from several types of stress.
Through a process known as “seed priming”, which involves combining seeds with an
organic carrier and bringing their moisture content down to a level slightly lower than
necessary for seed treatment—a technique that has been utilized to provide T. harzianum
to reduce Pythium-induced damping off on cucumbers [106]. Another method of treating
seeds involves applying Trichoderma spp. On radish and cucumber seeds through an indus-
trial film-coating process that was developed for the application of chemicals and biological
crop protection agents. It has been demonstrated to be effective against damping-off [107].

3.2.2. Biopriming of Seeds

Biopriming is the hydration of seeds utilizing a biological or a biocontrol ingredient.
Due to the discovery of seed priming technology, extensive research has been conducted
on this type of seed treatment, which is now widely used for postponed planting and
to promote faster plant development. As defined by McDonald [108], the procedure of
seed priming involves soaking the seeds in a suitable solution, and then drying them
again. This initiates the germination process, except for radicle emergence [108]. Seed
priming promotes the best circumstances for the inoculation and colonization of bacteria
in the seed [109]. On the other hand, biopriming is the process of soaking the seeds in a
bacterial suspension for a certain amount of time to enable bacterial imbibition into the
seed [110]. According to Reddy [111], in order to protect seeds from diseases, biopriming—
applying a beneficial bacterial inoculum and keeping the seeds hydrated—is a commonly
employed biocontrol technique. The method of soaking seeds in bacterial solution initiates
physiological processes within the seed, which prevents the development of plumules and
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radicles [112], until they are warmed and oxygenated after sowing. PGPR (Plant Growth-
Promoting Rhizobacteria) can grow in the spermosphere and multiply in the seed [113] even
before sowing. The focus is on seed biopriming since it allows endophytic bacteria to enter
through natural pores and prevent adverse stress conditions. Better plant development and
strong, even germination may be encouraged by biopriming therapy [114]. Biopriming with
rhizospheric bacteria has been reported in crops such as carrot [115], sweet corn [106,116],
and tomato [117,118]. Priming has been shown to improve plant growth and production
and to be beneficial in the case of biological agents’ efficacy and survival [106,116,118,119].
Since biopriming aids the seed’s ability to survive by offering a healthy environment, seed
priming with PGPR results in improved seedling establishment and germination [112].
When it comes to more effective choices and uniformity in germination, biopriming is the
most preferred strategy. Although biopriming has been used and described in a variety of
ways by many researchers over the years [114,116,120–124] it is still an ambiguous technique
that requires further investigation and discussion, particularly in field-level trials.

3.2.3. Seed Encapsulation Technology

Since inks were first microencapsulated in the 1950s, it has been widely recognized
that encapsulation techniques may be used to formulate a variety of active substances [125],
including extremely creative capsule systems for use in medicine [126–131], among oth-
ers. Publications pertaining to encapsulation have multiplied dramatically over time.
Almost 2500 publications were made annually in recent years, of which over 1500 were
patents [132]. As such, a wide range of encapsulation techniques are available for the
synthesis of biological control agents, particularly microbial agents.

The process of creating a shield or capsule around the active components or cells,
such as a microbial or macrobial cells or tissues, is known as encapsulation. According
to McLoughlin [133], by creating a definite, stable, and protected microenvironment, mi-
crobeads shield inner cells from mechanical, biotic, and abiotic stress as well as unfavorable
external environmental conditions. This allows cells to survive and maintain metabolic
activity for long periods of time, with the release of cells under controlled conditions once
they have adapted to their new surroundings [134]. Because microencapsulation protects
bacteria from harmful environmental elements, including pH changes and toxic agents
produced during processes, it greatly increases the vitality of microorganisms. Short-chain
fatty acids, hydrogen peroxide, bacteriophages, carbonyl-aromatic chemicals, and drying
may all be avoided by the bacterial cells with the help of microencapsulation [135]. Im-
mobilized cells have been observed to express alcohol tolerance [136], primarily due to
increased changes in the cell membrane [137]. Several fatty acid impurities are present in
alginate encapsulation, and these impurities most likely cause the immobilized cells’ fatty
acid pattern to change when compared with free cells [138]. A similar effect of tolerance
against phenol in E. coli was reported [139], which was linked to the cellular membrane’s
absorption of the saturated fatty acids found in commercial alginates. Later, Keweloh
et al. [139] demonstrated that other components of alginate, in addition to fatty acids,
also have a physiological impact on the cell membrane [138]. Another less complex but
regulated procedure is the release of microbes from microbeads. There are several ways
to crack a micro-envelope, including pressure, diffusion, solvent action, heat, and diffu-
sion [140]. As a result, encapsulated microbes are far more effective than the traditional
liquid and powder formulations, with both traditional and sophisticated formulations
having advantages and disadvantages of their own [141].

3.2.4. Soil Application

When biocontrol agents (BCAs) are too vulnerable to desiccation, which is typically
the case during drought and hot weather, soil treatment is recommended [142]. BCAs
control disease by establishing a strong population in the soil. In these situations, niche
exclusion also comes into play because the increased quantity of newly introduced microor-
ganisms prevents soil pathogens and other less advantageous microflora from accessing
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vital nutrients [143]. Both beneficial and pathogenic microorganisms are stored in the
soil, and the addition of microbial inoculants to the soil will boost the dynamics of the
enhanced bacterial antagonist population and prevent the spread of pathogenic microbes
to infection sites. Utilizing cellulosic transporters and binders as well as contemporary
thin-film coating methods, several species of Trichoderma have also been extensively syn-
thesized and introduced into the rhizosphere regions of seedlings to protect them from
soil-borne diseases, including Pythium ultimum and Rhizoctonia solani. Nonetheless, the
primary constraint of fungi as seed coverings persists; hence, they are less able to infiltrate
the rhizosphere than bacterial agents [142]. Several attempts have been made to introduce
natural substrates colonized by pathogen antagonists into the soil in order to manage a
number of soil-borne diseases [144]. Despite the use of aqueous solutions of bioagent
propagules for soil inoculation, the distribution of bioagents in the soil may not be uniform.
Bankole and Adebanjo [145] concluded that the use of Trichoderma viride soil inoculation
significantly reduced the level of infection in cowpea seeds infected with Colletotrichum
truncatum (brown blotch). Applying Trichoderma harzianum to the soil effectively controls
groundnut stem rot, which is caused by Sclerotium rolfsii [146]. Chrysanthemum wilt has
been inhibited by an aqueous drench containing conidia of T. harzianum, which prevented
Fusarium oxysporum from re-invading. Weststeijn [147] discovered that inoculating the soil
with Pseudomonas suspensions at a concentration of 108 cells per gram of dry soil before
planting bulbs decreased root rot in tulip trees caused by Pythium ultimum. It was discov-
ered that applying Pseudomonas cepacia strain N24 to seedbeds at a rate of 500 mL per m2 in
a greenhouse reduced wilt disease in sunflowers [148].

3.2.5. Foliar Spray Application

Improving spraying conditions while taking the available equipment into considera-
tion is necessary for the effective and efficient application of microbials [149–152] and the
respective formulations with biological control agents. Spraying equipment manufactur-
ers, including Lechler (Metzingen, Germany), Spraying Systems Co./TeeJet Technologies
(Glendale Heights, IL, USA), and Delevan Spray Technologies (Widnes, UK), recommend
spraying nozzles tailored to different types of crops, growth stages, insecticides, fungicides,
and herbicides. However, they often do not specify recommendations for microbial agents
and biopesticides. Due to their affordability and efficiency, microbial inoculants are often
sprayed using currently available chemical spraying equipment in organic farming and
integrated pest management (IPM) strategies. This makes it possible to draw insights from
earlier comparative research on chemical pesticides. For example, Dorr et al. [152] tested a
variety of hydraulic nozzles and spray mixtures and showed that nozzle design, operating
parameters, and spray formulations affect spray characteristics such as droplet size and
velocity, liquid density, fan angle, and air inclusion. Moreover, changes in droplet size may
affect coverage, while adjustments to fan angle may affect the uniformity of foliar spray.
The characteristics of spray droplets can affect the dangers and efficacy of pesticides [153].

Azospirillum Brasiliense, Pseudomonas fluorescens, and/or Bacillus sp. leaf-spraying has
also been shown to promote plant development in grasses, including grain crops [154] and
pastures, as well as legume grain crops [155,156]. However, Fukami et al. [157] observed
and recovered a few A. brasiliense cells in corn leaves following leaf spray inoculation,
providing a preliminary indication that the effects may be attributed to bacterial metabolites
rather than live cells. This was validated in tests using leaf spray of cell-free metabolites.
As a result, the effects of leaf spray involving both A. brasiliense and P. fluorescens, living
cells or their metabolites, could be attributed to systemic signaling from shoots to roots,
which contributes to root growth and induces mechanisms of resistance to abiotic and
biotic stresses [158–160]. Tejada et al. [161] discovered that foliar-spraying maize crops
with PGPB derived from sewage sludges boosted the protein content of harvested maize
seeds by over 30% throughout both studied growth seasons. Furthermore, the protein
content of maize seeds was improved by 19% by using PGPB generated from olive oil
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byproducts [162]. The protein content in soybean seeds was modestly increased after foliar
spraying with a high concentration of synthetic PGPB [163].

3.2.6. Root Dip Method

It is well known that pathogens can occasionally be soil- or seed-borne, and they
can form host–parasite interactions by penetrating via the root. Therefore, it is crucial
to protect the rhizosphere region by using PGPR before colonization in order to have
the opportunity to stop the development of a host–parasite interaction. Before being
transplanted, seedling roots can be treated with an antagonist spore or cell suspension
by dipping them in a microbial inoculant suspension or soaking the biological agents
in a nursery bed. In most cases, this technique works well for rice and vegetable crops
where transplanting is performed [164]. An experiment by Jambhulkar and Sharma [165]
highlights the decrease in bacterial leaf blight of rice that was observed when paddy
seedlings were soaked for two hours prior to transplantation in a suspension of Pseudomonas
fluorescens based on talc. Similar to this, in another experiment conducted in Tamil Nadu,
India, dipping rice seedlings in a talc-based formulation of P. fluorescens (PfALR1) before
transplanting decreased the severity of sheath blight and boosted yield [166]. Nandakumar
et al. [167] reported that encouraging results were obtained in controlling the occurrence of
sheath blight disease by dipping rice seedlings in bundles in water containing a talc-based
formulation of strain mixtures (20 g/L) for two hours, and then transplanting them to the
main field.

4. Development of Microbial Waste Compound Formulations

Agro-industrial waste can be difficult and time-consuming to compost using tradi-
tional methods. The composting process is influenced by a plethora of variables, including
raw materials, timeframes, ambient conditions, and more. Prior research demonstrated that
the addition of inoculum had no influence on the rate at which organic matter degraded
during the composting of wheat straw, agricultural waste, and grape pulp [168,169]. Due to
competition between the inoculant and native bacteria, as well as factors such as timing and
type, inoculations may not always work well. Thus, researchers have experimented with a
number of tactics to enhance the composting process through the use of inoculums. Adding
microbial inoculum at various phases of the composting process is a potential strategy.
The microbial inoculum can be applied in one, two, or multiple stages of the composting
process. The addition of the inoculum at different phases of the composting process has a
noticeable effect on physicochemical parameters [170,171]. For example, a study by Zeng
et al. [172] showed that as compared to inoculation during the first phase of the agricultural
waste (rice straw + bran + vegetable) composting process, the addition of Phanerochaete
chrysosporium during the second phase promotes a considerable shift in compost maturity.
Bacterial inoculation at different stages of rice straw [173], maize straw [174], and citrus
peel [175] composting significantly enhanced lignocellulose degradation, thus reducing the
C/N ratio and composting period. A review by Fan et al. [176] demonstrated that when
lignocellulosic waste was composted, microbial inoculation had an almost 100% favorable
impact on temperature, enzyme activity, microbial population, the C/N ratio, and humifi-
cation, as well as a more than 50% favorable impact on the breakdown of organic matter, GI,
N, P, and K. Nevertheless, their research showed that adding microbes to municipal solid
waste composting is less successful. This is due to the easily degradable organic matter
found in municipal solid waste that can be broken down by native or existing bacteria.

Table 3 provides an overview of the effects of microbial inoculation on the composting
of different agro-industrial wastes. Prior research revealed that improved mineralization
resulted from introducing bacteria into the composting process [177], accelerated the com-
posting process of oil palm empty fruit bunch (OPEFB) from 64 days to 50 days [178], and
enhanced the compost maturity of rice straw and cattle manure by increasing total nitro-
gen, phosphorus, and potassium content [179]. Due to the enhancement of key enzymes
(cellulase, xylanase) and core microbial metabolisms, the re-inoculation of microbial agents
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Aeromonas caviae sp. SD3, Shinella sp. XM2, Rhizobium sp. S8, Corynebacterium pseudotu-
berculosis sp. SD1, and Streptomyces clavuligerus sp. XM, which were screened from rice
straw compost, into the composting pile accelerated the degradation of organic matter and
coarse fiber content by 7.58% and 8.82%, respectively [180]. Furthermore, in comparison to
the uninoculated control treatment, the inoculation of a microbial inoculum comprising
Ralstonia sp. (LT703298), Penicillium sp. (LT703297), P. aurantiogriseum (LT703295), and
Acremonium alternatum (LT703296) enhanced the enzymatic activities of cellulase (15.0 to
19.8%), urease (2.3 to 71.4%), and polyphenol oxidase (0.3 to 28.4%). This resulted in a
shorter composting period and an improved maturation rate in the composting of apple
tree branches and pig manure [181]. Henry et al. [182] found that adding effective microor-
ganisms (EM) to the composting of pine debris, rice bran, and chicken manure increased
the number of thermophiles and, as a result, increased the pace of composting compared
to control composting. The findings by Wang et al. [175], demonstrated that adding a
bacterial consortium inoculant to the composting of citrus peel, bran, and lime reduced
the C/N, organic matter, and moisture while promoting the enrichment of the Bacillus,
Sphingobacterium, and Saccharomonospora genera. This improved the degradation of pectin
and cellulose. Additionally, adding phosphate-solubilizing bacteria to sugarcane waste
composting increased bacterial growth, primarily of the Lactobacillales order. The increased
temperature at the beginning of the composting process encouraged the breakdown of
the lignocellulosic content, which, in turn, enriched the phosphorus content at the end
of the composting process [183,184]. Several researchers have provided findings to help
develop microbial waste compound formulations. In Table 3 summarizes microbial waste
compound degradation and the most important compounds that are produced.
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Table 3. Microbial degradation of waste compounds. (Adapted from [184]).

Waste Compounds Microbial Treatment Culture Concentration Composting
Conditions

Impact on the Entire
Composting Process References

Mushroom residue

Paenibacillus GX 5
Paenibacillus GX 7
Paenibacillus GX 13
Brevibacillus, GX 5
Brevibacillus, GX 7
Brevibacillus, GX 13

2 mL 100 g−1

C/N-12,
T–(57 ◦C),
MC–(60–24%),
pH-(8)

Increased microbial contact, extended thermophilic
period, and improved rate of lignocellulose and
organic matter decomposition.

[185]

Mushroom residue and
wood chips

Aspergillus,
Penicillium
Bacillus,
Streptomyces

0.2% (w/w−1)

C/N–(22),
T- (58.4 ◦C),
MC-(50%),
pH-(7.8)

extended thermophilic stage, improved cellulose
and hemicellulose breakdown efficiency, and
optimal microbial community structure.

[186]

Chicken manure and maize
straw

B. licheniformis,
B. amyloliquefaciens,
Ureibacillus thermosphaericus,
B. megaterium,
Geobacillus pallidus,
B. pumilus,
Geobacillus sp.
Paracoccus denitrificans

200 mL of
1 × 108 CFU mL−1

C/N-(21),
T-(68.4 ◦C),
MC-(55.6–42%),
pH-(8.7)

Increased germination index, NO3 content,
prolonged thermophilic stage, reduced volatile
solids contents, improved humification and
compost maturity level.

[187]

Chicken manure and rice
husk

Ureibacillus terrenus BE8 and
B. tequilensis BG7 5% (v/w−1)

Total C (263 g kg−1), and
Total N (34 g kg−1),
T-(65 ◦C),
MC-(78.1%)

Improved germination index values, faster compost
maturity through early stimulation of many
important microorganisms, and superior
phytotoxicity-free compost compared to the control
treatment.

[188]

Pig manure and wheat straw
Microbial agent solution consisting of
photosynthetic bacteria, actinomycetes, yeasts,
and lactic acid bacteria

40 mL 10 kg−1

Total C (41.2 ± 0.5%),
Total N (1.79 ± 0.03%),
T-(68.4 ◦C),
MC-(55%)

The possible hosts of ARGs have changed because
of changes in ARG profiles and bacterial
populations, which has increased the removal of
ARGs in their entirety.

[189]

Rice straw

Compound bacterial agent screened from rice
straw composts:
Aeromonas caviae sp. SD3 (KR868995.1),
Shinella sp. XM2 (CP015736.1),
Rhizobium sp. S8 (KF261556.1),
Corynebacterium pseudotuberculosis sp. SD1
(CP020356.1) and
S. clavuligerus sp. XM (CP032052.1)

1% (w/w−1) of
1 × 109 CFU mL−1 cell
concentration

C/N-(30),
MC-(65%)

Improved the degradation of organic matter and
coarse fiber content by 7.58% and, 8.82% due to the
enhancement of core microbial metabolism.

[180]



Microorganisms 2024, 12, 541 16 of 29

Table 3. Cont.

Waste Compounds Microbial Treatment Culture Concentration Composting
Conditions

Impact on the Entire
Composting Process References

Chicken manure, rice bran
and pine waste

Bacteria: Bacillus spp.,
Alicyclobacillus spp.,
Pseudomonas spp.,
Lactobacillus spp.,
Pediococcuss spp., and Actinomycetes.
Fungi:
Rhizomucor pusillus,
Aspergillus spp.

0.2% (w/w−1)

C/N-(28.4),
T-(65 ◦C),
MC-(60 to 40%),
pH-(8.5)

Enhanced mineralization, composting rate, and
microbial population and variety. [182]

Rice straw biogas residue
and rice straw

A. niger CICIMF0410 and
P. chrysosporium AF 96007

1% (v/w−1) of
1 × 108 CFU mL−1 cell
concentration

C/N-(32),
T-(68.3 ◦C),
MC-(60%)

Reduced the time required for decomposition of
organic matter, removed the toxicity risk for crops
and promoted the stability of the compost.

[190]

Swine manure and spent
mushroom substrate

Microbial suspension of lignocellulose-degrading
microorganism’s consortium consisting of Bacillus,
Brevibacillus, Paenibacillus and Lysinibacillus genera

10% (v/w−1)

Mixture ratio (1:1),
T-(68 ◦C),
MC-(60%),
pH-(7.6)

Promoted the changes of the bacterial community in
the mesophilic phase and reduced the risk of ARGs
in the final compost.

[191]

Maize straw and canola
residue Phanerochaete chrysosporium 1 × 108 CFU mL−1

C/N-(25),
T-(60 ◦C),
MC-(52%),
pH-(8.17)

Improved lignin degradation during the cooling
stage, enhanced compost humification. [192]

River sediment, rice straw,
vegetables, and bran Phanerochaete chrysosporium 0.5% (v/w−1)

C/N-(30),
T-(69 ◦C),
MC-(60%),
pH-(8.6)

Enhanced the passivation of copper and reduced the
effect of pH on the bioavailability of heavy metals. [192]

Dairy manure and sugarcane
leaves

Thermophilic lignocellulolytic microbes screened
from dairy and sugarcane leaves compost
samples:
B. licheniformis (TA65),
A. nidulans (GXU-1) and
A. oryzae (GXU-11)

2% (w/w−1)
C/N-(30),
T-(55 ◦C),

Enhance the lignocellulose degradation process and
the humification process, as well as the
mineralization of organic carbon.

[193]

Pig manure and corn stalk
Compound bacterium agent comprised of
Acinetobacter pittii, B. subtilis sub sp. Stercoris and
B. altitudinis

1% (v/w−1) of
1 × 109 CFU mL−1 cell
concentration

C/N-(30),
T-(67.3 ◦C),
MC-(60%),
pH-(8.8)

Increased the number of biomarkers, prolonged the
thermophilic stage, reduced the amount of human
disease-related functional genes, and improved
fertility and longevity.

[194]

Citrus peel. bran and lime The bacterial consortium which was screened
from citrus peel compost samples 3% (w/w−1)

C/N-(25),
T-(65 ◦C),
MC-(60%),
pH-(8.5)

Decreased C/N, organic matter, moisture, pectin
and cellulose content, and enhanced the richness
and diversity of the bacterial community.

[175]
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Table 3. Cont.

Waste Compounds Microbial Treatment Culture Concentration Composting
Conditions

Impact on the Entire
Composting Process References

Cattle manure and wheat
stalks B. subtilis 0.5% (w/w−1)

C/N-(25),
MC-(60%),
pH-(7.61)

Promoted changes in ARGs and removed many
pathogenic bacteria. [195]

Wheat straw, rice, corn and
soybean

Actinomycetes:
Streptomyces sp. H1 (KX641927.1),
Mycobacerium sp. G1 (KY910181.1),
Micromonospora sp. G7 (LC333394.1) and
Saccha-romonospora sp. T9 (NR074713.2)

3 mL kg−1 of
1 × 109 CFU mL−1 cell
concentration

C/N-(30),
T-(63 ◦C),
MC-(50 to 60%),
pH (9.4)

Improved 34.3% lignocellulose degradation and
8.3% enzyme activity. [196]

Pig manure and apple tree
branches

Microbial inoculum:
Ralstoinia sp.,
Penicillium sp.,
Penicillium aurantiogriseum, and
Acremonium alternatum

2% (v/w−1)

C/N-(30),
T-(77 ◦C),
MC-(60%),
pH-(8.1)

Enhanced cellulase, urease, and polyphenol oxidase
activities and promoted the succession of the
bacterial community structure.

[181]

Corn straw and dairy
manure

Thermo-tolerant actinomycetes Streptomyces sp.
H1, Streptomyces sp. G1, Streptomyces sp. G2 and
Actinobacteria bacterium T9

2% (v/w−1) of
1 × 109 CFU mL−1 cell
concentration

C/N-(30),
T-(57 ◦C),
MC-(60%)

Enhanced cellulase activities and increased
degradation of cellulose, humic substances content. [197]

Food waste and maize straw

Cold adapted microbial consortium comprised of
stains P. fragi (KY283110),
P. simiae (KY283111),
Clostridium vincentii (KY283112),
P. jessenii (KY283113) and
Iodobacter fluviatilis (KY283114).

1% (v/w−1) of
1 × 108 CFU mL−1 cell
concentration

C/N-(18),
T-(45 ◦C),
MC-(66%)

Improved the breakdown of organic materials at
low temperatures and encouraged a shift in the
succession and composition of the bacterial
population.

[198]

Dairy manure and rice straw

Psychrotrophic-thermophilic complex microbial
agent (PTCMA):
B. diminuta CB1,
Flavobacterium glaciei CB23, A. niger CF5 and
Penicillium commune CF8

10 mL kg−1 of
1 × 108 CFU mL−1 cell
concentration

C/N-(32), T-(63 to 45 ◦C),
MC-(60%),
pH-(8.2 to 8.4)

In colder areas, raising the temperature of the
composting pile, greatly enhancing the compost’s
maturity, and proposing PTCMA injection are all
useful strategies.

[199]

Sugarcane industry waste

Phosphate-solubilizing bacteria:
P. aeruginosa,
Bacillus sp.,
Lactobacillales,
Bacillales,
Pseudomonas sp.,
Clostridiales

8 L mg−1 of
1 × 108 CFU mL−1 cell
concentration

C/N-(30),
T-(60 ◦C)

Elevated bacterial development, mostly of the
Lactobacillales order, which results in the heaps
heating up in the first stage of composting and
having an increased phosphorus content at the end.

[183]

Rice straw, soil, vegetables,
and bran Phanerochaete chrysosporium

2% (v/w−1) of
1 × 106 CFU mL−1 cell
concentration

C/N-(30),
T-(58 ◦C),
MC-(60%),
pH-(8)

reduced the lead’s toxicity and enhanced the
composting bacterial community’s diversity [200]
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Table 3. Cont.

Waste Compounds Microbial Treatment Culture Concentration Composting
Conditions

Impact on the Entire
Composting Process References

Chicken manure and rice
straw Ammonia-oxidizing bacteria

5% (v/w−1) of
1 × 106 CFU mL−1 cell
concentration

C/N-(25),
T-(57 ◦C),
MC-(60 to 70%),
pH-(7.4)

Reduced nitrogen loss and ammonia emissions by
the conversion of ammonium to nitrite and
improved bacterial community abundance.

[174]

Rice straw

Cellulase producing
bacteria: B.
licheniformis 1-1v and
B. sonorensis 7-1v

1% (v/w−1) of
3.6 and 6.8 × 107 CFU
mL−1 cell concentration

C/N-(35.8),
T-(54 ◦C),
MC-(35%),
pH-(8.1)

Lowered the composting period by 40 to 43%,
which improved the quality of the compost and led
to a greater drop in the total organic carbon and
C/N ratio.

[179]

Vegetable waste: cattle
manure: sawdust Phanerochaetechrysosporium (MTCC 787) 107 to 108 spores g−1 of

compost

Compost mixture ratio (5:4),
T-(64 ◦C),
MC-(65%),
pH-(7.5)

improved the volatile solids reduction over the
uninoculated compost treatment by 1.45 times in
trial 2 (the initial phase) and 1.7 times in trial 3 (the
thermophilic phase).

[201]

Rice straw and goat manure EM: lactic acid bacteria, yeast and phototrophic
bacteria. 5% (v/w−1) C/N-(32.4) Improved the mineralization in composting process. [177]

Wheat straw and cattle
manure

Ammonium-oxidizing bacteria: Bacillaceae (strain
T-AOB-2, M-AOB-4 and MT-AOB, 2–4)

5% (v/w−1) of
1 × 108 CFU mL−1 cell
concentration

C/N-(30),
MC-(65%)

Enhance bacterial activity and encourage the
production of humic compounds by lowering total
and dissolved organic carbon.

[202]

Chicken manure, furfural
residues and bagasse

Exogenous microbes (VT) and indigenous
microbes (M3T) 0.5% (v/w−1)

C/N-(30),
T-(50 to 58 ◦C),
MC-(55%)

Increased urease, protease, and cellulase activity, as
well as a faster rate of temperature increase. [203]

Maize straw and pig manure

B. subtilis,
B. licheniformis,
Phanerochaetechrysosporium,
Trichoderma koningii,
Saccharomyces cerevisiae

0.1% (w/w−1)
C/N-(27.7),
T-(66 ◦C),
MC-(60%)

Improved rate of temperature increase, increased
micronutrients (N, P, K), enhanced decomposition of
organic carbon, improved germination index.

[204]

Wheat straw and dairy
manure

Microbial agent:
A. niger,
Saccharomyces cerevisiae,
Lactobacillus plantarum,
Lactobacillus acidophilus,
B. megaterium,
S. albogriseus and
B. subtilis

0.2% (v/w−1)

C/N-(16),
T-(60 ◦C),
MC-(60%),
pH-(8.0)

Raised essential bacterial network interaction,
reduced possible pathogen abundance, and
increased composting maturity and overall organic
carbon decomposition.

[30]
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Table 3. Cont.

Waste Compounds Microbial Treatment Culture Concentration Composting
Conditions

Impact on the Entire
Composting Process References

Rice straw and cattle manure Malbranchea cinnamonmea,
Gloephyllumtrabeum 10 mL kg−1

C/N-(25),
T-(73 ◦C),
MC-(65%),
pH-(8.5)

Strengthened nutrients and humus carbon,
enhanced lignocellulosic fungal variety and relative
abundance, and promoted decomposition of
cellulose, hemicellulose, and lignin.

[205]

Rice straw and swine manure

Kitasatospora phosalacinea C1,
Paenibacillus glycanilyticus X1,
B. licheniformis S3,
Brevibacillus agri E4 and
Phanerochaete chrysosporium

Not mentioned C/N-(27.5),
T-(62 ◦C)

Increased degree of maturity and improved pace of
temperature increase. [206]

Wheat straw and swine
manure Gloephyllum trabeum 1 × 108 spores

kg−1

C/N-(27),
T-(73 ◦C),
MC-(60%)

Shorten maturation period, increased
decomposition rate of cellulose, hemicellulose and
lignin, influencing fungal community by increasing
relative abundance of Aspergillus, Mycothemus and
melanocapus.

[205]

Note: MC-moisture content; C/N-carbon nitrogen ratio; CFU-colony forming unit; T-temperature.
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5. Challenges and Limitations in Microbial Formulation Technology

Limitations and challenges in microbial formulation technology utilizing the potential
of beneficial soil microorganisms to produce biofertilizers that improve the yield of plants
have gained interest in recent years. Although this strategy has seen great success, it
is not without difficulties and limitations. One of the main obstacles is the difficulty
in reproducing their beneficial effects on plants in the field under constantly changing
environmental conditions. Additionally, agricultural communities need to be made more
aware of the ecological significance of these microbial formulations as well as the scientific
methodologies for using them in the field. To promote their acceptance and effective
implementation, outreach and education initiatives are essential. There may also be ethical
issues, especially if genetically engineered microbes or non-native species are used in these
compositions. The adoption of such techniques may be significantly influenced by society’s
acceptance of them. Furthermore, currently existing natural soil microbe populations may
provide significant obstacles to the effective application of these inoculants. It is not certain
that microbial biofertilizers will perform consistently in a variety of crop varieties and
conditions. It might be difficult to choose the most efficient microbial strains for a given
agricultural environment. Furthermore, other parameters, including soil type, temperature,
pH, and moisture content, might affect how effective these strains are. The short shelf life
of microbial preparations is another drawback. The microbes in these formulations may
become less viable with time, which could decrease their efficacy in the field. Strict quality
control is necessary throughout production to preserve the uniformity and efficacy of these
products. Studies on commercial biofertilizers have shown problems with contamination
and the presence of unintended bacterial strains. For example, Herrmann and Lesueur [207]
analyzed 65 commercial biofertilizers and found that only 37% of these products fulfilled
the requirements to be labelled as “pure”. On the other hand, a noteworthy 63% of the
biofertilizers that were evaluated showed signs of contamination from one or more bacterial
species. In addition, it was discovered that 40% of the tested items included impurities and
lacked the designated strains completely. Other limitations include a lack of appropriate
carriers for these formulations, poor storage facilities to avoid infection, and unpredictable
efficacy owing to severe weather. The absence of important labeling information, such as
expiration dates and the identity of the microorganisms utilized in manufacturing, might
also cast doubt on the validity of using biofertilizers. The selectivity in the processes of
most biofertilizers limits their compatibility with specific chemical pesticides or fertilizers,
potentially impacting integrated pest control or nutrient management programs. It is
essential for scientists, agricultural practitioners, and policymakers to work together and
conduct ongoing research and development to overcome these obstacles and limitations. To
promote sustainable farming practices, it is imperative to investigate and capitalize on the
possible advantages of microbial formulations while actively resolving their disadvantages.

6. Future Aspects

Microbial technology evolved because of fast breakthroughs in science, technology, and
development. Technological advancements in this discipline have increased the economic
effect of research initiatives. Even though bioremediation has emerged as an effective
treatment option for valorizing waste compounds, several hurdles limit its widespread
commercial adoption. To completely gain the benefits of bioremediation processes, the
following challenges must be addressed.

• Many researchers have proven the use of bioremediation to remove poisons from
actual waste. It is necessary to extensively explore bioremediation applications to
assess their potential for deployment.

• Most studies focused on batch-scale bioremediation techniques for pollutant removal.
The commercial potential of bioremediation as a cost-effective and fulfilling option
should be investigated.

• A multidisciplinary approach is necessary to solve contemporary issues and broaden
the practical applications of microbial formulation techniques.
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• Microbial genome engineering can lead to the development of modified microorgan-
isms with improved biodegradation capabilities.

• Degradation mechanisms, operational factors, and favorable environments for bacteria
must all be properly assessed.

Currently, there is a need to pay special attention to the utilization of microorganisms
in various ways for the valorization of waste compounds to sustain or restore the native mi-
crobiome of the soil bulk or rhizosphere. Reusing raw resources that are currently discarded
as garbage is one of the main tenets of the Circular Economy Package, which was enacted
in December 2015. In the future, farmers’ product options may be expanded by fertilizer
preparations made by microbial solubilization with sustainable raw materials. This appears
to be a reaction to the current trend of looking for a new generation of agricultural goods
produced using ecologically friendly practices and bio-based raw materials. Increasing the
recycling of products and their reuse brings measurable benefits for both the environment
and the economy. The actions promoted by EU regulations are aimed at ensuring the better
use of raw materials, products, and waste. Furthermore, encouraging the broader use of
recycled nutrients would facilitate a more resource-efficient use of these nutrients and aid
in the development of the circular economy. Research on potential sustainable methods
should focus on substituting waste inputs for mineral fertilizers and providing plants with
a special type of root-associated microbe that can depolymerize and mineralize nutrients
attached to organic matter. Because a variety of industrial, municipal, and agricultural
operations generate enormous volumes of nutrient-rich “waste” that is currently disposed
of but may one day be converted and used as fertilizers, waste inputs can be obtained more
sustainably than mineral fertilizers. Another reason is that nutrients attached to organic
matter are less likely to leak or volatilize because they are more stable in the soil than
fertilizers made of minerals. It is advisable that in the future, efforts are made to learn how
to use and comprehend these microbes and their functions, as well as how to efficiently
colonize plants using soil inoculation techniques.

7. Conclusions

The majority of current research on complex compound-degrading microbial consortia
has focused on native consortia isolated from the environment. However, we predict that
future investigation will focus on artificial microbial consortia. The development of micro-
bial consortia systems using metabolic engineering and synthetic biology demonstrates
high degradation potential, offering a new technique for the effective exploitation of com-
plicated substrates and the restoration of the environment. The effective introduction of
microorganisms to the soil system ensures their sufficient colonization, tailored to carry out
specific functions and to gain insight into the mechanisms of how soil microbes boost plant
growth under conditions when nutrients are not readily available. Co-composting with mi-
crobes has the added benefit of improving degradability and reducing nutrient valorization
in compost. Although the incorporation of microbial cultures may improve composting
efficiency, the economic feasibility of microbial culture costs remains an essential concern
in future research.
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