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Abstract: Toxicokinetic or pharmacokinetic models, physiologically based or not, offer a unique
avenue to understand the transport of toxins or pharmaceuticals in living organisms. The availability
of analytical solutions to such models offers the means to engage in a plethora of applications. In
the present work, we provide the framework to solve analytically such models using the matrix
exponential, and we then apply this method to derive an explicit solution to four-to-five-compartment
physiologically based toxicokinetic (PBTK) models considering a single- and an infinite-exponential
expression for the amount of mass released from an implantable device. We also offer the conditions
that need to be met for analytical solutions to be obtained when the kinetic rates are time-dependent
functions. Our analysis compares the computation time between analytical and numerical solutions
and characterizes the dependency of the maximum substance mass value and the time it occurs in
the various tissue compartments from the material surface diffusion characteristics. Our analytical
solutions, which have several advantages over the solutions obtained using numerical solvers, can be
incorporated into in silico tools and provide valuable information for human health risk assessment.

Keywords: medical implants; physiologically based toxicokinetic (PBTK) models; modeling and
simulations (M&S); absorption, distribution, metabolism, and excretion (ADME); analytical solutions;
matrix exponential

1. Introduction

Understanding and modeling the kinetics of substances (toxins or pharmaceuticals)
in living organisms is vital. It allows us to provide a framework for health risk assess-
ment and management [1–4] and for the in silico optimization of novel drug delivery
systems [5,6]. Indeed, recently, the US Food and Drug Administration (FDA) [7] and the
European Centre for Disease Prevention and Control (ECDC) [8] suggested that modeling
and simulation tools are valuable and should be employed to assist decision-making. Such
in silico tools, therefore, allow the reduction of animals sacrificed for testing, reduction of
the cost and time for performing such testing, and improving the toxicity prediction and
safety assessment [9].

In such an endeavor, mathematical models have a unique position; mathematical
modeling enables us to comprehend the underlying mechanics of various processes and
even to explore scenarios that would have otherwise been impossible or too difficult to
study experimentally. As such, it bears today, given the advent of computational power, a
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pivotal role not only in developing toxicokinetic or pharmacokinetic models but practically
in our everyday lives.

An important class of mathematical models is physiologically based toxicokinetic
(PBTK) [1,10] and physiologically based pharmacokinetic (PBPK) models [11]. Both PBTK
and PBPK models quantitatively describe the absorption, distribution, metabolism, and
excretion (ADME) of substances (either toxic in PBTK models or drugs in PBPK models) [10].
In essence, they are mass balances that describe how the mass of the substance(s) diffuses
throughout the body by focusing on a set of compartments (e.g., body organs, biofluids,
and tissues) characterized physiologically using a system of coupled ordinary differential
equations (ODEs) [10]. The kinetic rates quantify the transport of the substance from
one compartment to another, and each describes, in a single parameter, the multitude
of biological and physicochemical processes that occur during mass transfer from one
compartment to another [10]. For example, Saylor et al. [12] are perhaps the first to
provide a biokinetic model to estimate nickel release from an implanted device. The
Saylor et al. model (SM) aims to describe the transfer of Ni ions from the implanted
medical device to adjacent tissue and circulation and their transport between blood and
the various tissues/organs by combining a traditional toxicokinetic compartmental model
with a physics-based model. Saylor et al. used this model to predict local and systemic
nickel exposure from nitinol devices produced using a wide range of manufacturing
processes. In our recent work [2], we formulated the SMK model by adding one additional
compartment corresponding to kidneys. The separate consideration of kidneys from the
“other tissues” compartment makes the new SMK model a better approximation of the
physiological secretion of nickel through the urinary system. Both models were noted to
provide similar comparisons with human clinical data; however, when the two models
are compared against the in vivo minipig data of Nagaraja et al. [13], the SMK model is
more accurate in predicting the concentration–time profile in the urine compartment (see
Figures 4 and S2–S4 of Giakoumi et al. [2]). More recently, we have presented a multi-
compartmental PBTK model that includes as separate compartments many important
tissues and organs (e.g., liver, lungs, and brain), body fluids, and excreta, which has
demonstrated prognostic conformity with in-house in vivo mice data [3].

Although recent work has emphasized the need to include a multitude of simulation
tools to address the full capacity of PBTK and PBPK models, including the use of multi-
objective optimization and stochastic Monte Carlo simulations to accommodate a more
precise and trustworthy assessment [2,3], the complexity of said tools does not allow
analytical solutions to be sought. To the best of our knowledge, only the work of Abuhelwa
et al. [14] has reported analytical solutions for PBPK models using the Laplace transform
method. In this work, we aim to fill this void by providing analytical solutions to PBTK
models with four to five compartments that monitor the biodistribution of substance
leaching from medical device materials. Providing solutions to multi-compartment PBTK
(or PBPK) models with more than five compartments that better reflect human anatomy
and physiology is a straightforward exercise. To do this, we use the fact that the analytical
solution of any linear system of coupled ODEs involves the matrix exponential. We
explicitly derive, as illustrated in the next section, the matrix exponential for the two PBTK
models of interest (SM and SMK) and provide the explicit solution for both models, which,
to the best of our knowledge, has not been published before.

The structure of the paper is as follows: in the next section, we provide the well-
known general solution to any linear system of coupled ODEs that involves the matrix
exponential [15]. The two previously published PBTK models are studied considering a
single- and an infinite-exponential device release with time-independent kinetic rates (the
former provided in the Supplementary Material). A note regarding obtaining an analytical
solution when the kinetic rates are arbitrary functions of time is also provided. In Section 3,
we first compare the computation time between analytical and numerical solutions and
provide the concentration–time profiles for some parameter values. We then, and most
importantly, examine the model-derived predictions to characterize the dependency of the
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maximum substance mass value and the time it occurs in the various tissue compartments
from the device material surface finishing. We end with Section 4 where we summarize the
most important results of this study.

2. Methods

Any linear system of ODEs can be written in the following tensorial form:

dy(t)
dt

= A · y(t) + b(t), (1)

where y(t) is the vector of dependent variables, such that y(t = 0) = 0. Note that, in
general, the non-homogenous part of the system of coupled ODEs is an arbitrary function
of time. The well-known solution then comes easily by applying the Laplace transform [15]:

sY(s) = A · Y(s) + B(s) ⇒ Y(s) = (sI − A)−1 · B(s), (2)

where I is the unit tensor. Then, by inversing the Laplace transform, we obtain [15]:

y(t) =
t∫

0

eA(t−x) · b(x)dx, (3)

where eAt is the matrix exponential of At [15,16]. One way to obtain the matrix exponential
is to use Sylvester’s formula (or the Lagrange interpolating polynomial method) [16], which
necessitates first finding the eigenvalues and eigenvectors of A. We will now illustrate this
method in specific examples regarding solving two PBTK models.

2.1. The Saylor et al. Model

The SM model [12] was the first model proposed to predict the biodistribution of nickel
release from an implanted medical device. It considers a zero-order rate of absorption
of dietary nickel from the gut into serum (kg), a first-order elimination of Ni from the
serum through urine (ku), a first-order elimination of Ni from the local tissues through
serum (kl), and a first-order exchange of Ni between serum and tissues (kst and kts). This
model’s predictive capacity has been previously validated against reported values following
implantation of atrium occluders in humans [17] and stent implantation in minipigs [13]
by Giakoumi et al. [2]. It reads as follows,

dMl(t)
dt = (1 − F(t))

.
Md(t)− kl(t)Ml(t)

dMs(t)
dt = F(t)

.
Md(t)− (kst + ku)Ms(t) + kl Ml(t) + kts Mt(t) + kg

dMt(t)
dt = kst Ms(t)− kts Mt(t)

, (4a)

where Ml , Ms, Mt correspond to the mass of nickel in the local tissue, serum, and other
tissue compartments, respectively. In addition, the urine mass is given via a first-order
elimination equation:

dMu(t)
dt

= Cu(t)Qu = ku Ms(t), (4b)

where Cu corresponds to the concentration of nickel in urine, and Qu corresponds to the
volumetric urine output rate. Note that Cu is simply proportional to Ms(t); similarly, the
nickel concentration in serum is given as Cs(t) = Ms(t)/Vs where Vs corresponds to the
serum volume. Also,

.
Md(t) ≡ dMd/dt represents the nickel release generated from the

medical device, of which only a fraction (0 ≤ F ≤ 1) is released directly into the serum,
while the remaining nickel partitions into the local tissue surrounding the device. Note that
this fraction and the kinetic rate kl are non-negative and, in general, time-dependent [2];
however, we will herein consider them to be constants for simplicity unless otherwise
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specified (see also Section 2.3). The initial (control) conditions at t = 0 for these quantities
(that also stand as their steady-state values) are the following:

Ml(0) = 0, Ms(0) =
kg

ku
, Mt(0) =

kst

kts
Ms(0). (4c)

Now, the analytical solution of the first equation in Equation (4a) is trivial and can
easily be provided as:

Ml(t) = exp[−θ(t)]
t∫

0
exp[θ(x)](1 − F(x))

.
Md(x)dx

θ(t) =
t∫

0
kl(x)dx

. (5)

Thus, since Ml(t) is known, then the system of remaining ODEs in Equation (4a) is
written as:

dMs(t)
dt = F(t)

.
Md(t)− (kst + ku)Ms(t) + kl Ml(t) + kts Mt(t) + kg

dMt(t)
dt = kst Ms(t)− kts Mt(t)

, (6)

This can then be written in the form of Equation (1) using:

y(t) =
[

Ms(t)− Ms(0)
Mt(t)− Mt(0)

]
, A =

[
−(kst + ku) kts

kst −kts

]
, b(t) = g(t)

[
1
0

]
, (7a)

where
g(t) = F(t)

.
Md(t) + kl(t)Ml(t). (7b)

We next need to obtain the matrix exponential. First, we must obtain the eigenvalues
of A,

det(A − λI) = λ2 − trAλ + detA = 0 ⇒
λ2 + (kst + ku + kts)λ + kukts = 0

. (8)

Given that the discriminant of this equation is:

∆ = (trA)2 − 4detA = (kst + ku + kts)
2 − 4kukts

= k2
ts + k2

st + k2
u + 2kstkts + 2ku(kst − kts)

, (9)

and since the kinetic rates are non-negative, the eigenvalues of A are always real (i.e., ∆ > 0)
provided that kst > kts. Note, however, that this condition may be too restrictive since any
other choice of parameter values may still provide real eigenvalues even if kst < kts as long
as ∆ > 0. Then, the eigenvalues of A are:

λ1,2 =
1
2

(
trA ±

√
∆
)
= −1

2

[
(kst + ku + kts)∓

√
∆
]
. (10)

For the system to be dynamically stable, we need to have all eigenvalues with a
negative real part. Thus, it should hold

trA <
√

∆ ⇒ (trA)2 < ∆ ⇒ detA = kukts > 0. (11)

Since the kinetic rates are non-negative, then this automatically holds. Then, by using
Sylvester’s formula:

eAt = A−λ2I
λ1−λ2

eλ1t + A−λ1I
λ2−λ1

eλ2t = P1(t)A + P0(t)I

P1(t) = eλ1t−eλ2t

λ1−λ2
, P0(t) = − λ2eλ1t−λ1eλ2t

λ1−λ2

. (12)
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Thus,
t∫

0
eA(t−x) · b(x)dx =

[
−(kst + ku)
kst

]
I1(t) +

[
1
0

]
I0(t),

Ii(t) =
t∫

0
Pi(t − x)g(x)dx

. (13)

Finally,
Ms(t)− Ms(0) = −(kst + ku)I1(t) + I0(t)
Mt(t)− Mt(0) = kst I1(t)

. (14)

These expressions are general in that they apply to any device release expression.
We will now specify the device release to be equal to the one we have suggested

recently [2]:

Md(t) = Asurfa

[
1 −

∞

∑
n=1,odd

8

(πn)2 exp
(
−n2t

τ

)]
. (15)

where Asurf is the surface area, a is the amount of surface-connected nickel per surface area,
and τ is a characteristic release time. A simplified single-exponential expression, as was used
by various researchers [12,18,19] (without a Higuchi-type dissolution kinetics [20]), can also
be employed; the results obtained in this case can be found in the Supplementary Material.

Then, the solution for the local tissue when F and kl are time-independent is given via
Equation (5) and equals to,

Ml(t) = (1 − F)Asurfa
∞

∑
n=1,odd

8
π2

1
klτ − n2

[
exp

(
−n2t

τ

)
− exp(−klt)

]
. (16)

Finally, the definitions for the functions Ii(t) need to be defined as

I0(t) = −Asurfa

{
F

λ1 − λ2

8
π2τ

∞
∑

n=1,odd

[
λ2 An

1 (t)− λ1 An
2 (t)

]
+

(1 − F)kl
λ1 − λ2

[{
∞
∑

n=1,odd

8
π2

λ2 An
1 (t)− λ1 An

2 (t)
klτ − n2

}
−
(

∞
∑

n=1,odd

8
π2

1
klτ − n2

)
[λ2B1(t)− λ1B2(t)]

]}

I1(t) = Asurfa

{
F

λ1 − λ2

8
π2τ

∞
∑

n=1,odd

[
An

1 (t)− An
2 (t)

]
+

(1 − F)kl
λ1 − λ2

[{
∞
∑

n=1,odd

8
π2

An
1 (t)− An

2 (t)
klτ − n2

}
−
(

∞
∑

n=1,odd

8
π2

1
klτ − n2

)
[B1(t)− B2(t)]

]}
, (17a)

where

An
i (t) =

t∫
0

eλi(t−x) exp
(
−n2x

τ

)
dx =

τ

λiτ + n2

[
exp(λit)− exp

(
−n2t

τ

)]
Bi(t) =

t∫
0

eλi(t−x) exp(−kl x)dx =
τ

λiτ + klτ
[exp(λit)− exp(−klt)]

, (17b)

2.2. The SMK Model

The SMK model reads as follows [2],

dMl(t)
dt = (1 − F(t))

.
Md(t)− kl(t)Ml(t)

dMs(t)
dt = F(t)

.
Md(t)− (kst + ksk)Ms(t) + kl Ml(t) + kks Mk(t) + kts Mt(t) + kg

dMt(t)
dt = kst Ms(t)− kts Mt(t)

dMk(t)
dt = ksk Ms(t)− (kks + ku)Mk(t)

dMu(t)
dt = Cu(t)Qu = ku Mk(t)

, (18a)

where Mk corresponds to the mass of nickel in the kidneys compartment for which a
first-order exchange of Ni between serum and kidneys (ksk and kks) is considered. The
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SMK model’s predictive capacity has been previously validated against reported values
following stent implantation in minipigs [13] by Giakoumi et al. [2].

The initial (control) conditions at t = 0 for these quantities are the following:

Ml(0) = 0, Ms(0) =
kg

ksk

kks + ku

ku
, Mt(0) =

kst

kts
Ms(0), Mk(0) =

ksk
kks + ku

Ms(0). (18b)

The solution to the first equation is again Equation (5) so that the system comprising
the 2nd to 4th ODEs in Equation (18a) can be written in the form of Equation (1) where

y(t) =

 Ms(t)− Ms(0)
Mt(t)− Mt(0)
Mk(t)− Mk(0)

, A =

−(ksk + kst) kts kks
kst −kts 0
ksk 0 −(kks + ku)

, b(t) = g(t)

1
0
0

. (19)

and g(t) is still given by Equation (7b). The eigenvalues of A are obtained from the
characteristic equation:

det(A − λI) = λ3 + a2λ3 + a1λ + a0 = 0
a2 = −trA = kts + ksk + kst + kks + ku > 0
a1 = 1

2

[
(trA)2 − tr

(
A2
)]

= (kts + ksk + kst)(kks + ku) > 0
a0 = −detA = (kskkts + kkskst)(kks + ku) > 0

. (20)

Note that all coefficients of the polynomial are positive. Then, the Routh–Hurwitz
stability criterion [15] necessitates that the roots of this polynomial are all with a negative
real part when

a2a1 − a0 > 0 ⇒
(kts + ksk + kst + kks + ku)(kts + ksk + kst)(kks + ku)− (kskkts + kkskst)(kks + ku) > 0 ⇒
[(kts + ksk + kst + kks + ku)(kts + ksk + kst)− (kskkts + kkskst)](kks + ku) > 0 ⇒[
(kts + ksk + kst)

2 + ku(kts + ksk + kst) + kts(kks − ksk)
]
(kks + ku) > 0

. (21)

Since all kinetic rates are non-negative, the Routh–Hurwitz stability criterion requires
that kks > ksk. Again, note that this requirement may be too restrictive since any other
choice of the parameter values may still provide eigenvalues with a negative real part even
if kks < ksk as long as a2a1 − a0 > 0. Moreover, it is known that when the coefficients of
a polynomial of any order are positive, then all of its roots have a negative real part [21].
Generally, the eigenvalues of A can be obtained and expressed in a closed form but are
lengthy and will not be given here. Then, by using Sylvester’s formula

eAt = A−λ2I
λ1−λ2

A−λ3I
λ1−λ3

eλ1t + A−λ1I
λ2−λ1

A−λ3I
λ2−λ3

eλ2t + A−λ1I
λ3−λ1

A−λ2I
λ3−λ2

eλ3t

= P2(t)A2 + P1(t)A + P0(t)I,
P2(t) = eλ1t

(λ1−λ2)(λ1−λ3)
+ eλ2t

(λ2−λ1)(λ2−λ3)
+ eλ3t

(λ3−λ1)(λ3−λ2)
,

P1(t) = − (λ2+λ3)eλ1t

(λ1−λ2)(λ1−λ3)
− (λ1+λ3)eλ2t

(λ2−λ1)(λ2−λ3)
− (λ1+λ2)eλ3t

(λ3−λ1)(λ3−λ2)
,

P0(t) =
λ2λ3eλ1t

(λ1−λ2)(λ1−λ3)
+ λ1λ3eλ2t

(λ2−λ1)(λ2−λ3)
+ λ1λ2eλ3t

(λ3−λ1)(λ3−λ2)
.

(22)

Thus,

t∫
0

eA(t−x) · b(x)dx =

 (ksk + kst)
2 + ktskst + kksksk

−kst(ksk + kst + kts)
−ksk(ksk + kst + kks + ku)

I2(t) +

 −(ksk + kst)
kst
ksk

I1(t) +

 1
0
0

I0(t)

Ii(t) =
t∫

0
Pi(t − x)g(x)dx

. (23)
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Finally,

Ms(t)− Ms(0) =
[
(ksk + kst)

2 + ktskst + kksksk

]
I2(t)− (ksk + kst)I1(t) + I0(t)

Mt(t)− Mt(0) = −kst(ksk + kst + kts)I2(t) + kst I1(t)
Mk(t)− Mk(0) = −ksk(ksk + kst + kks + ku)I2(t) + ksk I1(t)

. (24)

When we consider an infinite-exponential device release, Equation (15), then the
functions Ii(t) need to be defined as

I0(t) = Asurfa

{
F
τ

8
π2

∞
∑

n=1,odd

[
λ2λ3 An

1 (t)
(λ1 − λ2)(λ1 − λ3)

+
λ1λ3 An

2 (t)
(λ2 − λ1)(λ2 − λ3)

+
λ1λ2 An

3 (t)
(λ3 − λ1)(λ3 − λ2)

]
+(1 − F)kl

∞
∑

n=1,odd

8
π2

1
klτ − n2

{
λ2λ3 An

1 (t)
(λ1 − λ2)(λ1 − λ3)

+
λ1λ3 An

2 (t)
(λ2 − λ1)(λ2 − λ3)

+
λ1λ2 An

3 (t)
(λ3 − λ1)(λ3 − λ2)

}
−(1 − F)kl

(
∞
∑

n=1,odd

8
π2

1
klτ − n2

)[
λ2λ3B1(t)

(λ1 − λ2)(λ1 − λ3)
+

λ1λ3B2(t)
(λ2 − λ1)(λ2 − λ3)

+
λ1λ2B3(t)

(λ3 − λ1)(λ3 − λ2)

])

I1(t) = −Asurfa

{
F
τ

8
π2

∞
∑

n=1,odd

[
(λ2 + λ3)An

1 (t)
(λ1 − λ2)(λ1 − λ3)

+
(λ1 + λ3)An

2 (t)
(λ2 − λ1)(λ2 − λ3)

+
(λ1 + λ2)An

3 (t)
(λ3 − λ1)(λ3 − λ2)

]
+(1 − F)kl

∞
∑

n=1,odd

8
π2

1
klτ − n2

{
(λ2 + λ3)An

1 (t)
(λ1 − λ2)(λ1 − λ3)

+
(λ1 + λ3)An

2 (t)
(λ2 − λ1)(λ2 − λ3)

+
(λ1 + λ2)An

3 (t)
(λ3 − λ1)(λ3 − λ2)

}
−(1 − F)kl

(
∞
∑

n=1,odd

8
π2

1
klτ − n2

)[
(λ2 + λ3)B1(t)

(λ1 − λ2)(λ1 − λ3)
+

(λ1 + λ3)B2(t)
(λ2 − λ1)(λ2 − λ3)

+
(λ1 + λ2)B3(t)

(λ3 − λ1)(λ3 − λ2)

])

I2(t) = Asurfa

{
F
τ

8
π2

∞
∑

n=1,odd

[
An

1 (t)
(λ1 − λ2)(λ1 − λ3)

+
An

2 (t)
(λ2 − λ1)(λ2 − λ3)

+
An

3 (t)
(λ3 − λ1)(λ3 − λ2)

]
+(1 − F)kl

∞
∑

n=1,odd

8
π2

1
klτ − n2

{
An

1 (t)
(λ1 − λ2)(λ1 − λ3)

+
An

2 (t)
(λ2 − λ1)(λ2 − λ3)

+
An

3 (t)
(λ3 − λ1)(λ3 − λ2)

}
−(1 − F)kl

(
∞
∑

n=1,odd

8
π2

1
klτ − n2

)[
B1(t)

(λ1 − λ2)(λ1 − λ3)
+

B2(t)
(λ2 − λ1)(λ2 − λ3)

+
B3(t)

(λ3 − λ1)(λ3 − λ2)

])

, (25)

where An
i (t) and Bi(t) are given in Equation (17b).

The MATLAB [22] codes that use the above equations to plot the solutions for the SM
and the SMK models are provided as Supplementary Material files.

2.3. Having a Time-Dependent A Matrix

Before closing this work, it may appear to the reader that, given the complete analytical
solution for Ml(t), there may be an explicit analytical solution to PBTK (and PBPK) models
in which the kinetic rates are arbitrary time-dependent functions. Having time-dependent
kinetic rates in PBTK models is necessary to accurately predict in vivo implantation data
in mice [3]. Although this is in general true, certain conditions must be met. In particular,
such a solution can be sought only when A(t) commutes with its integral [23], i.e.,

A(t) ·

 t∫
0

A(x)dx

 =

 t∫
0

A(x)dx

 · A(t), (26)

As an example, for the SM model, the following should hold:
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{kst(t) + ku(t)}

t∫
0
{kst(x) + ku(x)}dx + kts(t)

t∫
0

kst(x)dx −{kst(t) + ku(t)}
t∫

0
kts(x)dx − kts(t)

t∫
0

kts(x)dx

−kst(t)
t∫

0
{kst(x) + ku(x)}dx − kts(t)

t∫
0

kst(x)dx kst(t)
t∫

0
kts(x)dx + kts(t)

t∫
0

kts(x)dx

 =


{kst(t) + ku(t)}

t∫
0
{kst(x) + ku(x)}dx + kst(t)

t∫
0

kst(x)dx −kts(t)
t∫

0
(kst(x) + ku(x))dx − kts(t)

t∫
0

kts(x)dx

−{kst(t) + ku(t)}
t∫

0
kst(x)dx − kts(t)

t∫
0

kts(x)dx kts(t)
t∫

0
kst(x)dx + kts(t)

t∫
0

kts(x)dx


, (27)

meaning that

kts(t)
t∫

0
kst(x)dx = kst(t)

t∫
0

kts(x)dx

ku(t)
t∫

0
kts(x)dx = kts(t)

t∫
0

ku(x)dx

ku(t)
t∫

0
kst(x)dx = kst(t)

t∫
0

ku(x)dx

(28)

Note that by taking the ratio between the last two equations, we end up with the
first equation. Thus, only two of the equations must be met. In general, these conditions
are not met, and thus, a general solution with a time-dependent A matrix is not possible.
Additional requirements may need to be held for more complicated PBTK or PBPK models.

3. Results and Discussion

The results presented here are based on the kinetic parameters derived from a model
parameterization procedure outlined in our previous study [2]. In that procedure, we
considered a time-variant simplified version of the SM model, named SSM, which assumes
that the tissue-serum exchange rates are much faster than in all the remaining compartments.
Additionally, we utilized the SMK model along with Equation (15), incorporating the
in vitro results obtained from the compressed oxidized tube (OT) stents, as reported by [24].
However, since the analytical solutions are based on time-invariant ODEs and the SM
model instead of the SSM, the parameterization procedure was repeated in this work with
time-independent kinetic rates. The results of the parameterization are summarized in
Table 1. The readers are here reminded that both SM and SMK models’ predictive capacity
has been validated against reported values following implantation of atrium occluders in
humans [17] and stent implantation in minipigs [13] by Giakoumi et al. [2].

Table 1. Parameters and constants that were used in the calculations presented in Section 3.

Parameter/Model SM SMK

F 0.56 0.56

kl(1/day) 0.0582 0.118

kts(1/day) 0.996 0.595

kst(1/day) 22.0 11.91

kks(1/day) - 9.94

ksk(1/day) - 13.89

ku(1/day) 1.18 0.92

kg(1/day) 1.38 1.38

a
(
µg/cm2) 11.697 11.697
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Table 1. Cont.

Parameter/Model SM SMK

τ(days) 15.215 15.215

Asurf
(
cm2) 33.7 33.7

Vs(L) 2.55 2.55

Qu(L/day) 4 4

3.1. Speed of Computations

In Table 2, we report the computation time needed when the calculations are executed
using the analytical solutions provided in the previous section and compare it with the one
needed when the computations are executed using ODE numerical solvers (using ode45
ODE solver of MATLAB). The truncation of the infinite series when using Equation (15)
was determined based on a tolerance criterion. Specifically, the series was truncated when
the next term to be added was less than 10−5; for the release parameters of the OT stent, this
criterion resulted in considering 285 terms. We note that the analytical solution is faster for
both the SM and SMK models, irrespective of the expression employed for Md(t); however,
the more complicated the model [SMK vs. SM and single exponential, Equation (S1), vs.
multiple exponential device release, Equation (15)], the relative speed decreases.

Table 2. ODE numerical solver (ode45 of MATLAB) versus analytical solutions: comparison of
computation time (in seconds).

Analytical Solution Numerical Solution
Ratio

(Numerical/Analytical
Solution)

SM—Equation (S1) 0.0001504 0.02336 157.05518

SM—Equation (15) 0.0190181 0.0466662 2.453778

SMK—Equation (S1) 0.0001949 0.0315174 161.710620

SMK—Equation (15) 0.0360561 0.1031546 2.860947

3.2. Model Predictions

We depict in Figure 1 the predictions of the SM model, Equations (14) and (17), as
provided by its analytical solutions when we consider the infinite-exponential device
release, Equation (15). In Figure 1a we depict the solution for the Ni mass accumulation in
the local tissue as given by Equation (16). We note that by increasing the parameters F and
the kinetic rate kl the mass accumulated decreases; this is expected as by increasing F less
Ni is released into the local tissue, and by increasing kl , the Ni mass exchange rate from the
local tissue to serum increases; in addition, by increasing kl the position of the maximum is
noted to shift to smaller times. Then, in Figure 1b,c we depict the Ni concentration profiles
in the serum, Cs, and urine, Cu, compartments, respectively, for various model parameters.
As expected, we note the reverse behavior relative to the local tissue predictions, since as F
and kl increase the Ni mass accumulation in serum is noted to increase and the position
of the maximum is again noted to shift to smaller times; the same trend is noted when
increasing the parameter kts since it controls the Ni mass exchange rate from the other
tissues compartment to serum, whereas the reverse occurs by increasing the parameter
kst that controls the reverse exchange. The behavior in the urine compartment is similar
to the one noted in the serum compartment since Cu is simply proportional to Cs via
Equation (4b). Finally, in Figure 1d we depict the Ni concentration profiles in the other
tissues compartment, where we note a similar behavior as in the serum compartment when
keeping kst and kts constant: by increasing F and kl the curves shift upwards; however,
when the kts is increased the Ni mass accumulation decreases since this kinetic rate controls
the Ni mass exchange rate from the other tissues compartment to serum. The reverse
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occurs by increasing the kst parameter; both behaviors are what we would expect. Next,
we depict in Figure 2 the predictions of the SMK model as provided by its analytical
solutions, Equations (24) and (25), when we consider the infinite-exponential device release,
Equation (15). Note that the local tissue compartment predictions are not offered as they
are the same as the ones obtained using the SM model [Figure 1a], see Equation (16). In
the left column, we depict the predictions while keeping the values of kks and ksk fixed,
whereas in the right column, we depict the predictions while keeping the values of F and
kl fixed. The predictions for the serum and urine compartments [Figure 2a,b] are similar to
the ones obtained when using the SM model; the predictions for the kidney compartment
[Figure 2c] are also similar to the serum and urine compartments. We should here note that
in the SMK model, Cs is proportional to Mk and not Cs via the last equation of Equation
(18a). Finally, the predictions for the other tissue compartment [Figure 2d] are similar to
the ones obtained when using the SM model. Finally, we note that by increasing the kinetic
rate kks the mass accumulated in the serum and other tissue compartments [Figure 2e,h]
increases, whereas the accumulation in the kidney and urine compartments [Figure 2f,g]
decreases, an expected outcome since this kinetic rate controls the Ni mass exchange rate
from kidneys to serum. The reverse behavior in these compartments is noted when the
kinetic rate ksk increases.
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Figure 1. SM model derived-predictions of the nickel concentration–time profiles in the tissue
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Asurf, a, τ, Vs, Qu are kept constant and equal to the values provided in Table 1. Note that the local
tissue profile only depends on F and kl .
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Figure 2. SMK model derived predictions of the nickel concentration–time profiles in the tissue
and body fluid compartments for varying values of the model parameters. The parameters ku, kg,
Asurf, a, τ, Vs, Qu are kept constant and equal to the values provided in Table 1.

This difference can be explained by the additional terms in the series presented in
Equation (15) that include a spectrum of characteristic times smaller than τ, which offset
the leaching rate at earlier times, leading to an earlier attainment of the maximum values.

While Equation (S1) [and in turn Equations (S5a) and (S5b)] and Equation (15) offer
valuable predictions, being dependent solely on the parameters a, τ and kl , might be too
simplistic for real biological systems, where multiple interacting factors influence these
values. A recent U.S. FDA review [25], based on experimental and clinical data, collectively
reported that metal implants experience different degrees of wear and corrosion due to
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the mechanical and biochemical environment at the specific site of implantation that can
ultimately affect the ion diffusion profile and kinetics. These findings emphasize the
significance of taking into account the implantation site when designing testing setups or
in silico models to predict the leaching profile of implant bioproducts and underscore the
importance of the biomechanochemical environment at the device−tissue interface.

3.3. Model Applications

One of the most important outcomes of PBTK modeling is the ability to predict the
biodistribution of toxic substances or implant byproducts. This type of testing allows
the estimation of exposure as part of toxicological risk assessment per ISO 10993 [26]
and facilitates easy comparison between devices, providing a framework for comparing
different alloys, designs, or manufacturing processes [which would impact the parameters a
and τ in Equation (S1) and Equation (15)]. The PBTK model-derived outputs are employed
here to predict the leaching profile of nickel (i.e., the maximum nickel mass value and the
time required to reach this maximum in the various tissue and body fluid compartments)
and its dependency on the surface diffusion parameters. The acquired data can be utilized to
assess whether Ni exposure levels exceed permissible limits and determine the toxicological
safety of implants with different designs and physicochemical characteristics. As we focus
on human exposure, we concentrate on the values of the model parameters (using both the
SM and SMK models) reported in Table 1.

We should stress that while a single-exponential, Equation (S1), or infinite-exponential,
Equation (15), surface diffusion profile conforms to the classical passive diffusion of Ni
and aligns with the experimental findings of Sullivan et al. [24] and others [3,27–29], it is
crucial to acknowledge that these equations do not provide a comprehensive description
of all reported substance-release expressions in the existing literature. As one example,
we mention the latest work by Saylor et al. [30] in which release rates are reported to be
proportional to t3/4 and t1/4 for different surface finishes of NiTi, which deviate from the t1/2

behavior predicted by both Equation (S1) and Equation (15) at small time scales. Notably,
these observations suggest that the complete depletion of Ni may take several years to
decades. This contrasts the behavior of the devices reported in Figure S1 of our previous
work [2], where the single-exponential and infinite-exponential expressions have been used,
showing a complete depletion after 2–3 months. In addition, many implants, especially
cardiovascular ones, are subjected to a dynamic biomechanical in vivo environment, which
may increase ion release into surrounding tissues. This complex leaching behavior [31]
cannot be adequately captured using a single or infinite-exponential diffusion profile but
most probably requires considering the additional stress-induced diffusion [32] when
medical devices are under constant bending and the fluid dynamical conditions which
would increase the mass transfer coefficient that should depend on the Reynolds number
for laminar flows [33] or the Womersley number for pulsatile flows. We should also recall
here that due to device endothelialization, almost all ion mass leached from the device
is eventually taken up by the local tissue compartment, which occurs theoretically after
approximately 7–28 days, as reported in animal models [34,35] and the clinic [36]. Similar
deviations between expected experimental results and the theoretical predictions proposed
by Equation (S1) and Equation (15) could also occur for other substances released from
implantable medical devices.

We depict the maximum value of the Ni accumulation using the more realistic multiple-
exponential device release expression, Equation (15) in the local tissue in Figure 3 (common
for both the SM and SMK models), and in the serum, urine, and other tissues compartments
for the SM model in Figures 4–6, respectively. We find that all of them exhibit the same
behavior: the smaller the values of a and τ are, the smaller the maximum value of Ni in all
compartments is. Of the two parameters, a seems to be the most influential on the maximum
mass value, whereas the time required to reach this maximum is solely impacted by the τ
parameter. Similar behavior is also noted for the maximum value of the Ni accumulation and
the time it occurs in the serum, urine, other tissues, and kidney compartments for the SMK
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model depicted in Figures 7–10, respectively. We also mark that the SMK model predicts a
higher maximum mass value and a shorter time at which it occurs relative to the SM model
for the serum, and urine compartments. This is most probably due to the higher flexibility
demonstrated by the five-compartment SMK model. In comparing the two device release
expressions [Equation (S1) vs. Equation (15)] for determining the maximum values of Ni
accumulation in all compartments [cf. Figures 3–10 with Figures S1–S8], it is observed that
there is a negligible change in the accumulation values. However, there is a decrease in the
time at which the maximum value is reached in the case of Equation (S1).
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Figure 10. (a) The maximum Ni mass value and (b) the time it occurs in the kidneys compartment
for the SMK model when using Equation (15). The corresponding contour plots are also depicted in
parts (c) and (d), respectively.

4. Conclusions

The main purpose of this paper was to derive analytical solutions for PBTK models
that, to the best of our knowledge, are a first in the literature. The use of computational mod-
eling and simulation in regulatory submissions is rapidly increasing since PBTK models
can estimate the inferred in vivo exposure based only on the results of in vitro testing. The
FDA promotes and facilitates the use of nonanimal methods in testing and research [7,37];
hence, PBTK and PBPK models will soon become a prerequisite for evaluating the toxi-



Math. Comput. Appl. 2024, 29, 101 17 of 19

cological safety and effectiveness of medical devices and pharmaceuticals, respectively,
prioritizing the availability of analytical solutions. We have shown that analytical solving
bears speed advantages over solutions obtained using ODE numerical solvers. This is
of great importance in promoting the use of in silico models, especially when the solver
needs to be coupled with a real-time interface for web-based apps [14]. Furthermore,
analytical solutions are accurate and easier to use in optimization procedures for model
parameterization. In contrast, numerical solutions of ODEs, especially for stiff problems,
often yield non-smooth objective functions, making gradient-based methods ineffective
and requiring more computationally demanding algorithms. In all cases, our analysis
indicates that the maximum mass value in all compartments is predominantly influenced
by the amount of surface-connected nickel per device surface area whereas the time re-
quired to reach this maximum is solely impacted by the characteristic release time. This
type of information is instrumental to medical device manufacturers aiming to optimize
surface characteristics and processing methods to minimize ion leaching and comply with
permissible exposure limits.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/mca29060101/s1. The MATLAB codes that use the analyti-
cal solutions and plot them and a supplementary document are provided as supplementary material.
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