
Laser Atack Benchmark Suite

Burin Amornpaisannon
National University of Singapore

Andreas Diavastos
National University of Singapore

Li-Shiuan Peh
National University of Singapore

Trevor E. Carlson
National University of Singapore

ABSTRACT

Laser fault injection in integrated circuits is a powerful information

leakage technique due to its high precision, timing accuracy and

repeatability. Countermeasures to these attacks have been stud-

ied extensively. However, with most current design lows, security

tests against these attacks can only be realized after chip fabrica-

tion. Restarting the complete silicon design cycle in order to address

these vulnerabilities is thus both time-consuming and costly. To

overcome these limitations, this paper proposes an open-source

benchmark suite that allows chip designers to simulate laser attacks,

and evaluate the security of their designs, both hardware-based and

software-based, against laser fault injection early on during design

time. The proposed benchmark suite consists of a tool that auto-

matically integrates hardware-based spatial, temporal and hybrid

redundancy techniques into a target design. With the tools used in

this work, we demonstrate how the attacks can be simulated on a

Verilog simulator, and run on an FPGA with a design equipped with

hardware-based redundancy techniques without manual modiica-

tions. This work consists of four attacks, and four hardware-based

redundancy techniques. The attacks and defenses together that the

benchmark suite provides will automate the entire early design

evaluation low against laser fault injection attacks.

KEYWORDS

Hardware security, benchmark suite, integrated circuits, laser fault

attack

ACM Reference Format:

Burin Amornpaisannon, Andreas Diavastos, Li-Shiuan Peh, and Trevor E.

Carlson. 2020. Laser Attack Benchmark Suite. In IEEE/ACM International

Conference on Computer-Aided Design (ICCAD ’20), November 2ś5, 2020,

Virtual Event, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.

1145/3400302.3415646

1 INTRODUCTION

Physical attacks are increasingly becoming a major threat due to an

exponential increase in connected devices in the Internet of Things

era, where attackers can readily gain physical access to devices.

Physical attacks are categorized as active and passive attacks [24].

Active attacks, also called fault attacks, utilize equipment to gener-

ate, for example, clock glitches, electromagnetic or laser irradiation

ICCAD ’20, November 2ś5, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8026-3/20/11.
https://doi.org/10.1145/3400302.3415646

to introduce faults into a target system, which lead to faulty system

behavior. Conidential information can be retrieved by comparing

faulty and correct outputs. Passive attacks, also called side-channel

attacks, observe electrical properties of a target system such as

power consumption and electromagnetic emissions, and deduce

conidential information from these channels’ variations.

Laser fault injection is one of the most powerful tools for generat-

ing active attacks. This is due to its high precision, timing accuracy

and repeatability [11] [29]. Cryptographic algorithms proved to be

mathematically secure, such as AES, can leak secret keys in the pres-

ence of laser irradiation, which allows the attackers to have access

to conidential information, by, for example, skipping an instruc-

tion or directly injecting faults into intermediate data [10] [32] [33].

Neural networks, increasingly used in safety-critical applications,

running on an embedded system have also been shown to be vul-

nerable to laser attacks, leading to incorrect predictions when the

system is being attacked [9].

Clearly, there is a need to avert laser fault injection attacks. How-

ever, chip designers typically have to irst inalize and then fabricate

their designs before they can test them against laser fault injection

attacks. If vulnerabilities are found during post-fabrication test-

ing, the chip designers inevitably have to redo the entire design.

These steps, from RTL design to actual chip fabrication, are not only

costly, but also time-consuming. Hence, traditional post-fabrication

security evaluation occurs too late in the design low [25]. Chip

testing for security also involves expensive, highly sophisticated

equipment for generating laser fault attacks, and requires skilled

technicians to operate, and depackage the chip to be able to gener-

ate the attacks [11]. It is thus impractical to evaluate chip security

against laser fault injection attacks only after fabrication. A frame-

work that allows circuit designers to evaluate their designs early

on in the design low is critically needed.

In this paper, we propose the Laser fault Attack Benchmark Suite

(LABS), an open-source tool that allows circuit designers to evaluate

their design at the early RTL stage and on an FPGA against physical

laser attacks. LABS is comprised of a laser attacks benchmark suite

that aims to accelerate security testing against laser fault injection

by enabling circuit designers to inject faults using provided fault

models to verify their chips, and evaluate their protection mech-

anisms, both hardware-based and software-based, early on in the

design low. It aims to be independent of the speciic hardware

description languages used to implement the design, and is thus

realized lexibly in Chifre [18] based on FIRRTL [20], which is an

open-source hardware intermediate representation. Any hardware

design languages that can be converted to FIRRTL are compatibleThis work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3400302.3415646&domain=pdf&date_stamp=2020-12-17

with LABS1. The attacks can be run on a Verilog simulator and/or

an FPGA without manual design modiications.

LABS also consists of an automated methodology to integrate

fault tolerant structures into the speciic part of the design that

needs to be protected, as deined by the hardware-based fault toler-

ant techniques. Similar to today’s compilers, which can automati-

cally add software-based fault tolerant techniques to target code

to detect and recover from errors [15], LABS, realized as compiler

passes in the FIRRTL hardware compiler framework, can automati-

cally integrate hardware-based fault tolerant techniques into the cir-

cuit design, helping circuit designers evaluate their design defense

against physical attacks readily without manual modiications.

Together, LABS generates physical laser attacks, and automates

the deploying of hardware-based fault tolerance defenses into the

design, thus automating the entire early design evaluation low

against laser fault injection attacks. To the best of our knowledge,

there exists no prior laser fault attack benchmark suite.

As an illustration of the potential use scenarios of LABS, we

present case studies of attacks on software-implemented AES and

neural networks running on the Rocket core [2] implemented in

Chisel, an AES accelerator [34] implemented in Verilog, and de-

fenses on the AES accelerator in the experimental results section.

2 MOTIVATION

Laser fault injection attacks rely on parasitic currents generated

by laser shots [21] that produce undesired transient voltage, prop-

agating through the logic which can potentially invert bits at the

inputs of registers [40]. In Table 1, we outline the characteristics

of the three basic levels of laser fault injection attack simulation

techniques.

A laser attack at the Physical level is an active fault injection tech-

nique that uses specialized laser probes to induce high-precision

faults. However, a physical laser fault injection attack is a com-

plex and costly process. First, the chip has to be decapped, have

the passivation layer removed, and the shielding needs to be cir-

cumvented using time consuming and labor intensive chemical or

mechanical decapsulations [11, 38], risking the chip to be damaged

in the process. To achieve realistic accuracy, it requires expensive

laser equipment that can match the technology of the processing

chip. While each laser probing only takes a few minutes to perform,

this technique is only available after the chip is fabricated. It there-

fore makes it diicult if not infeasible to upgrade the circuit under

test with the necessary countermeasures (to tackle the vulnerable

parts found) as it would have to go through the costly design and

fabrication process that takes months to complete.

At the Electrical level, a double exponential current source can

model the irst order of a laser shot [26]. With the current sources

added to the netlists of cells illuminated by the laser, an electrical-

level simulation that takes into account the efects of a laser attack

can be performed [41]. To improve simulation performance, new

multi-level techniques propose hybrid solutions that simulate in

detail only speciic circuit blocks that are afected by the laser (see

Section 8). However, a fast multi-level electrical simulation requires

gate-level simulation to simulate the rest of the design. This reduces

1Yosys [44], used in our methodology, supports Verilog and SystemVerilog hardware
input types and generates FIRRTL.

Table 1: Laser Fault Attack Simulation Techniques.

Simulation Physical Electrical Logical (LABS)

Speed Slow Slow Fast

Fault Model Realistic Current Source User-deined

Cost High Medium None

Availability Fabrication Layout Source-code

Technology Dependent Independent Independent

Risk of Damage Yes No No

the performance of the simulation and increases the total testing

cycle of a circuit design against laser attacks. More importantly,

electrical-level simulation only simulates the efects of a laser attack

on a speciic circuit block. It cannot provide insight as to what the

efects of the attack will be on executing the application that we

aim to protect. Current state-of-the-art electrical level simulations

require proprietary tools (i.e. Cadence VoltusTM [13] and Cadence

Spectre XPS [12]) to perform, increasing the cost of simulation.

Lower-level techniques provide more realistic accuracy in terms

of simulation results as they take into account both the layout of

the circuit and the parameters of the laser (i.e. wavelength, spot

size, pulse width, energy, position and duration). However, Logical

level fault modelling of a laser fault injection attack allows for fast

simulation of selected logic in a larger system at an early stage of

the design process that takes into account the application we aim to

protect. LABS provides low-cost and fast security validation of chip

designs and hardware-based fault-tolerant integration tool. All tools

proposed in this work are open-source, while the lexibility of the

framework allows the user to implement and integrate their own

attack models and countermeasures. In addition, this methodology

is technology independent, as it is implemented in high-level source-

code, and does not require prior fabrication of the chip or back-end

generation of the design layout targeted to a speciic process.

3 LASER FAULT INJECTION AND
MITIGATION METHODOLOGY

Processor

Automated Hardware Fault Injection

&

Automated Hardware-Based Fault

Tolerant Integration

AcceleratorSoftware

RTL Simulation or FPGA Emulation

Automated Analysis

Result

Attack 1 Attack 2 Attack 3 Attack 4

Defense 1 Defense 2 Defense 3

Figure 1: Overview of LABS. The light blue boxes show the

three key parts of LABS consisting of automated hardware

fault injection, hardware-based fault tolerant integration

and analysis.

Table 2: Attacks in the benchmark suite.

Application Target Description

AES Processor
Skip the last

round Addroundkey [10]

AES
Processor Inject one-bit fault
Accelerator into input of the last round [19]

RSA−CRT Processor
Inject faults into one of two

parts of signature [8]

Neural Network Processor
Skip a computation of

the activation functions [9]

The overview of the low of the LABS framework comprising

the benchmark suite and associated toolchain is shown in Figure 1.

The framework supports both processors and accelerators, and

thus can be used to test both software-based and hardware-based

applications and countermeasures. Table 2 lists the attacks covered

in our benchmark suite, AES, RSA−CRT and Neural Networks. AES

is a symmetric block cipher, standardized by NIST [28], that has

become the global standard for data encryption. RSA−CRT is a

fast version of the original RSA algorithm, which is a widely used

public key algorithm, based on the Chinese Remainder Theorem.

Deep learning has been widely deployed in biometrics applications

such as face and voice recognition, and safety-critical applications

such as autonomous vehicles, and will be a key part in future smart

cities [9]. Attacks on these applications will be catastrophic.

The toolchain consists of three key components: (1) automated

hardware fault injection, (2) automated generation and integration

of hardware-based fault-tolerant designs and (3) automated fault

analysis.

The automated hardware fault injection component is based on

Chifre [18], a conigurable hardware fault injection framework,

which automatically integrates synthesizable fault injectors and

fault controllers into a target design, to inject a speciied fault to a

target component at a speciic time. Chifre originally only supports

bit lips, which do not suice for laser faults. We thus introduced

two additional fault models, bit-set and bit-reset to cover all fault

models that can occur by laser fault injection [39]. These faults

can be user-deined, generated probabilistically or at random. Our

fault controller is added to the framework, and used to observe the

target signal, sending an activate signal to all fault injectors when

the iring condition is met. For example, the target signal can be

an address signal of an instruction being executed, and the fault

injectors will be activated when the target instruction is found.

The second component of our toolchain enables automated gen-

eration and integration of hardware-based fault-tolerant defenses.

For example, to integrate double modular redundancy (DMR), it

automatically duplicates the target design, generates modules re-

quired for DMR with an appropriate width for the target design,

inserts a fault detection port, and connects the modules with the

modiied design, providing the new design that readily supports

the technique. The new design is able to detect errors, and hide its

output when errors are detected.

Finally, the third component performs automated fault analysis.

It runs one of the attacks shown in Table 2 on the outputs of the

design to evaluate the impact of the injected faults. The evaluation

result is then generated as a graph, for example, showing howmany

secret key bytes are revealed, similar to the graphs illustrated later

in the experimental results section.

FIRRTL Compiler

Fault Injection Passes

Fault-Tolerant Integration Passes

Yosys Chisel

Backend

Laser Fault

Injection

&

Fault-Tolerant

Integration

Configuration

Design.v Design.scala Fault Injectors

&

Fault Controller

Fault-Tolerant

Collection

TestDesign.v

(a) LABS’s automated hardware fault injec-
tion and hardware-based fault-tolerant inte-
gration low.

Testbench.v

Exploitation Phase

Attacks

Output

Interaction

Phase

TestDesign.v

Result

(b) LABS’s simulation and
analysis low.

Figure 2: The end-to-end LABS methodology.

To use LABS, the user irst inserts a target design with a con-

iguration. The design can be a processor, which will be running

a software application, or a hardware accelerator. The conigura-

tion indicates which component will be attacked, and/or hardware-

based redundancy technique that will be integrated into a target

component in JSON ile format shown in Listing 1. Thereafter, the

framework generates a synthesizable RTL test design based on the

coniguration, which can be run using RTL simulation or FPGA em-

ulation. The outputs of the test design are then fed to the analysis

component, which runs an attack described in the next section.

[{" class ":" chiffre.passes.FaultInjectionAnnotation", (a)

"target ":"aes.aes_encipher_block.block_w3_reg",

"id":" main",

"injector ":" chiffre.inject.FaultInjector" },

{"class ":" chiffre.passes.ScanChainAnnotation", (b)

"target ":"aes.FaultController.scan",

"ctrl ":" master",

"dir":" scan",

"id":" main" },

{"class ":" labs.passes.FaultControllerAnnotation", (c)

"target ":"aes.aes_encipher_block.round_ctr_reg",

"data_target ":"h_a",

"max_number_of_fires ": 1,

"target_bits ": [1] },

{"class ":" labs.passes.FaultTolerantTMRAnnotation", (d)

"target ":"aes.aes_encipher_block.None "}]

Listing 1: An example of the JSON coniguration used by

the framework. It consists of four entries: (a) Component

to be attacked and its fault fault injector, (b) Fault controller

name, (c) Coniguration of fault controller, and (d) Insertion

of fault-tolerant structures to a target component.

4 LASER FAULT ATTACK BENCHMARKS

Figure 2a shows the low of the FIRRTL hardware compiler frame-

work that is used in this work. First, a target design implemented

in Verilog or Chisel is converted to FIRRTL using Yosys [44], or

the Chisel frontend respectively. Note that other hardware design

languages that can be converted to FIRRTL can also be used. Then,

the compiler passes generate fault controllers used to control fault

injectors, and inserts it to the target design. Next, fault injectors are

generated, connected to all target components, and connected to

the fault controllers. The Verilog RTL test design is then generated

from the modiied FIRRTL ile.

Figure 2b shows the next steps in the simulation of laser attacks,

after obtaining a test design. There are two phases for generating

physical attacks: the interaction phase, when an attacker tries to at-

tack a circuit physically to obtain desired information, for example,

faulty ciphertexts, and the exploitation phase, when the attacker

analyzes the information to retrieve conidential information [24].

In LABS, when the test design arrives at the interaction phase, it is

simulated with the provided testbench with a Verilog simulator or

emulated on FPGA. The testbench collects the outputs of the test

design required for the next phase, and outputs a simulation wave-

form. Next, in the exploitation phase, which is the analysis part in

Figure 1 consisting of our suite of laser attack benchmarks imple-

mented in Python, the outputs are fed to analyze the vulnerability

of the test design. We detail the four benchmarks below.

AES Attack by Breier et al. [10] Performed experiments in

this work show that a micro-controller running an AES algorithm

is vulnerable to laser fault injection at the back side of the chip. The

attack is described below.

C = Shi f tRows(SubBytes(M)) ⊕ K (1)

D = Shi f tRows(SubBytes(M)) (2)

K = C ⊕ D (3)

Let K be the last round key, M be the ninth round temporary ci-

phertext, C be the correct ciphertext and D be a faulty ciphertext.

Laser fault injection is performed to skip the xor instruction used

to compute the last round AddRoundKey, which makes the faulty

ciphertext to be the output of the last ShiftRows shown in (2). The

last round key can be retrieved with one pair of correct and faulty

ciphertexts by xor-ing them (Equation (3)). Thus, after getting the

last round key from (3), the actual secret key can then be revealed

using the inverse key schedule algorithm. For example, the user

can attack a register storing the xor instruction to skip them. The

benchmark generates a graph showing how many last round key

bytes are needed to be revealed.

AES Attack by Giraud et al. [19] The authors in this work

propose an attack on AES that requires a one-bit fault inside inter-

mediate data during the start of the last round. The attack requires

around 50 faulty ciphertexts and one correct ciphertext to reveal the

entire ninth round temporary ciphertext. The experiments in [17]

show that inducing single-bit faults using laser fault injection in

the recent 28nm CMOS technology node is still achievable. The

attack is described below.

Equation (1) can be written as the equation below where i is a

byte number from 0 to 15.

CShif tRows(i) = SubBytes(Mi) ⊕ KShif tRows(i) (4)

If there is a one-bit fault e introduced at the byte number j

during the beginning of the inal round, the result of the faulty

output from (4) will be:

DShif tRows(j) = SubBytes(Mj ⊕ ej) ⊕ KShif tRows(j) (5)

Note that the one-bit fault will afect only one byte of the output

ciphertext. By comparing the correct and faulty ciphertexts, the

ninth round intermediate ciphertext at the byte afected can be

guessed using the formula below.

CShif tRows(j) ⊕DShif tRows(j) = SubByte(Mj)⊕SubByte(Mj +ej)

(6)

The left side of Equation (6) is known from the outputs. For

the right side, the attacker has to brute force all possible one-bit

faults ej and one-byte temporary ciphertextMj . AllMj candidates

that satisfy (6) will be counted. With several faulty ciphertexts, the

correctMj , that always satisies the equation, will be counted the

most, and thus doing this for every byte will reveal the entire ninth

round temporal ciphertext, which can further be used to reveal the

secret key. For example, to attack an AES accelerator, the user can

inject faults into state registers directly at the start of the last round.

The benchmark generates a graph showing how many ninth round

temporary ciphertext bytes are left to be revealed.

RSA-CRT Attack by Boneh et al. [8] The RSA-CRT attack,

often referred as the Bellcore attack, focuses on the implementation

of the RSA public-key algorithm based on the Chinese Remainder

Theorem, theoretically showing that software and hardware errors

present during the computation of a signature lead to the leakage

of a secret exponent using a pair of correct and faulty signatures.

The authors in [37] show that the Bellcore attack can be realized,

and software countermeasures that have been proposed to protect

the algorithm can be bypassed using laser fault injection.

Sp = C
d (modp) = Cdmodp−1(modp) (7)

Sq = C
d (modq) = Cdmodq−1(modq) (8)

S = CRT (Sp , Sq) = Sq + q · ((Sp − Sq) · (q
−1modp)modp) (9)

Let d be a secret signing exponent. The equations above show

how RSA-CRT computes a digital signature S. The faulty signature

can be achieved by injecting any faults into Sp in (7) or Sq in (8), not

both. Then, the diference between the correct signature S and the

faulty signature Ŝ will leak one of the prime numbers by calculating

GCD(S − Ŝ , N), where N is the product of the chosen two prime

numbers N= p · q, which is known from the public key. For example,

the user can inject a fault into the ALU or skip an instruction during

the computation of Sp . The benchmark calculates the outputs using

the formula above, and shows a retrieved prime number.

Deep Learning Attack by Breier et al. [9] This work pro-

poses a practical attack that injects faults into neural networks

running on an embedded system to skip target instructions used

inside an activation function, such as ReLu, sigmoid or tanh, to

make predictions of the neural networks incorrect, and shows the

irst study of using laser fault injection to attack a neural network

system.

siдmoid(x) =
1

1 + exp−x
(10)

The sigmoid equation is shown in (10). Attackers can make the

neural networks predict wrongly by skipping the negation instruc-

tion in the exponent function of the sigmoid function. Skipping

the negation instruction horizontally lips the graph of the sigmoid

function, meaning that the output of the target neuron will be equal

to 1 − y, where y is the correct output value. It is suggested that

the target layer has to be as close to the output layer as possible

to increase misclassiication rate. For example, the user can inject

faults into the instruction cache to skip the target instruction. The

exploitation phase in this attack becomes an analysis phase used to

evaluate the accuracy of the neural network, and shows how many

samples are correctly classiied.

Inputs

OutputsOriginal Block

Duplicated

Block
Detector Detect

Preventer

(a) Double Modular Redundancy

Inputs Outputs

Original Block

Duplicated

Block 1
Voter

Duplicated

Block 2

(b) Triple Modular Redundancy

Modified_Ready

Inputs
Outputs

InputStorage OutputStorage

Controller

Ready

Original Block

Start

Detect

(c) Temporal Redundancy

Figure 3: Supported hardware-based redundancy techniques.

5 AUTOMATIC HARDWARE-BASED
REDUNDANCY INTEGRATION

LABS’ hardware-based redundancy integration tool supports four

redundancy techniques: double modular, triple modular, tempo-

ral and hybrid redundancy. It comprises a collection of hardware

modules as basic building blocks, such as detectors, voters and

preventers, that can then be automatically composed together and

integrated into a target design to realize diverse hardware redun-

dancy techniques selected by the user.

First, after the target design is converted to FIRRTL, the compiler

framework reads the target design, generates an internal represen-

tation for that design, and reads the coniguration ile from the user

similar to the low in Section 4. Next, the internal representation

is passed through compiler passes including this tool. The passes

made for this tool automatically modify the internal representation

to make it support the fault tolerant technique indicated in the

coniguration ile. The processes of integrating each redundancy

technique to a target design are described later in this section.

This work beneits from using FIRRTL as described in Section 4

and also a variety of compiler passes inside its hardware compiler

framework such as optimization passes. It also gains from gener-

ating a fault tolerant design at RTL level, as the RTL ile is still

readable, and thus can be modiied further manually, for example,

to implement a speciic detection based on a generic hardware re-

dundancy technique [22], and the fault tolerant structures inserted

into the design can be fed through RTL synthesis to satisfy timing

constraints [27].

Double Modular Redundancy. The double modular redun-

dancy technique is shown in Figure 3a. LABS supports double

modular redundancy at register and module level. At the register

level, all target registers are duplicated, and each pair of the target

and duplicated registers is connected to a detector building block,

which is used to compare their outputs. At the module level, all

components inside the module are duplicated, and all wires con-

nected to the output ports are compared with their duplicates using

detectors. Each detector is generated dynamically with the appro-

priate width for each pair of outputs. If there are more than one

detectors, the outputs of the detectors will be or-ed, and the or-ed

output will be connected to the detect port, which is automatically

added, and can be connected to the design to indicate whether

there is an error detected or not, for example, to reset or trigger an

interrupt signal [4]. The preventer can also be added when needed

to, for example, hide the output of the original block when errors

are being detected to avoid faulty outputs to be seen by attackers.

Triple Modular Redundancy. The triple modular redundancy

technique is shown in Figure 3b. Our tool supports triple modular

redundancy at register and module level. The automatic integration

method is similar to that for double modular redundancy. It adds

two duplicated blocks identical to the original block, generates

and inserts majority voters with appropriate width, connects all

blocks to the voter, and connects the majority voter to the output

ports. Recently, there has been a study about tradeofs between

various majority voter designs [3]. The voter can be redesigned

freely depending on the user’s choice.

Temporal Redundancy. The temporal redundancy technique

is shown in Figure 3c. Our tool supports temporal redundancy at

the module level. There are three additional components: InputStor-

age, OutputStorage and Controller. The InputStorage stores inputs

needed for recomputation. The OutputStorage stores the outputs

from the design block, uses a detector to compare the outputs to

detect errors, and connects it to the detect signal, which is automat-

ically added. The preventer can also be used inside the OutputReg

when it is needed. The user is required to indicate the name of the

start signal, which is a signal to start a computation of the design

block, and the ready signal from the design block, which is used

to indicate that the computation is done. The controller uses these

two signals to control the InputStorage and OutputStorage, and

sends the modiied ready signal as an output, that sends a signal

to the output port when the computations are already computed

twice.

These three redundancy techniques are orthogonal and can be

combined to form hybrid redundancy techniques. For more infor-

mation, the works [4] and [30] summarize countermeasures that

can be deployed to protect against fault attacks.

Extensions for Data Integrity Veriication.While automatic

redundancy generation is built into our proposed tool, there is also

the potential to add algorithm-dependent techniques, like checksum

or parity functions, depending on the operation implemented. Tech-

niques like these can allow for more eicient integrity checks as

they do not require the duplication of work. Our modular methodol-

ogy does not restrict the type of veriication techniques that can be

added to the automated worklow. The tool mainly aims to support

redundancy techniques to protect against fault attacks, which the

attacker tries to inject faults directly to the target design. There

are also techniques to protect side channel attacks, which the at-

tacker tries to observe electrical properties of the target circuit, for

example SABL [35] and WDDL [36]

0 1 2 3 4
Number of Experiments

0

2

4

6

8

10

12

14

16

9t
h

Ro
un

d
Ke

y
By

te
s

No Countermeasures
Instruction Triplication

Figure 4: The result of the AES attack by Breier et al. [10]

by injecting random faults into the instruction register on

software AES with and without countermeasures.

6 EXPERIMENTAL SETUP

This tool was built with a number of tools and datasets. For the

overall framework, we use FIRRTL version 1.2 and Chifre for trans-

forming the code, and Yosys 0.9 for Verilog to FIRRTL conversion.

The AES software [43] was run on the Rocket core [2], and the AES

hardware accelerator was implemented by [34]. The neural net-

work was trained on the IRIS dataset [16] and implemented using

Genann [42]. RSA algorithm implementation [31] was modiied to

implement the RSA-CRT algorithm. Verilog simulations are carried

out with Synopsys VCS-MX K-2015.09-SP2-9, and the hardware was

synthesized with Synopsys Design Compiler version P-2019.03-SP5

targeting a 22nm technology node. All experiments are run on two

14-core Intel Xeon Gold 6132 running at 2.6 GHz.

7 EXPERIMENTAL RESULTS

In the previous sections, we have outlined our automated method-

ology for a complete solution to better understand and mitigate

hardware and software laser fault injection attacks. We began by

outlining a number of key benchmarks typically targeted by laser-

based attacks (Section 4), and followed up with automatic hardware

generation to mitigate these attacks (Section 5). These previous

sections demonstrated how, through automation, our methodology

can help to close the loop from injection, mitigation and detection

of laser faults.

In this section, we begin with a detailed example of a common

use case, showing the steps needed from fault injection tomitigation

techniques to demonstrate the efectiveness of the design created

by the methodology. Next, we provide detailed output of the results

when using our methodology on the key benchmarks included

in this work. These results demonstrate how the detection and

mitigation strategies provide robust results, and can be used for

work in evaluating susceptibility to (and recovery from) laser fault

injection attacks. Details into the run time (software simulation)

overheads, and hardware overheads of using this methodology are

shown.

7.1 Laser Fault Injection Attacks

Figure 4 shows an analysis of the outputs of the Rocket core run-

ning software AES being attacked by the AES attack by Breier et

al. [10] with and without the instruction triplication countermea-

sure, a software countermeasure computing a critical instruction

thrice [5]. The y-axis of the graph shows the number of bytes of the

ninth round key left to be revealed. The target component is the

instruction register at the execution stage of the pipeline, where

random bit-lip faults are injected into when the xor instruction is

being executed during the last AddRoundKey to skip the instruction.

Four experiments are needed to reveal the entire last round secret

key for the one without the countermeasure.

8000174c: xor a1,a1,a1 80001768: xori a1,a1 ,2

80001750: xor a4,a2,a3 8000176c: bne a4,a5 ,80001774

80001754: xor a5,a2,a3 80001770: xori a1,a1 ,4

80001758: xor a6,a2,a3 80001774: xori a1,a1 ,4

8000175c: bne a6,a4 ,80001764 80001778: bnez a1 ,80001780

80001760: xori a1,a1 ,1 8000177c: mv a6,a5

80001764: bne a6,a5 ,8000176c

Listing 2: The instruction triplication countermeasure im-

plemented in the software implemented AES to protect

against the AES attack by Breier et al. [10].

Listing 2 shows the assembly code when the instruction tripli-

cation countermeasure is speciically deployed to protect the xor

instruction in RISC-V assembly similar to [5]. The register a6 will

store the correct result from the exclusive-or between a byte of the

ninth round temporary ciphertext and the last round key stored

inside a2 and a3 respectively. Two extra registers a4 and a5 are

used to compare their results with each other and a6 to correct er-

rors. Using the same attack targeting the instruction at the address

0x80001750, it can be seen in Figure 4 that there are no bytes of the

last round secret key revealed due to the countermeasure having its

ability to mask faults similar to the hardware-based triple modular

redundancy technique.

Figure 5 shows the AES attack by Giraud et al. [19] on the AES

accelerator. User-deined faults are injected directly into the regis-

ters storing a ninth round temporary ciphertext at the beginning of

the last round. The y-axis of the graph shows the number of bytes

needed to be revealed. 47 experiments are needed to reveal the

entire ninth round temporary ciphertext. This result also demon-

strates that a design implemented in Verilog can be used with the

framework.

5 11 17 23 29 35 41 47
Number of Experiments

0

2

4

6

8

10

12

14

16

9t
h

Ro
un

d
Ci

ph
er

te
xt

 B
yt

es

Figure 5: The result of the AES attack by Giraud et al. [19] by

injecting user-deined faults into the AES accelerator. 47 ex-

periments are needed to reveal the entire ninth round tem-

porary ciphertext.

Figure 6 shows the comparison of the neural network running

on the Rocket core, between ground-truth, inference without faults

and inference with faults for each label. The neural network con-

sists of three layers comprising four input neurons, four hidden

neurons and three output neurons. The sigmoid function is used

as an activation function for every neuron. The target location is

the multiplexer inside the instruction cache that feeds instructions

to the pipeline. The user-deined one-bit faults are injected to the

Label 1 Label 2 Label 3
0

10

20

30

40

50 50 50 50

44 45

50

1

14
12

Ground-truth Inference without faults Inference with faults

Figure 6: The number of the correct samples of the neural

network running on the Rocket core during the deep learn-

ing attack by Breier et al. [10] compared with the ground-

truth and inference without faults results.

(a) Elapsed time for behav-
ioral simulation for all exper-
iments.

Attacks (m:ss)

AES [10] 8:30

AES [19] :27

RSA-CRT [8] 2:26

NN [9] 6:09

(b) Elapsed time per step (AES Accel.)

Steps (m:ss)

Fault-Tolerant Integration :07

Hardware Fault Injection :09

Simulation Compilation :04

Behavioral Simulation :01

Fault Analysis :01

Synthesis 6:06

Table 3: Elapsed time for simulations.

location when the negation instruction of the sigmoid function of

all the neurons is being sent to the pipeline to skip the instruction.

The usual accuracy of the neural network is 92.67%, whereas, when

attacked, the accuracy decreases to 18.0%.

Table 3a shows time duration needed for simulation for each

benchmark to get outputs that lead to a successful attack. The time

duration for the AES and deep learning attack by Breier et al., and

AES attack by Giraud et al. is the simulation time needed to get the

results shown in Figure 4, Figure 6 and Figure 5 respectively.

A previous work [40] proposes the state-of-the-art layout-based

laser fault simulation that models faults injected by a laser at electri-

cal level, which is at a lower level than logical level used in this work,

and simulates non afected cells with gate level accuracy. Modelling

laser faults at a lower level of abstraction is an alternative way to

get a more realistic result, but takes a lot longer to simulate. From

the data in [40], one laser shot can take one to six minutes to calcu-

late induced faults. In Figure 6, 7 faults have to be injected into the

Rocket core running the neural network program for each sample,

meaning that 1050 laser shots are required to attack the core to

test every sample. Moreover, gate level simulation of the core has

to be completed to obtain the outputs for the exploitation phase,

which can take 169 times longer than behavioral simulation [23].

The time duration needed to inish the entire simulation might not

be desirable for our work.

7.2 Hardware-based redundancy defenses

An example of the outputs of the AES accelerator being attacked

with diferent countermeasures deployed at module level is shown

Correct: 0x3ad77bb40d7a3660a89ecaf32466ef97

Faulty: 0x3ad77bb40d7a3697a89ecaf32466ef97

DMR: 0x00000000000000000000000000000000

Temporal: 0x00000000000000000000000000000000

TMR: 0x3ad77bb40d7a3660a89ecaf32466ef97

Figure 7: An example of the outputs of the AES accelerator

being attacked by Giraud et al. [19] with diferent hardware

countermeasures deployed at module level.

in Figure 7. It can be seen that the output without a countermeasure

has one faulty byte at the 8th byte (shown in bold and underline text)

due to a single bit fault injected directly into the register storing

the ninth round temporary ciphertext in the beginning of the last

round, which leads to secret key retrieval using the AES attack by

Giraud et al. [19]. The outputs of the double modular redundancy

and temporal redundancy are similar, which are all zeros due to the

preventor used to hide a faulty ciphertext to be seen by the attackers.

Note that the detect signals of these two countermeasures are also

high, indicating that there is a diference between the outputs of the

original design and its duplicate. The one with the triple modular

redundancy shows the correct ciphertext due to its ability to rectify

errors.

Table 4: Overheads of supported hardware-based redun-

dancy techniques. Combs and Seqs stand for combinational

and sequential standard cells respectively

Design #Combs #Seqs Area Power Freq

(Cells) (Cells) (µm2) (mW) (GHz)

Original 17973 2472 10661 6.26 1.03

DMR 35973 4947 21526 12.63 1.03

Temporal 18843 2865 11478 7.70 1.03

TMR 53729 7416 32170 18.92 1.03

Hybrid 57228 8066 34353 20.54 1.03

Table 4 shows the overheads of each supported hardware-based

redundancy technique. The target design for this experiment is the

AES accelerator, and the target location is its entire core. The hybrid

redundancy is done by applying the temporal and triple modular

redundancy respectively.

7.3 End-to-End Laser Attack Evaluation

One of the main contributions of this methodology and benchmark

collection is that it is now possible to perform a complete, full-

circle evaluation of faults, coverage and mitigation strategies to

allow one to quickly converge on a solution that provides the right

trade-ofs for the hardware design that needs to be protected. Our

tool includes a set of commonly-used hardware blocks that can be

protected. That said, we have made the work modular to provide

an extensible solution for other error injection types, hardware

designs and mitigation strategies.

In this example, we examine the mitigation of an attack on an

AES accelerator [34]. More speciically, we would like to mitigate

the issues caused by an AES attack which injects a one-bit fault in

the last round of AES processing [19].

To start, we irst indicate the register where we will be inject-

ing a fault (aes.aes_encipher_block.block_w3_reg, Listing 1a),

and the controller used to determine when the fault should occur

(Listing 1b). Finally, we conigure the controller to watch for a trig-

ger signal (aes.aes_encipher_block.round_ctr_reg, Listing 1c)

and insert it into the module.

After running the fault injection framework, the resulting faulty

bits can be seen in the output (Figure 7). After repeating this proce-

dure for all of the necessary bits, the fault injection framework is

able to recover the entire ninth round temporary ciphertext (Fig-

ure 5).

To prevent this from occurring in a new design, we select and

integrate countermeasures needed to protect the circuit. In this

example, we choose triple modular redundancy (TMR) to prevent

the fault attacks. We update the LABS coniguration (Listing 1d) to

indicate which hardware block should be updated with redundancy,

and re-run the hardware design low (Figure 1). Our tool automat-

ically introduces the redundant hardware, and generates a new

design. After completing the worklow, we can see that the new

design with TMR efectively mitigates the AES attack (Figure 7).

The original AES design, when synthesized, was ~10k µm2, with

a power consumption of 6.26 mW (Table 4). For the given frequency

target, we can see the overheads for the TMR technique was ap-

proximately 3.02× in area and power. Given that the behavioral

simulation for the Giraud technique is just 27 seconds (Table 3a),

this evaluation technique is far faster than Physical or Electrical

techniques, leading to signiicant savings with respect to evaluation

of designs and understanding the trade-ofs with respect to run

time, power- and energy-eiciency. With the LABS framework, the

time taken to evaluate whole-design fault mitigation techniques

now becomes tractable.

Table 3b shows the time needed for each step in the low to

generate a test or fault-tolerant design for an experiment in Fig-

ure 5, compile and run behavioral simulation, run a fault analysis

after getting outputs from experiments, which provides a graph in

Figure 5, and synthesize the AES design with the triple modular

redundancy countermeasure applying to the entire core.

8 RELATED WORK

In this section we describe several state-of-the-art tools that enable

circuit designers to simulate laser fault injection and automate

defensive integration during design stages.

Laser-Induced Fault Simulation Methodology. The authors

in [40] propose a layout-based laser fault simulation modelled at

the electrical level. This work uses standard commercial CAD tools,

and takes into account IR drop efects. In [25] the authors propose

a layout-based fault simulation using an HDL/SPICE co-simulator.

The cells under virtual laser illumination are simulated using de-

tailed full-transistor level netlists in SPICE. Voltage spikes are mod-

elled to mimic laser efects. It simulates the rest of the target design

using Verilog netlists. To improve simulation performance, the work

in [26] introduces a multi-level simulator that simulates at the elec-

trical level only the area that is afected by the laser, while the rest

of the target system is simulated at the gate level. Modelling laser

induced faults at the electrical level provides for realistic results that

are based on current source, however electrical-level simulations

are time-consuming and require proprietary tools to implement.

With LABS we employ open-source tools to model faults generated

by a laser at the logical level that is orders of magnitude faster.

Laser Fault Model. The work in [29] introduces the irst RTL

laser fault model that reduces fault space compared to randommulti-

bit fault injection. It relies on an assumption that functional relation

between elements inside the design is not changed through the

digital design low. The goal of this work was to reduce the amount

of work needed to be done during random multi-bit fault injection

while our work aims to generate speciic attacks to compromise

features of various safety-critical applications.

Physical Attack Simulation. In [14] the authors present a

commercial tool called Virtualyzr®. The tool supports both fault

injection attacks and side channel attacks simulation in various

abstraction levels. For the fault injections, it uses logical level fault

models such as stuck-at, bit-lip and random faults to inject faults

into a location that can be at bit level, variable level or random.

Our work bears similarities to the features claimed by [14], how-

ever we ofer an open-source framework based on the open-source

hardware construction language, FIRRTL, and its hardware com-

piler framework. More importantly, our work goes beyond attacks

and introduces a tool that automatically integrates fault tolerant

structures into a target design.

Automatic Insertion of Fault Tolerance Structures.Thework

in [27] presents a tool that automatically integrates concurrent er-

ror detection in Verilog RTL, supporting four options. They can

then be applied to inite state machines indicated by the user, and a

coverage evaluation tool to evaluate the coverage of the options.

The authors in [7] propose an industrial framework that generates

single-event upsets, and integrates fault tolerant structures into a

VHDL RTL design. In [6], the authors propose an approach for a

commercial ASIC design low that integrates triple modular redun-

dancy structures into a target design at netlist level. Our work is

implemented as compiler passes based on an open-source hardware

compiler framework comprising a variety of transformation passes

such as optimization passes. Therefore, our passes can be used

seamlessly with other related work such as Chifre. It also trans-

forms a target design in the hardware intermediate representation,

FIRRTL, instead of one of the hardware description languages di-

rectly, which makes LABS not limited to only one speciic hardware

design language or a speciic commercial tool.

9 CONCLUSION

This work proposes a framework to simulate laser fault injection

attacks from various applications. This work also provides the

hardware-based redundancy integration tool integrated into the

FIRRTL compiler that adds hardware-based redundancy techniques

into a target design without manual modiications. The framework

and the tool together will automate the entire security evaluation

loop, both attacks and defenses, that will help facilitate pre-silicon

security evaluation against laser fault injection. The laser attack

benchmark suite can be found on the website [1].

ACKNOWLEDGMENTS

The authors acknowledge the support from the Singapore National

Research Foundation (łSOCurež grant NRF2018NCR-NCR002-0001

ś www.green-ic.org/socure).

REFERENCES
[1] Burin Amornpaisannon, Andreas Diavastos, Li-Shiuan Peh, and Trevor E. Carlson.

Laser Attack Benchmark Suite. https://github.com/nus-labs/labs.
[2] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[3] Padmanabhan Balasubramanian and Nikos E. Mastorakis. 2016. Power, Delay
and Area Comparisons of Majority Voters relevant to TMR Architectures. CoRR
abs/1603.07964 (2016). arXiv:1603.07964 http://arxiv.org/abs/1603.07964

[4] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. 2006. The Sorcerer’s Apprentice Guide to Fault Attacks. In Proceedings
of the IEEE, Vol. 94. 370ś382. https://doi.org/10.1109/JPROC.2005.862424

[5] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and
Francesco Regazzoni. 2010. Countermeasures against Fault Attacks on Soft-
ware Implemented AES: Efectiveness and Cost. In WESS. https://doi.org/10.
1145/1873548.1873555

[6] Luis Alberto Contreras Benites and Fernanda Lima Kastensmidt. 2018. Automated
design low for applying Triple Modular Redundancy (TMR) in complex digital
circuits. In LATS. 1ś4. https://doi.org/10.1109/LATW.2018.8349668

[7] Luis Berrojo, Fulvio Corno, Luis Entrena, Isabel Gonzalez, Celia López, Mat-
teo Sonza Reorda, and Giovanni Squillero. 2002. An industrial environment for
high-level fault-tolerant structures insertion and validation. In VTS. 229ś236.
https://doi.org/10.1109/VTS.2002.1011143

[8] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. 2001. On the Importance
of Eliminating Errors in Cryptographic Computations. In J. Cryptology, Vol. 14.
101ś119. https://doi.org/10.1007/s001450010016

[9] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu.
2018. Practical Fault Attack on Deep Neural Networks. In CCS. 2204ś2206.
https://doi.org/10.1145/3243734.3278519

[10] Jakub Breier, Dirmanto Jap, and Chien-Ning Chen. 2015. Laser Proiling for the
Back-Side Fault Attacks: With a Practical Laser Skip Instruction Attack on AES.
In CPSS. 99ś103. https://doi.org/10.1145/2732198.2732206

[11] Jakub Breier, Dirmanto Jap, and Chien-Ning Chen. 2018. Laser-Based Fault
Injection on Microcontrollers. Springer Singapore, 81ś110. https://doi.org/10.
1007/978-981-10-1387-4_5

[12] Cadence. Spectre eXtensive Partitioning Simulator. https://www.cadence.com/
en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-
extensive-partitioning-simulator-xps.html.

[13] Cadence. Voltus IC Power Integrity Solution. https://www.cadence.com/en_
US/home/tools/digital-design-and-signof/silicon-signof/voltus-ic-power-
integrity-solution.html.

[14] Kais Chibani, Adrien Facon, Sylvain Guilley, Damien Marion, Yves Mathieu,
Laurent Sauvage, Youssef Souissi, and Soiane Takarabt. 2019. Fault Analysis
Assisted by Simulation. Springer International Publishing, 263ś277. https:
//doi.org/10.1007/978-3-030-11333-9_12

[15] Moslem Didehban, Aviral Shrivastava, and Sai Ram Dheeraj Lokam. 2017. NEME-
SIS: A software approach for computing in presence of soft errors. In ICCAD.
297ś304. https://doi.org/10.1109/ICCAD.2017.8203792

[16] Dheeru Dua and Casey Graf. UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml

[17] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan De Castro,
Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gendrier, David Hély, Regis
Leveugle, Paolo Maistri, Giorgio Di Natale, Athanasios Papadimitriou, and Bruno
Rouzeyre. 2018. Laser Fault Injection at the CMOS 28 nm Technology Node: an
Analysis of the Fault Model. In FDTC. 1ś6. https://doi.org/10.1109/FDTC.2018.
00009

[18] Schuyler Eldridge, Alper Buyuktosunoglu, and Pradip Bose. 2018. Chifre: A Con-
igurable Hardware Fault Injection Framework for RISC-V Systems. In CARRV.

[19] Christophe Giraud. 2005. DFA on AES. In Advanced Encryption Standard ś AES,
Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa (Eds.). Springer Berlin
Heidelberg, 27ś41. https://doi.org/10.1007/11506447_4

[20] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert
Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction languages,
compiler frameworks, and transformations. In ICCAD. 209ś216. https://doi.org/
10.1109/ICCAD.2017.8203780

[21] AllanH. Johnston. 1993. Charge generation and collection in p-n junctions excited
with pulsed infrared lasers. In TNS. 1694ś1702. https://doi.org/10.1109/23.273491

[22] Marc Joye, Pascal Manet, and Jean-Baptiste Rigaud. 2007. Strengthening hardware
AES implementations against fault attacks. In IET Information Security. 106ś110.
https://doi.org/10.1049/iet-ifs:20060163

[23] Dusung Kim, Maciej Ciesielski, Kyuho Shim, and Seiyang Yang. 2011. Temporal
parallel simulation: A fast gate-level HDL simulation using higher level models.
In DATE. 1ś6. https://doi.org/10.1109/DATE.2011.5763251

[24] Francois Koeune and François-Xavier Standaert. 2004. A Tutorial on Physical
Security and Side-Channel Attacks. In LNCS. 78ś108. https://doi.org/10.1007/
11554578_3

[25] Huiyun Li and Simon Moore. 2006. Security evaluation at design time against
optical fault injection attacks. In IEE Proceedings - Information Security. 3ś11.
https://doi.org/10.1049/ip-ifs:20055021

[26] Feng Lu, Giorgio Di Natale, Marie-Lise Flottes, and Bruno Rouzeyre. 2013. Laser-
Induced Fault Simulation. In DSD. 609ś614. https://doi.org/10.1109/DSD.2013.72

[27] Kartik Mohanram, Ch V. Phani Krishna, and Nur A. Touba. 2002. A methodology
for automated insertion of concurrent error detection hardware in synthesizable
Verilog RTL. In ISCAS. https://doi.org/10.1109/ISCAS.2002.1009906

[28] National Institute of Standards and Technology. Advanced Encryption Standard
(AES), NIST FIPS PUB 197.

[29] Athanasios Papadimitriou, David Hély andVincent Beroulle, Paolo Maistri, and
Régis Leveugle. 2014. A multiple fault injection methodology based on cone
partitioning towards RTL modeling of laser attacks. In DATE. 1ś4. https://doi.
org/10.7873/DATE.2014.219

[30] Sikhar Patranabis and Debdeep Mukhopadhyay. 2018. Classical Countermeasures
Against Diferential Fault Analysis. Springer Singapore, 171ś182. https://doi.org/
10.1007/978-981-10-1387-4_8

[31] Amruth Pillai. RSA Algorithm in C. https://gist.github.com/AmruthPillai/
42f4fef15bd2591aeddccae03b31ab25.

[32] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury. 2009. A
Diagonal Fault Attack on the Advanced Encryption Standard.. In IACR Cryptology
ePrint Archive.

[33] Bodo Selmke, Johann Heyszl, and Georg Sigl. 2016. Attack on a DFA Protected
AES by Simultaneous Laser Fault Injections. In FDTC. 36ś46. https://doi.org/10.
1109/FDTC.2016.16

[34] Joachim Strömbergson. Verilog implementation of the symmetric block cipher
AES. https://github.com/secworks/aes.

[35] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. 2002. A dynamic and
diferential CMOS logic with signal independent power consumption towithstand
diferential power analysis on smart cards. In ESSCIRC. 403ś406.

[36] Kris Tiri and Ingrid Verbauwhede. 2004. A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation. In DATE. 246ś251.

[37] Elena Trichina and Roman Korkikyan. 2010. Multi Fault Laser Attacks on Pro-
tected CRT-RSA. In FDTC. 75ś86. https://doi.org/10.1109/FDTC.2010.14

[38] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico Menarini. 2011.
Practical Optical Fault Injection on Secure Microcontrollers. In FDTC. 91ś99.
https://doi.org/10.1109/FDTC.2011.12

[39] Pierre Vanhauwaert, Paolo Maistri, Regis Leveugle, Athanasios Papadimitriou,
David Hely, and Vincent Beroulle. 2014. On error models for RTL security
evaluations. In DTIS. 1ś6. https://doi.org/10.1109/DTIS.2014.6850666

[40] Raphael A.C. Viera, Jean-Max Dutertre, Philippe Maurine, and Rodrigo Possamai
Bastos. 2018. Standard CAD Tool-Based Method for Simulation of Laser-Induced
Faults in Large-Scale Circuits. In ISPD. 160ś167. https://doi.org/10.1145/3177540.
3178243

[41] Raphael Andreoni Camponogara Viera, Jean-Max Dutertre, Rodrigo Possamai
Bastos, and Philippe Maurine. 2017. Role of Laser-Induced IR Drops in the
Occurrence of Faults: Assessment and Simulation. In DSD. 252ś259. https:
//doi.org/10.1109/DSD.2017.43

[42] Lewis Van Winkle. C Neural Network Library: Genann. https://github.com/
codeplea/genann.

[43] CeceliaWisniewska. C++ implementation of a 128-bit AES encryption/decryption
tool. https://github.com/ceceww.

[44] Cliford Wolf. Yosys Open SYnthesis Suite. http://www.cliford.at/yosys/.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 30.60 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 790
 326
 Fixed
 Up
 30.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryList_V1
 qi2base

