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Issue time prediction processors use dataflow dependencies and predefined instruction latencies to predict

issue times of repeated instructions. In this work, we make two key observations: (1) memory accesses often

take additional time to arrive than the static, predefined access latency that is used to describe these systems.

This is due to contention in the memory hierarchy and variability in DRAM access times, and (2) we find

that these memory access delays often repeat across iterations of the same code. We propose a new proces-

sor microarchitecture that replaces a complex reservation-station-based scheduler with an efficient, scalable

alternative. Our scheduling technique tracks real-time delays of loads to accurately predict instruction issue

times and uses a reordering mechanism to prioritize instructions based on that prediction. To accomplish

this in an energy-efficient manner we introduce (1) an instruction delay learning mechanism that monitors

repeated load instructions and learns their latest delay, (2) an issue time predictor that uses learned delays

and dataflow dependencies to predict instruction issue times, and (3) priority queues that reorder instruc-

tions based on their issue time prediction. Our processor achieves 86.2% of the performance of a traditional

out-of-order processor, higher than previous efficient scheduler proposals, while consuming 30% less power.

CCS Concepts: • Computer systems organization→ Architectures;

Additional Key Words and Phrases: Instruction scheduling, processor architecture, load instruction delay

scheduling, issue time prediction, instruction reordering, microarchitecture

ACM Reference format:

Andreas Diavastos and Trevor E. Carlson. 2022. Efficient Instruction Scheduling Using Real-time Load Delay

Tracking. ACM Trans. Comput. Syst. 40, 1–4, Article 1 (November 2022), 21 pages.

https://doi.org/10.1145/3548681

1 INTRODUCTION

With each processor generation, architects aim to improve core performance while maintaining en-

ergy efficiency. To achieve high levels of performance, a processor must be able to build aggressive

schedules that exploit instruction-level parallelism (ILP) and memory-level parallelism. One of

the main challenges in this process is reordering instructions in a scalable, energy efficient manner.

Traditional out-of-order processors schedule ready instructions using complex schedulers that dy-

namically build dataflow dependencies and implicitly learn instruction delays. They achieve this

by monitoring, waking up, and issuing instructions once their operands are produced. However,
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as previous studies have shown [29, 30], this technique uses power hungry hardware structures

that inefficiently scale processor performance.

To build efficient, scalable hardware that provides both high performance and energy efficiency,

previous research has proposed a number of techniques covering both in-order and out-of-order

processors. Some examples include parking non-ready instructions to better utilize available re-

sources [20, 21, 34], bypassing stalled instructions or filtering instructions based on their criticality

to reduce stalling delays [1, 2, 6, 19], replaying stalled instructions to avoid blocking the instruction

queue [12], and instruction prescheduling using dataflow dependencies [26, 31]. Some solutions

make the realization that the schedules of general-purpose applications are highly regular and re-

peat during execution; these propose issue time prediction processors that try to explicitly predict

when instructions will be ready to issue, using dataflow dependencies and pre-defined instruction

delays [4, 5, 15, 17, 24, 33, 37, 42, 43]. But, unfortunately, without explicit knowledge of real-time

instruction delays, the issue time predictions will never be accurate enough to achieve close-to

out-of-order core performance in an efficient way. However, some works [29, 30] propose hybrid

processors where an out-of-order core produces repeated instruction schedules, taking into ac-

count true memory access latency, and offloads them to simple in-order cores. However, these

solutions require the implementation of two cores, which increases design cost.

In this work, we aim to overcome the limitation of issue time prediction processors by dynami-

cally building the knowledge of real-time instruction delays with low-cost hardware. In addition,

we introduce an instruction reordering technique that uses this knowledge to prioritize instruc-

tions based on dataflow and timing information in a highly efficient way. We achieve high per-

formance (and in some cases, outperform cores with expensive on-demand issue structures used

by traditional out-of-order cores), with a light-weight structure that understands program depen-

dencies and timing information to prioritize key instructions when necessary. We do this with a

delay-based scheduling mechanism that uses latency information as seen by the core itself, instead

of pre-defined values that have been used in all previous works up to now.

In this article, we propose a processor microarchitecture that dynamically prioritizes the issuing

of instructions, just in time for execution, by recording real-time delays of repeated loads (i.e., in

loops) and learning dataflow dependencies of instructions to accurately predict issue times of the

same instructions in future appearances. It improves energy efficiency by replacing reservation-

station based instruction queues with priority queues that reorder instructions using the predicted

issue time as their ordering policy and reduces complexity by issuing only from the head of queues.

In this work, we make the following contributions:

• An efficient issue time prediction processor with prioritization hardware that enables in-

struction reordering to achieve 86.2% of the performance of the upper-bound (a traditional

out-of-order baseline), while consuming 30% less power (Section 4);

• An issue time prediction algorithm that uses real-time load delays to enable accurate predic-

tion of issue times for repeated instructions. A prediction that facilitates the prioritization

of key instructions to fill the gaps between stalled instructions, improving the performance

of issue time prediction processors by 5.5–25% on average (Section 3);

• A comprehensive evaluation of the proposed microarchitecture with quantitative compari-

son to state-of-the-art issue time prediction processors (Sections 5 and 6).

2 MOTIVATION AND OVERVIEW

One of the key reasons why out-of-order processors are able to achieve high performance is

because of the aggressive scheduling of instructions. Past research suggests that out-of-order
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Fig. 1. Percentage of repeated loads with identical access time in consecutive iterations. On average more

than 92% of loads in the SPEC CPU2006 benchmark applications have the same access time in consecutive

iterations.

schedules are repeated [25] across loop iterations and can be learned [29, 30] or predicted by

assuming a pre-defined delay, as specified in the specifications for different types of instruc-

tions [4, 5, 26, 31, 43]. But although many instructions execute with static delays, like traditional

addition and multiplication, load instructions that miss in the L1 can have variable latency, depend-

ing on the level of the memory hierarchy they access.

Our study shows that even for accesses to the same level of the memory hierarchy, different load

instructions can have different delays due to bandwidth contention in the memory hierarchy and

the variability in DRAM access times. More specifically, we see variations across all PCs of as many

as four cycles for L2 accesses and more than 2× the number of cycles for DRAM accesses compared

to the specifications defined by the implementation. Therefore, assuming a single minimum pre-

defined delay for memory accesses is not sufficient to accurately predict instructions issue times.

However, Figure 1 shows that memory access times of loads in different appearances are repeated

over consecutive iterations, on average 92.8% of the time.

The key insight of this article is that to accurately predict repeated instruction issue times and build

a high performance schedule, learning the latest delay of memory accesses is required. In this work, we

build schedules and reorder instructions in an energy efficient way using three core components

that can replace the traditional out-of-order scheduler: (1) an instruction delay learning mechanism

that tracks delays of load instructions over repeated appearances, (2) an issue time predictor that

dynamically predicts when an instruction will be ready to issue, and (3) priority queue reordering

that use these predictions to prioritize key instructions, even after dispatch has occurred.

3 ISSUE TIME PREDICTION

To achieve aggressive, high-performing schedules, we need (1) to schedule instructions in a

dataflow manner that satisfies producer–consumer relationships and (2) to reorder instructions

such that idle cycles between dependent instructions are filled with independent work. Dataflow

dependencies provide a scheduling policy where the execution of instructions follows the flow

of the data from producers to consumers. The processor dynamically derives dataflow dependen-

cies from the input and output operands of instructions. Because instructions require a certain

amount of time to produce their output data, gaps of idle cycles are formed between dependent
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instructions. To achieve a high-performing schedule, these gaps must be filled with independent

instructions that are ready to execute. In this work, we identify these gaps by learning real-time

delays of load instructions that miss in the L1 cache. All other operations have static delays; there-

fore, learning is not required. Assuming instructions in repeated code (e.g., loops) appear more

than once, we combine instruction delays with their dependencies to predict their issue time in

future appearances.

3.1 Prediction Algorithm

The predicted issue time of a consuming instruction (TPr edicted (c)) is estimated as the maximum

value of the addition of the predicted issue time (TPr edicted (p)) and the delay (TDelay (p)) of each of

its producers (Equation (2)). The delay (TDelay (p)) of each producerp is calculated as the difference

of its completion time (TComplete (p)) and its issue time (TI ssue (p)) (Equation (1)). An instruction

can be issued only after all its producers have completed, and therefore the algorithm chooses

the maximum value. By using the predicted issue time of the producers, the algorithm inherently

propagates dataflow dependency chain delays to all instructions, and thus the resulting predicted

issue time can directly be used to order instructions.

An instruction’s delay is calculated as

TDelay (p) = TComplete (p) −TI ssue (p). (1)

An instruction’s predicted issue time is estimated as

TPr edicted (c ) =
P

max
p=0

[TPr edicted (p) +TDelay (p)]. (2)

The proposed technique requires the core to observe and store delay information (TDelay (p))
of repeated instructions (remember that storing delays is only required for load instructions that

miss in the L1 cache as all other instructions have static delays). In the absence of this information

(first appearance of an instruction or non-repeated instructions), the algorithm assumes the lowest

delay to avoid unnecessary stalls in the execution. Because load instructions access different levels

of the memory hierarchy in different iterations in an unpredictable way, constant monitoring and

retraining of the predictor is required to keep the delay information up to date. Therefore, stored

load delays are updated every iteration.

3.2 Example

To demonstrate how the issue time prediction algorithm works, we annotate a code region, see

Table 1, that illustrates two loop iterations of a code snippet of the hmmer application from the

SPEC CPU2006 benchmark suite. Although this example demonstrates reordering within one basic

block, in normal execution, there are no restrictions in reordering instructions between different

blocks. Also, for simplicity the example uses instructions; however, the actual implementation uses

uops.

For the purpose of this example, we assume a simple in-order core with one issue per cycle,

loads/stores take four cycles to execute, and all other instructions execute in one cycle.TI ssue cor-

responds to the issue cycle,TDelay is the instruction’s delay in the current iteration, andTPr edicted

is the predicted issue time for its next appearance in relation to producers. Δthis and Δooo are the

number of cycles an instruction was issued earlier, compared to a traditional in-order execution,

for the proposed solution and a fully out-of-order core, respectively. Note that now is a relative

time and is different for each instruction. It merely means that an instruction is ready for execution

immediately after it is dispatched.
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Table 1. Issue Time Prediction Example Code of the hmmer Application

We assume that instructions are already in the instruction window. Δ is the number of cycles an instruction was issued

earlier in the proposed solution and an out-of-order core compared to a traditional in-order core. Rows marked in

green show the reordered instructions and in blue instructions that were issued earlier than their previous appearance.

While the example uses instructions, the actual implementation uses uops. In the right column, we show the

instruction dataflow diagram for one iteration.

As shown in the dataflow diagram in Table 1, load instruction ❶ produces a result for instruction

❷. Instruction ❸ is a store that depends on ❷, while ❹ and ❺ are loads producing the operands for

instruction ❻. Instructions ❸ and ❻ are producers of instructions ❼ and ❽, while store instruction

❾ is a consumer of instruction ❽. Based on these dependencies, the loop consists of two major

dependency chains: ❶ → ❷ → ❸ and ❹, ❺ → ❻. These chains are independent of one another,

and therefore instructions can be reordered between these chains as needed. Instruction ❷ must

wait for four cycles before it can issue because of its dependence on load instruction ❶. An in-

order core will stall for four cycles between the two instructions. But an out-of-order core will

fill these idle cycles by issuing instructions ❹ and ❺ earlier. To emulate this, we keep track of

timing information for the relevant instructions. During the first iteration, we collect the issue

cycle (TI ssue ) and the delay (TDelay ) of every instruction and associate them with the dataflow

dependencies to predict the issue time (TPr edicted ) of the same instructions in future appearances.

In the second iteration, instructions ❹, ❺ (marked in green) bypass independent instructions that

have a higher predicted issue time.

Observing the Δs in the second iteration allows us to see the benefit of this technique. After

one iteration, the prediction algorithm builds a schedule that is the same as the schedule of the

out-of-order core as shown by the matching deltas (Δthis and Δooo ). The Δthis of instructions ❹
and ❺ is −5, because they are issued five cycles earlier compared to execution on an in-order core.

Instructions that are part of the same dependency chain will also benefit and will also be able to

issue earlier (instructions ❻, ❼, ❽, and ❾ in the example (marked in blue)). The Δooo is the same

for both iterations, because the out-of-order core can reorder instructions in every iteration.

The issue time predictor requires just one iteration to learn real-time load instruction delays

before applying them in the prioritization algorithm that will reorder instructions accordingly.

However, in our implementation, instructions are also reordered in the first iteration by assuming

L1 hit access time for all load instructions to avoid unnecessary stalls.
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Fig. 2. The proposed microarchitecture design. In green dashed lines we mark the Instruction Delay Learning

process and in blue dotted lines the Issue Time Prediction process.

4 PROPOSED MICROARCHITECTURE

By tracking real-time load delays and instruction dependencies, we can more accurately predict

instruction issue times and build aggressive schedules that mimic those of an out-of-order core, as

shown in the example in Section 3.2. Using priority-based ordering hardware and the issue times

predicted as the priority index it can efficiently reorder instructions. Figure 2 shows the schematic

representation of the proposed architecture. Green colored components are the structures added

to implement the Instruction Delay Learning process, while blue colored structures implement the

Issue Time Prediction and Priority Queue Reordering in the execution unit.

In step 1 of the Instruction Delay Learning, process instruction dependencies are stored in the

Dependency Table (DT), that contains an entry for each physical register, and maps it to the

instruction pointer that last wrote to this register. In step 2 , the issue and completion time of

load instructions that miss in the L1 cache are stored per PC in a direct-mapped memory structure

called DelayCache. For every dispatched instruction the Issue Time Prediction algorithm identifies

its producers from the DT in step A and their delays from the DelayCache in step B , to calculate

the Predicted Issue Time in step C that will be used by the Priority Queues (PQs) as a priority

index to reorder instructions in the execution engine.

4.1 Instruction Delay Learning

While instructions are being fetched, decoded, and renamed, dependencies are stored and built by

the DT. As instructions start executing, delays of instructions that caused upcoming instructions

to stall (L1 cache miss) are stored in the DelayCache, initiating the training of the prediction mech-

anism. In this work, the delay represents the execution time of an instruction with respect to its

issue time. An alternative approach not used in our final design stores the delay of an instruction

with respect to its dispatch time, but our study shows large slowdowns in such design due to the

unpredictability of structural hazards (see Figure 8(a)).

Although most instructions require a static delay before delivering their result, it is loads that

cause the majority of the stalls, and their delay can be variable and unknown at dispatch time. In

this implementation, we only store delays of loads that miss in the L1 and for all other instructions

we use their predefined delay (derived from their type or L1 access time for loads that do not miss).

This allows us to minimize the storage overhead and power requirements when implementing the

DelayCache.
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Due to application characteristics that relate to branch behavior and memory access patterns,

load delays are unpredictable in different iterations (see Section 6.5/Figure 9(a)). Therefore, the

DelayCache is continuously updated with the latest delay for every stored instruction, and the

issue time predictor is trained in every iteration of a repeated code. Our experiments show that,

for the majority of the applications tested, training every iteration produces the highest perfor-

mance. Activity-based power analysis shows that training is not expensive, as only a subset of

load instructions have a variable delay that require an update to the DelayCache. Note that in a

context-switch scenario flushing the DT and the DelayCache is not required as both units use a

least recently used replacement policy that will replace older application’s instruction delays with

the new application’s delays. In the case when not all entries are used by the new application, the

data of the older application will remain there when it the core switches back to that application.

Although our implementation trains the issue time predictor using load delay information, the

issue prediction mechanism can be applied as-is to other instructions with variable delay, such as

floating point division and transcendental functions. In this work, we do not cover their potential

performance benefits, as they do not occur often in the applications we evaluate.

4.2 Issue Time Prediction and Dispatch

The delays of instructions stored in the DelayCache combined with the dependencies from the

DT provide the necessary inputs for predicting the issue time of instructions as described in

Section 3. For every renamed instruction, the DT is queried using the instruction’s input operands

to find possible producers. In a DT hit, the DelayCache is queried with the producer’s addresses,

and correspondingly, in a DelayCache hit, the delay will be retrieved to calculate the current in-

struction’s issue time. In case of a miss in the DelayCache, the value of an L1 hit (four cycles in

our microarchitecture) is used to avoid unnecessary delays in the absence of misses.

The Execution Engine, which has the primary task of reordering instructions, is built using

multiple priority instruction queues, with each functional unit having its own dedicated queue. Al-

though instructions from multiple queues can execute out-of-order, instructions in a single queue

can be issued only from the head of the queue and only to the corresponding functional unit.

Because each queue corresponds to a specific functional unit, instructions are dispatched to the

queues according to their type. If an instruction matches to more than one queue, then dataflow

dependencies are used to steer incoming instructions to the first queue that has a producing in-

struction at its tail; otherwise, it will go to the queue with the least number of instructions. Our

studies indicate that round-robin and global dependence steering schemes reduce performance

compared to our scheduling methodology (see Figure 10 for more details).

Issue times are predicted for first time appearing or non-repeated instructions even in the ab-

sence of delay information by assuming the lowest delay (L1 access hit) to avoid unnecessary

execution stalls.

4.3 Priority Queue Reordering and Issue

In the proposed architecture, we remove the traditional reservation-station-based scheduler and

instead reorder instructions using light-weight and efficient priority instruction queues in the ex-

ecution engine. PQ are built using Systolic Priority Queues [22], where instructions are reordered

based on a priority index (their predicted issue time in this case). Insertion and removal in a pri-

ority queue happen at the head as described in Reference [22], and thus highest-priority inserted

instructions are directly available from the head of a PQ on the next cycle; therefore back-to-back

instruction execution is achieved. A free list of entries in the queues is also used so that new entries

can be inserted at a free position. Because each functional unit has its own instruction queue and

only instructions at the head of each queue can be issued, complex selection logic is not required
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to decide which instructions to issue every cycle. When an instruction at the head of a queue has

unresolved data dependencies the queue blocks. However, instructions in other queues are not

affected as only instructions in a blocked queue will stall.

4.4 Register Renaming

Register renaming works in the same way as in traditional out-of-order processors. Renaming

replaces destination architectural registers with physical registers to eliminate the name depen-

dencies (output dependencies and anti-dependencies) between instructions, and it automatically

recognizes true dependencies. True data dependencies between instructions allow for a more flex-

ible execution of instructions. Maintaining the status for each register, indicating whether or not

it has been computed yet, allows the execution of instructions to be performed out-of-order when

there are no true data dependencies.

4.5 Memory Dependencies

Memory operations are also reordered to maximize performance. Contrary to register dependen-

cies that can be resolved at decode time, store-to-load memory dependencies with overlapping

memory addresses can lead to incorrect execution if loads or stores are executed before older

stores that refer to the same address. Memory dependencies are accurately predicted by identi-

fying the stores upon which a load depends (store set) and communicate that information to the

issue time predictor [9]. Similarly to a traditional out-of-order processor, using the ROB and the

LSU prevents memory violations. The LSU tracks executing memory operations and makes sure

that they are committed in program order. Instructions are verified before commit to ensure that

no memory violations will be visible to the architecture state.

4.6 Commit

The commit stage checks for exceptions before it releases structures such as store buffer entries and

rename registers. Instructions enter in-order into the ROB during dispatch, record their completion

out-of-order, and leave the ROB in-order. Interrupts and branch misspeculation events are handled

as in other conventional processors. However, retraining of the issue time predictor is not required

in this case, and if the core matches a repeated instruction from the DelayCache, they it will be

reordered immediately.

4.7 Multi-Core Support

In a multi-core implementation, new connections are added in the memory hierarchy for loads

accessing remote memory locations. Issue time prediction in the proposed design is based on a

per core memory access latency at any part of the memory hierarchy; therefore, by replicating

the new hardware structures (DT and DelayCache) to every core the prediction algorithm will

adapt accordingly and learn remote access delays. A two-core setup simulation, with a variety of

application pairings, resulted in similar gains as to the ones reported for the single-core scenario

in Section 6.1. Specifically, the average performance difference of the multi-core implementation

to an out-of-order multi-core baseline is within 0.6% of the the single-core processors performance

difference. As the coherence misses or Simultaneous Multi-Threading (SMT) scheduling could

be less predictable, it would require new studies and, potentially, structure changes to handle these

cases. However, this is out of the scope of this work. This core, as implemented, does not change

any significant components in the back-end of the processor and, therefore, is compatible with the

original coherence and consistency models as described in the core.
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Table 2. Power and Area of the New Design Structures

Component Organization Ports Area (μm2) Power (mW)

DT 256 entries × 1B 12r4w 14.54 (0.37%) 11.74 (0.37%)

DelayCache 512 entries × 12B 4r1w 103.31 (3.25%) 43.41 (1.87%)

Priority Queues 5 × 2 × 13 entries × 1B 1r1w 0.28 (0.01%) 1.49 (0.05%)

In parenthesis is their overhead over the entire core. The Priority Queues are

implemented using 2 × 13 entries per unit to match the 64 entries of the

out-of-order baseline.

Table 3. Simulated Microarchitecture Parameters

Component Parameters

in-order This Work out-of-order

Core 2 GHz, superscalar

Issue width 4-way 4-way 4-way

Reorder logic none 128-entry ROB 128-entry ROB,

5×13-entry PQs 64-entry RS

DT — 256 entries (×1B) —

DelayCache — 512 entries (×12B) —

Branch Predictor TAGE-SC-L [35]

Branch Penalty six cycles eight cycles eight cycles

Execution units 2 int, 1 fp, 1 branch, 1 load/store

L1-I Cache 32 KB, 4-way LRU

L1-D Cache 32 KB, 8-way, LRU, 4 cycle, 8 outstanding

L2 cache 512 KB, 8-way, LRU, 8 cycle, 12 outstanding

Prefetcher L1, stride-based, 16 independent streams

Main memory DDR3-1600, 800 MHz, ranks: 4, banks: 8,

page size: 4 KB, bus: 64 bits,

tRP-tCL-tRCD: 11-11-11

Technology node 28nm

5 EXPERIMENTAL SETUP

The performance evaluation of this work was performed on a modified version of the Sniper Multi-

Core Simulator [7], version 6.2, that uses the Instruction Window-Centric core model [8]. We

use a detailed DRAM model that takes into account DRAM page locality and other low-level de-

tails that account for all detailed DRAM delays. Power and energy analysis was conducted with

McPAT [23] version 1.3, modified to support our microarchitecture. Applications were compiled

with the GCC compiler (-O2 optimization flag) and executed with the reference inputs of the SPEC

CPU2006 benchmarks, using a single, representative (SimPoint-based [36]), 750 million instruc-

tion trace. Average results are computed by combining output results of common workloads (but

different input) into a weighted value before averaging the results across applications. The details

of added structures to the core, with area and average power consumption, are listed in Table 2

and the details of the simulated microarchitectures are listed in Table 3. Performance is measured

in Instructions per Cycle and energy efficiency in Million Instructions Per Second per Watt

(MIPS/W) and Energy Delay Product (EDP). Unless explicitly stated, all summary results are

weighted average values of all applications, while black bars represent results of the proposed

design configuration described in Table 3.

6 RESULTS AND ANALYSIS

6.1 Performance Analysis

The proposed processor achieves 2.7× and 86.2% of the performance of the baseline in-order and

out-of-order cores, respectively (Figure 3). Note that simulations using representative regions
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Fig. 3. Performance of the proposed implementation compared to in-order and out-of-order baseline proces-

sors. For clarity, we plot average values for applications with multiple inputs (<application_name>.avg).

(from Reference [32]) from a set of SPEC CPU 2017 applications were also conducted with a similar

performance compared to an out-or-order core (we achieve on average 85.9% of the performance

of the baseline out-of-order core). Although instructions issue only from the head of the instruc-

tion queues, it achieves near-out-of-order performance by de-prioritizing instructions that were

predicted to stall the execution (i.e., consumers of loads that do not hit in the L1 cache). This allows

ready instructions to move to the head of the instruction queues. Note that when an instruction

at the head is not ready to issue, the queue will block.

Per instruction analysis shows that loads and their address generating instructions are issued

earlier in the new design, compared to the out-of-order baseline. This happens because address

generating instructions rarely depend on long-latency operations [6], and, therefore, the new pro-

cessor predicts shorter issue times for them and their consuming loads, even compared to older

instructions that are also ready to issue. In an age-based ordering scheduler of an out-of-order

core, however, ready instructions are issued based on their fetched order. Therefore, loads that

are issued earlier result in shorter data waiting time. This is reflected in applications, like astar,

dealII, and povray where this work’s performance meets or exceeds the performance of the out-

of-order. While, in general, this work performs as well as the out-of-order for compute-intensive

applications, there are a few that show lower performance. Applications like gamess that are not

bound by long-latency memory accesses, stress the multi-queue backend of the new design, where

instructions can issue from the head of a queue, to the corresponding functional unit only.

The main reasons the proposed processor is unable to meet the performance of the out-of-order

processor are (1) the per functional unit instruction queue design, (2) the prediction algorithm

training that requires at least one iteration to learn real-time load delays, and (3) the accuracy of

using the previous load delay to predict the next delay. However, the design is a tradeoff made

to significantly improve the processor’s overall energy efficiency. An alternative single in-order

issue queue would severely limit the performance, while adding selection logic over queues that

can issue to multiple units or using reservation-station-based queues would greatly increase power

consumption (see Figure 8(b)). While the delay prediction training and accuracy is an application

dependent overhead that does not have a major impact on overall performance (see Figure 9(a)),

even on a larger core. Our analysis shows that on a scaled-up, Skylake-like processor, the additional

overhead is only 3%.

6.2 Power and Efficiency Analysis

Figure 4(a) shows power results for the same processors, normalized to the out-of-order baseline.

The in-order core consumes 31.6% the power of the out-of-order, while the proposed processor

consumes 67.4% its power. One of the main reasons for the power reduction in this work is the

removal of the reservation-station-based instruction scheduler that takes 13% of the total power

of the out-of-order core (including wake-up and selection logic). The rest of the power gained is
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Fig. 4. Normalized to the out-of-order: (a) Power consumption and (b) Efficiency (MIPS/W), Power Delay

Product (PDP), and EDP.

coming from the difference in runtime compared to the out-of-order. As performance increases,

the amount of dynamic power also increases. Dynamic power is data dependent and is closely

tied to the number of transistors that change state [27]. The DelayCache, the Priority Queues

and the DT contribute only 2% to the total power of the new core. Priority queues are efficiently

implemented using simple interconnected FIFO queues, while the small number of delays that need

to be stored allows for a small size DelayCache with few accesses, consequently little dynamic

power consumed.

Figure 4(b) outlines the energy efficiency normalized to the out-of-order core. Despite its low

performance, the simplicity and low-power hardware of the in-order core provide a 21% increase

in efficiency over the more complex out-of-order core. The significantly higher performance of

this work, in conjunction with the lower total power, achieves an improvement of 22.7% over the

out-of-order. On the right side of Figure 4(b), efficiency is outlined as a metric of the Power Delay

Product normalized to the out-of-order core. The proposed processor achieves a reduction of 19%

and 1% in PDP compared to the out-of-order and in-order, respectively.

6.3 State-of-the-Art Issue Time Predictors

Figure 5 shows performance and energy efficiency results of state-of-the-art issue time predic-

tors implemented on top of our baseline processors and compared to this work. We categorize

these processors to those that eliminate the traditional reservation-station-based scheduler

(without-RS) and those that still use it (with-RS). To calculate the efficiency for the processors

with-RS we used the power consumption of the out-of-order core as-is, without adding the over-

heads of their added structures. We use these results only as a reference and note that in a real

implementation, their efficiency would actually be lower.

The Complexity-Effective [31] solution steers instructions to in-order queues based on their de-

pendencies alone. Dependent instructions are steered to the same queue, while independent in-

structions are steered to empty queues. This solution only achieves 61.8% of the out-of-order core

performance, because it does not take advantage of the delays between dependent instructions.

Cyclone [12] uses dependencies to predict instruction issue times and employs a selective replay

mechanism for stalled instructions. However, performance is low due to the conflicts arising dur-

ing instruction flow because of its queue structure and the limitation that only instructions at the

head of the queue are candidates for issuing [17]. Using real-time delay information on top of

dataflow dependencies to predict instruction issue times in This Work, solves these problems and

achieves significant performance improvement over other processors without-RS.
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Fig. 5. (a) Performance and (b) energy efficiency of state-of-the-art issue time prediction processors, normal-

ized to the baseline out-of-order processor.

Predicting only L1 hits [43] and assuming L2 (L1 Hit Prediction L2 delay) or DRAM (L1 Hit

Prediction DRAM delay) access delays for all other loads does not improve out-of-order processor

performance, because it ignores the actual miss delay that is the key factor for stalling the pipeline.

Assuming L2 delay for all misses ignores DRAM accesses and stalls the pipeline for extended peri-

ods of time and using DRAM delay makes dependent instructions wait for an unnecessary amount

of time, even though they are ready to execute. Dataflow Prescheduling [26] reorders instructions

before sending them to the instruction window using dataflow dependencies and assuming a L1

cache-hit delay for all loads. This optimistic assumption improves performance over the out-of-

order core as it does not delay ready instructions in the issue window. However, as in all solutions

with-RS, misspredicted instructions will not stall the pipeline, because they will be overlapped

using the out-of-order scheduler.

In general, processors with-RS produce higher performance (Figure 5(a)), because the reordering

is handled by their reservation-station-based instruction queue. However, processors without-RS

achieve higher energy efficiency (Figure 5(b)) because of the simplicity of their design. These re-

sults highlight the importance of using real-time delay information to provide out-of-order per-

formance when predicting instruction issue times, while reordering instructions using priority

queues will achieve it in an energy efficient way (as we demonstrate with This Work). We note

that previous solutions investigated their effectiveness using very large cores. We performed ex-

periments using similar simulation configurations, and this work scales in a similar way.

6.4 State-of-the-Art Issue Time Predictors on the Proposed Hardware

In this section (Figure 6), we implement the same state-of-the-art issue time prediction techniques

on-top of our proposed microarchitecture, instead of their original implementation (previous sec-

tion). With this study we highlight the importance of using real-time delays and their effectiveness

in predicting instruction issue time. We categorize these solutions to those that use only depen-

dencies to reorder instructions (Dependence-based) and those that use both dependencies and load

delays (Load Delay-based).

Dependence-based solutions achieve low performance, because using only dependencies be-

tween instructions does not take into account the idle time between dependent instructions.

Load Delay-based solutions outperform Dependence-based solutions, but using a static delay, like

Dataflow Prescheduling [26], for all types of instructions results in an average performance loss of
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Fig. 6. Performance of state-of-the-art issue time prediction techniques implemented on the proposed mi-

croarchitecture, normalized to the out-of-order baseline. Because Complexity-Effective does not use a pre-

diction mechanism, its microarchitecture is implemented precisely as described in Reference [31].

5.5% compared to the This Work (detailed analysis shows up to 32% performance loss for memory-

intensive applications). Predicting L1 hits [43] and assuming L2 (L1 Hit Prediction L2 delay) or

DRAM (L1 Hit Prediction DRAM delay) delays also incurs significant overhead as they ignore ac-

cess time to other memory regions and stall instructions at the heads of the in-order multi-queue

backend of this design.

Using the instruction delay learning mechanism on the baseline out-of-order improves perfor-

mance only by 1.6%. The ability of reservation-station-based scheduler to monitor and issue in-

structions based on operand availability is sufficient enough to get optimal performance. However,

applying these techniques on top of a simpler in-order-based core offers large performance bene-

fits as results for the This Work illustrate. A limit study (This Work w/ RS-based PQs) can achieve

97.9% of the out-of-order core performance when associative lookups are performed in the PQs to

minimize issue time mispredictions.

6.5 Proposed Design Implementation Analysis

In this work, we take advantage of the high levels of repeatably of the code [25] to learn the delays

of instructions up-front and prioritize them on future encounters. Figure 7(a) shows the number

of cycles each application spends executing Repeated and Debut instructions. Instructions that

appear more than once during execution are called Repeated, while instructions seen for the first

time are called Debut (including the first appearance of Repeated instructions). Some applications

(like astar and mcf) see as much as 36% Debut instructions. While some of this is an artifact of

application sampling (see Section 5), there will always exist code that is seen only once, either be-

cause of large Debut code or because of large number of loops that do not fit in the DelayCache for

the entire execution of the application. Overall, a large number of Debut instructions can poten-

tially reduce performance as the issue time predictor will not have real-time information for these

instructions and will have to use static delays instead, that can produce issue time mispredictions.

In Figure 7(b), we show the number of stalls at the head of the queues due to unresolved

dependencies, normalized to the in-order processor baseline. The out-of-order processor is not

represented in this figure as it allows issuing from any position in the instruction queue. Some

applications, like gcc, have long dependency chains and stall the processor more often, while
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Fig. 7. (a) Cycles spent executing Debut instructions (appear for the first time or miss in the DelayCache)

and Repeated instructions (hit in the DelayCache) and (b) cycles the instruction queues are blocked due to

unresolved dependencies.

Fig. 8. Implementation options for (a) the prediction algorithm and (b) the execution engine (Q and PQ: issue

from the head, RS: issue from any position in the queue, 1: one instruction queue for all units, N: one queue

per functional unit).

compute-intensive applications, like cactus, can expose more ILP. Overall, the proposed core re-

duces stalled cycles at the head of instruction queues by an average of 38%.

Structural hazards are another major source of stalls as they can block the instruction queue by

increasing resource contention of the functional units. To include the time an instruction waits in

the instruction queue when we calculate the delay (TDelay (p)) from Equation (1), we replace the

issue time (TI ssue (p)) with the dispatch time (TDispatch (p)) that represents the time an instruction

entered the queue. However, instruction waiting times in a dynamic processor environment are

unpredictable across iterations. Figure 8(a) shows that using the dispatch time instead of the issue

time in the prediction algorithm reduces the performance by an average of 25.7%. The dynamic

nature of the proposed core changes the schedules in every iteration and the time an instruction

will wait in a queue, making structural hazard delays unpredictable.

To minimize the impact of structural hazards in an energy efficient way, the proposed core im-

plements per functional unit priority queues (PQ-N). Figure 8(b) shows results of implementing

a multi-queue back-end for each baseline core. The performance of the in-order core is not im-

proved as instructions still need to be issued in program order (in-order-Q-1 to in-order-Q-N). The

proposed core (that uses a PQ-N) achieves a performance improvement of 14.7% over a single pri-

ority queue (PQ-1) implementation. Increasing the number of RS in the out-of-order processor and
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Fig. 9. (a) Train for a number of iterations and use that prediction thereafter (normalized to training every

iteration). (b) Use a saturating counter to update the delay every N identical consecutive delays (normalized

to This Work). Note that the y-axis starts at 80%.

limiting issue of each queue to a single functional unit (RS-N), reduces its performance due to the

limited destinations an instruction can issue to. Implementing an RS-1 on this work surpasses out-

of-order performance by 1.6% as the RS compensates for issue time mispredictions and removes

structural hazards completely. An RS-N solution suffers from performance loss for the same reason

as the out-of-order core.

Issue Time Training Frequency. Load latency analysis shows that using the previous load

delay (per PC) provides an average of 92.8% accuracy for predicting the next delay value. The train-

ing frequency of the issue time predictor depends on the application and the number of times the

instruction delay changes throughout the execution. Using different predictor training frequencies

(Figure 9(a)) shows that the more often the predictor is trained, the higher the performance that can

be achieved. Alternatively, using a saturating counter delay predictor that updates the delay of an

instruction in the DelayCache only after the same delay appears for a number of consecutive iter-

ations (Figure 9(b)) shows a marginal average improvement of 0.8% over this work (with sphinx3
the only exception to achieve a 10% improvement due to the high number of consecutive misses

in the cache). Both of these studies show that changes in different iterations of load access delays

of repeated instructions are highly unpredictable and do not follow a specific pattern that can be

easily learned. But, in-depth analysis of the delays shows that in most consecutive appearances

the delay is the same (hence the 92.8% accuracy).

A more sophisticated branch-predictor-like mechanism based on loops could store multiple de-

lays per instruction to train the predictor with higher confidence. However, our study shows that

storing as many as five delays per instruction and using the most frequent, the smallest, the largest,

or the average in the prediction does not further improve performance.

Instruction Steering Analysis. As described in Section 4.2, the proposed design uses de-

pendencies on instructions at the tails of the queues to dispatch new instructions to the queues

(Tail-Dependencies). We found this technique to produce higher performance compared to either

checking dependencies to all instructions in a queue (All-Dependencies) or inserting instructions

in a Round-Robin scheme. Checking for dependencies only at the tail of each queue achieves

on average 2.1% and 0.3% improvement over Round-Robin and All-Dependencies respectively (see

Figure 10).

Core Components Scalability. Figure 11 shows a scalability study of the core structures and

how they affect the performance of the proposed design. The size of the priority instruction queues

(Figure 11(a)) affects the throughput of the front-end. The number of functional units affects the
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Fig. 10. Steering instructions to priority queues: Round-Robin, All-Dependencies (follow all producers in a

queue) and Tail-Dependencies (dependent on an instruction at a queue’s tail).

Fig. 11. Scaling the (a) priority instruction queues with a 128-entry ROB (the size refers to the total sum of

all queues), (b) number of functional units (each one normalized to its corresponding out-of-order baseline),

and (c) DelayCache.

throughput of the backend (Figure 11(b)), while the size of the DelayCache determines the number

of delays that can be stored (Figure 11(c)).

Stalling of the front-end can happen when instruction queues are too small. The proposed core

can stall even when a single queue is full, and therefore selecting the correct size is important.

Figure 11(a) shows that for the same ROB size (128 entries), a total of 64-entries for all queues

(13 entries per queue) achieves similar performance to a total size of 128 entries.

The port configuration of this work is based on an Intel Nehalem core that supports three

generic, one load, and two store (one for address calculation and one for data) units. Figure 11(b)

shows results for a Skylake-based configuration (four generic, two load, and two store units) and

Skylake+ (four generic, two load, and four store units). The proposed implementation achieves

performance within 10% and within 6.4% of their corresponding out-of-order Skylake and Sky-

lake+ processors, respectively. Figure 11(c) shows that performance improvement for more than

64 entries in the DelayCache is marginal and levels off at 512 entries for all applications tested. The

DelayCache can be small as we only store delays of load instructions that miss in the L1 cache.

7 RELATED WORK

There has been extensive work in the past on instruction reordering to reduce runtime delays

and improve processor performance. Table 4 presents state-of-the-art hardware solutions in in-

struction reordering, the delays they try to mitigate, the stage in the processor the reordering

takes place, and the type of scheduler used to reorder instructions. High performance comes from
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Table 4. State-of-the-Art Instruction Reordering Processors

That Try to Mitigate Delays Coming from Dataflow

Dependencies (Static) and/or Runtime Delays (Dynamic)

State of the art hardware
instruction reordering

S
ta

ti
c

D
y

n
a

m
ic

R
e
o

rd
e
r

S
ch

e
d

u
le

r

Dataflow Prescheduling [26] � Front & Back RS

Wait Instruction Buffer [21] � Front & Back RS

Long-Term Parking [34] � � Front & Back RS

Insequence Instructions [37] � Back RS

WiDGET [42] � Back RS

Runahead [28] � Back RS

Continuous Runahead [14] � Back RS

Load Scheduling [43] � Back RS

Segmented IQs [33] � � Back RS

Look-ahead Prediction [24] � � Back RS

Dynamos [29] � � Back RS+FIFO

Mirage [30] � � Back RS+FIFO

FIFOrder [2] � � Front & Back RS+FIFO

Dealy and Bypass [1] � � Front & Back RS+FIFO

N-use Issue Logic [5] � � Front & Back AST+FIFO

Deterministic Issue Logic [5] � Back RS+CQ

Distance Issue Logic [4] � Back RS+CQ

In-order SMT [16] � Front FIFO

Load Slice Core [6] � Front FIFO

Freeway [20] � � Front FIFO

Complexity-Effective [31] � Front FIFO

iCFP [15] � Front FIFO

CASINO [19] � Front FIFO

Wakeup-free [17] � � Front & Back Replay

Cyclone [12] � � Front & Back Replay

This Work � � Back PQ

Reorder designates the stage instructions are reordered at (Back:

Back-end and Front: Front-end). Scheduler is the reordering

mechanism used (RS: Reservation Station; FIFO: First In First Out;

AST: Associative Table; Replay: Reschedule stalled instructions;

CQ: Circular Queues; and PQ: Priority Queues).

mitigating both Static and Dynamic delays, while reordering instructions in the backend of the pro-

cessor provides for higher flexibility. Unfortunately, the majority of past solutions uses an RS-based

scheduler for reordering instructions that limits energy efficiency improvement. In this work, we

argue that smarter solutions are needed to significantly improve energy efficiency, using a simpler

and more scalable scheduler (PQ) to reorder instructions in the backend, while achieving high per-

formance by addressing Static and Dynamic delays. In this section, we discuss different categories

of solutions that address runtime delays in instruction scheduling.

RS-based Schedulers. Many solutions use dataflow dependencies to preschedule or prioritize

instructions to improve the performance or the efficiency of an out-of-order processor. Dataflow

Prescheduling [26] fetches and reorders instructions in a prescheduling buffer using dataflow

dependencies. This provides for a larger effective window size while keeping the issue buffer

small. However, it does not take into account variable delay instructions and assumes static de-

lays for all instructions (all loads are presumed to hit in L1). Segmented Instruction Queues [33]

divide large instruction queues into smaller segments that can be clocked at higher frequencies.

They use dynamic dependence-based scheduling to promote instructions from segment to seg-

ment until they reach a small issue buffer. Data Cache Hit-Miss Prediction [43] tries to predict L1

hits and reschedule load dependent instructions based on that information. But predicting only

L1 hits does not take into account off-chip memory delays that have the most impact on the

the performance of a processor. In a more complex implementation, Look-ahead Prediction [24]

tries to predict load delays using a value predictor. Dynamic solutions like in References [21, 34]
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predict and prioritize critical or independent instructions. In Reference [21], instructions that de-

pend on long-latency operations are moved from the issue queue to a much larger waiting instruc-

tion buffer until their long-latency producer completes. Long Term Parking (LTP) [34] analyzes

instructions and parks non-critical instructions from the main instruction stream to prioritize crit-

ical ones (address-generating instructions and loads). Similarly, N-Use [5], uses an associative ta-

ble to park non-ready instructions, Distance Issue Logic [4] assumes unknown load delays and

parks all their consumers in an RS IQ until their operands are produced, while Deterministic Is-

sue Logic [5] assumes a static delay for all loads and only parks stalled consumers to the RS IQ.

FIFOrder [2] and Delay and Bypass [1] use the knowledge that an OoO-core instruction scheduler

offers (availability of the instructions operands) to dispatch ready instructions to FIFO queues to

reduce the size and power consumption of complex instruction queues. They differ by the type

of instructions to be send to the FIFO queues based on their criticality and readiness. All these

solutions require additional hardware to implement and still employ a traditional out-of-order

scheduler to handle the reordering and compensate for timing mispredictions of their techniques.

FIFO-based Schedulers. Due to their low power consumption, in-order processors are highly

energy efficient. However, they achieve significantly lower performance compared to an out-of-

order processor. Complexity-Effective [31] reorders instructions based on their dependencies. In-

structions that belong to the same dataflow dependency chain are directed to dedicated in-order

queues, while selection logic is used to issue instructions from the head of the queues. The Load

Slice Core [6] extends an in-order, stall-on-use core with a second in-order pipeline that allows

memory accesses and address-generating instructions to bypass stalled instructions in the main

pipeline. Unfortunately, these solutions do not take into account dynamic delays. This creates large

gaps between load-dependent instructions in a real execution that stall until the producing load

returns from memory, thus limiting their performance improvement.

Cyclone [12] uses a store set dependence predictor to monitor memory dependencies, while mis-

predicted instructions are replayed from the tail of the queue. But this implementation potentially

scrambles the ordering of other instructions in the instruction window, creating a performance

bottleneck. Wakeup-free scheduling [17] improves this structural constraints by using a collaps-

ing scheme that does not allow instructions to move while their latency counters are decreasing.

But their evaluation is done using a perfect L1 Hit predictor for load latency delays, which does

not take into account off-chip memory delays that have the most impact on the the performance of

a processor. iCFP [15] uses a Continual Flow Pipeline that switches to an advance execution mode

when it encounters a L1 or L2 cache miss. Miss-dependent instructions are diverted into a slice

buffer, un-blocking the pipeline for miss-independent instructions to execute. Although it achieves

low power consumption, its performance is limited to 68% of the performance of an out-of-order

processor [15]. Freeway [20] is an orthogonal solution that implements a technique similar to

LTP [34] on top of an in-order core and manages to improve its performance by 80%, while we

achieve 180% increase in performance over our in-order baseline core (on the same applications).

CASINO [19] uses two in-order queues to filter instructions that block the issuing queue. However,

their solution takes no real-time information into consideration when doing the filtering that can

potentially lead to even more excessive delays when one of the queues is filled, depending on the

applications executed.

Heterogeneous Processors. Mirage Cores [30] and its predecessor Dynamos [29] employ a

full out-of-order core to produce fast out-of-order schedules that are stored in a local cache struc-

ture and executed by a number of in-order cores on the same processor. WiDGET [42] enables

dynamic customization of different combinations of small and/or powerful cores as a way to in-

crease performance and reduce power consumption depending on the executing workload. The
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design complexity and cost of these solutions, however, makes them inefficient, as they still re-

quire the implementation of an out-of-order core to learn aggressive instruction schedules.

Software Implementations. Compile-time application analysis is also used to categorize and

prioritize instructions by predicting the critical path of the execution [13, 41]. Solutions with good

balance between performance and energy efficiency use modified hardware equipped with the

appropriate compile-time support to statically reorder instructions in advance [3, 10, 18, 38–40, 44].

But, unlike our work, these solutions require modification to the application itself and do not

provide backward compatibility for deployed applications.

SMT. In a multi-threaded architecture, independent instructions from different threads can be

used to overcome dependency stalls from a single thread [16, 37]. This boosts performance of

multi-threaded applications as it increases processor throughput in throughput-sensitive parallel

applications. However, these techniques do not address single-thread performance.

Prefetching. Prefetching attempts to minimize cache misses by executing additional instruc-

tions [11, 14, 28]. Runahead [28] allows the execution to continue past stalling to pre-execute

instructions and generate new cache misses that fetch data earlier for future instructions. Con-

tinuous runahead [14] extends previous solutions by dynamically filtering the instruction stream

to identify the chains of operations that cause a pipeline to stall. Unfortunately, prefetching tech-

niques alone are not enough as they only try to hide memory latency. All solutions referenced

here still use a complex out-of-order scheduler to handle instructions reordering.

8 CONCLUSION

In this work, we propose a novel scheduling scheme that tracks real-time delays of load instructions

to accurately predict instruction issue times and a priority-based instruction reordering mech-

anism that achieves near out-of-order performance in an energy efficient way. To this end, we

design a new microarchitecture that builds aggressive schedules and produces near out-of-order

performance in an energy efficient way. The proposed design replaces the complex instruction

scheduler of an out-of-order processor with a instruction delay learning mechanism that monitors

load instructions and learns their latest real-time delays, an issue time predictor that predicts their

issue times, and priority queue reordering that efficiently reorder instructions. Together, these three

techniques allow the new core to achieve 86.2% of the performance of the baseline out-of-order,

while reducing the power consumption for instruction scheduling hardware by 88%.
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