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Abstract 

This research study presents a novel energy-based constitutive model of concrete in the frame-

work of the smeared crack approach. The proposed model constitutes an extension to a previous 

numerical model [1,2] with an addition of a fracture energy-based algorithmic approach de-

veloped by [3]. The uncracked behavior of concrete is based on the experimental evidence of 

the triaxial behavior of concrete described in the literature [4]. The cracked behavior of con-

crete is modelled with a fracturing approach while cracking is treated with the smeared crack 

approach. The proposed modelling approach manages to capture the behavior of reinforced 

concrete (RC) structures with computational efficiency and numerical accuracy as it combines 

the experimental triaxial behavior of concrete in an algorithmic framework that can alleviate 

numerical issues of nonlinear concrete behavior such as cracking. The numerical simulation is 

implemented by using hexahedral isoparametric finite elements for discretizing the concrete 

domain and truss elements for the steel reinforcement. The proposed approach has been tested 

on two RC specimens focusing on structural members with insufficient shear reinforcement and 

high shear stresses. The numerical behavior has been validated by the comparison of the nu-

merical with experimental data found in the international literature. The effect of choosing 

different approaches of the smeared crack method (fixed and rotated) is also investigated.  

 

Keywords: Cracking, Fracture, smeared crack approach, 3D FEM, Detailed modeling, Shear 

behavior. 
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1 INTRODUCTION 

In the last few decades, many numerical models have been proposed to simulate the mechan-

ical behavior of reinforced concrete (RC) structures. Many models can be found in the literature 

that can describe specific aspects of concrete behavior and their applications are limited to cer-

tain cases of little practical interest. These constitutive models emphasize the post-peak material 

by introducing several material parameters. The values of these parameters are usually calcu-

lated after a parametric investigation in an attempt to directly match the numerical and experi-

mental results by reverse-engineering the problem. This approach leads to the loss of objectivity 

and the inability to use this approach to perform predictive analysis. 

The constitutive model of the behavior of concrete must describe a realistic behavior of con-

crete under a generalized three-dimensional state of stress. The key features of every numerical 

approach must consider:  

1. Nonlinear stress-strain behavior under a multiaxial state of stress.  

2. Strain softening behavior and the anisotropic elastic degradation.  

3. Progressive cracking caused by tensile stress and strains.  

There are many models proposed for RC structures, in the literature [1-6]. Each model has 

its advantages and disadvantages resulting from its limitations. Many models combine plasticity 

formulations for concrete behavior under compression with fracture energy-based approaches 

for tension [3]. In addition, several models based on damage mechanics [7, 8] are proposed for 

the behavior of concrete under monotonic and cyclic loading conditions.  

However, a numerical approach combined with a constitutive model for concrete behaviour 

that produces accurate and computationally efficient results for any RC structural member is 

still an open research topic. An accurate, objective, and computationally efficient approach will 

be a powerful tool for any professional civil engineer and scientist studying the seismic behav-

ior of existing RC structures or performing the design of retrofit interventions for severely de-

teriorated RC structures.  

The model proposed in [1], describes the triaxial behavior of concrete without the need of 

introducing numerous parameters of the concrete material. The proposed constitutive relations 

have been derived from the experimental and numerical work of Kotsovos and Pavlovic [4]. 

The only parameters required to be defined in their proposed algorithmic approach [4], are the 

uniaxial compressive strength, the tensile strength, Young’s modulus, and Poisson’s ratio. The 

model has been improved in [2] where damage factors have been introduced that they are being 

automatically defined according to the number of cycling loads and the number of cracks. The 

key features of this numerical approach are accuracy, numerical simplicity and stability, and 

computational efficiency. These features made the model attractive even for the analysis of 

large-scale structures [9]. 

The accuracy of the model is mainly based on the smeared crack approach and the algorith-

mic approach that has been applied for every stress state [2]. However, this approach can lead 

to excessive cracking in order to represent a severely damaged state. Although the model 

doesn’t appear to have mesh sensitivity issues [10], it is difficult to prove with the current al-

gorithmic approach. To control the smeared cracking, a crack band approach [11] must be ap-

plied.  

In this article, a connection between two algorithmic approaches is proposed and tested in 

terms of computational stability and numerical accuracy. In addition, a discussion takes place 

in relation to the use of different smeared crack approaches and how every approach affects the 

behavior of the RC numerical model. Finally, the model is examined and its ability to model 

RC structures that are subjected to monotonic loading conditions is evaluated. 
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2 UNCRACKED CONCRETE MATERIAL CONSTITUTIVE MODEL 

The stress-strain relationships are expressed by decomposing each state of strain and stress 

into hydrostatic and deviatoric components. Therefore, the normal and shear octahedral stresses 

(σ0, τ0) and strains (ε0, γ0) are used. It is known that hydrostatic stresses σ0 induce the variation 

of the volumetric strain ε0(h), while the application of deviatoric stresses τ0 cause both volumet-

ric and deviatoric strains. The combined approach presented by Kotsovos and Pavlovic [4] is 

based on the use of the bulk modulus K and the shear modulus G which describe the non-linear 

σ0-ε0(h) and τ0-γ0(d) behavior combined with the use of σid to take into account the coupling effect 

of τ0-ε0(d) (h and d stand for hydrostatic and deviatoric components, respectively). The σid is an 

equivalent external stress which can be added to the externally applied hydrostatic stress. The 

constitutive relations take the following form: 

0 0( ) 0( ) 0( ) / (3 )h d id sK    = + = +  (1) 

0 0( ) 0 / (2 )d sG  = =  (2) 

where Ks and Gs are the secant forms of bulk and shear moduli, respectively. An extensive 

experimental investigation in [4] led to the analytical expressions of the σid and the secant and 

tangent forms of bulk and shear modulus as functions of the current state of stress (σ0, τ0, fc). 

The analytical expressions obtained by regression analysis, have this form: 

1

0/ 1/ [1 ( / ) ]b

s e cK K A f −= +   for 0 / 2cf   (3a) 

1 1

0/ 1/ [1 2 2 ( 1) ( / ) ]b b

s e cK K Ab b A f− −= + − −  for 0 / 2cf   (3b) 

1

0/ 1/ [1 ( / ) ]d

s e cG G C f −= +   (4) 

0/ ( / )n

id c cf M f =  
(5) 

where the parameters A, b, C, d, M, and n are calculated by the expressions (as a function of 

the uniaxial compressive strength fc) in Table 1. 

0.516A=  for 31.7cf   

2.3970.516 / [1 0.0027( 31.7) ]cA f= + −  for 31.7cf   
0/ [1 ( / ) ]m

cM k l f= +  

0.234 / [1 1.087( 15) ]ck f= + −  

2.12 0.0183 cd f= +   for 31.7cf   

2.7d =  for 31.7cf   

20.222 0.01086 0.000122c cl f f= + −  

2.415m= −  for 31.7cf   

3.531 0.0352 cm f= − +  for 31.7cf   3.573C =   for 31.7cf   

1.4143.573 / [1 0.0134( 31.7) ]cC f= + −   for 

31.7cf   

1n =  for 31.7cf   

0.3124 0.0217 cn f= +  for 31.7cf   

Table 1 Expression of parameters A, b, C, d, M, and n as functions of fc that are used in 

the concrete material model. 
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The strains expressed in the global coordinate system are determined by the use of the ex-

pression in Eq. 1 and take the following equivalent form: 

0( ) / (2 ) (3 / )( )ij ij id ij s s s id ijG v E      = + − +   (6) 

where Es (σo, τo, fc) and νs (σo, τo, fc) are the secant Young’s modulus and Poisson’s ratio, re-

spectively, and are derived from Ks and Gs by the following standard formula of linear elastic-

ity: 

(9 ) / (3 )s s s s sE K G K G= + , (3 2 ) / (6 2 )s s s s sv K G K G= − +  (7) 

During the nonlinear procedure, the stress and strain increments are calculated using the 

tangent expressions Kt, Gt, Et, and vt as presented in [4]. The expression of Eq. 6 is used in 

order to correct the stresses and strains taking into account stress σid which represents the cou-

pling effect between τ0 and ε0(d). The constitutive matrix of the proposed 3D material model can 

take the following form: 

2 0 0 0

2 0 0 0
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0 0 0 0 0
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 
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 
 +

=  
 
 
 
  

 (8) 

where μ = Κt-2Gt/3 and Kt = Kt(σ0,τ0,fc), Gt = Gt(σ0,τ0,fc). It is assumed that the uncracked con-

crete behaves elastically at low-stress levels. Particularly, when the deviatoric stress of an 

uncracked Gauss Point (GP) of a concrete element, is less than 50% of the corresponding ulti-

mate strength, then the elastic constitutive matrix is used [1]. Otherwise, the constitutive mate-

rial matrix is updated using the tangent expressions of bulk and shear moduli.  

3 CRITERION OF FAILURE 

The value of ultimate deviatoric stress may be interpolated by the τ0e and τ0c stresses using 

the expressions of Willam and Warnke [12]. 

2 2

0 0 0 0 0 0 0

2 2 2 2 2 2 1/2 2 2 2 2

0 0 0 0 0 0 0 0 0

{2 ( )cos (2 )

[4( )cos 5 4 ] }/ [4( )cos (2 ) ]

u c c e c e c

c e e c e c e e c

       

          

= − + −

− + − − + −
 (9) 

The τ0e (θ=0°) corresponds to the state of σ1 = σ2 > σ3 (triaxial extension), while τ0c (θ = 60°) 

correspond to the state of σ1 > σ2 = σ3 (triaxial compression). It is also known that concrete’s 

strength under tension is unaffected by triaxial phenomena. Therefore, it is considered that con-

crete fails in tension when a tensile stress σij exceeds the tensile strength of concrete fct. The 

schematic representation of the ultimate strength is shown in Fig. 1. 
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(a) (b) 

Figure 1 Schematic representation of the ultimate-strength surface : (a) general view in stress space, (b) typical 

cross-section of the strength envelope with a deviatoric plane (a plane of constant σ0, viewed along the axis σ1 = 

σ2 = σ3).[4] 

The expressions of τ0e  and τ0c are derived by an experimental investigation as shown here: 

0.724

0 0/ 0.944( / 0.05)c c cf f = +  (10) 
0.857

0 0/ 0.633( / 0.05)e c cf f = +  (11) 

4 FRACTURE MODELLING  

The fracture modelling approach proposed by Cervenka et al. [3] is used in this work. When 

the criterion of failure is satisfied, then the fracture model is activated. The model assumes 

small strains and it can be written as: 

𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

𝑓
 (12) 

Therefore, the stress development that shows the material degradation can be described by 

the following rate equations: 

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙 ⋅ (𝜀𝑘𝑙 − 𝜀𝑘𝑙
𝑓 ) (13) 

Also, the evolution of the fracture rate 𝜀𝑘𝑙
𝑓

is governed by the following flow rule: 

𝜀𝑘𝑙
𝑓

= 𝜆𝑓 ⋅ 𝑚𝑖𝑗
𝑝 , 𝑚𝑖𝑗

𝑝 =
𝜕𝑔𝑓

𝜕𝜎𝑖𝑗
 (14) 

where 𝜆𝑓is the inelastic fracturing multiplier, and gf is the potential defining the direction of 

inelastic fracturing strains in the fracturing model. 

It is considered that, when the criterion of failure is satisfied and the specimen is under 

tension, one of the principal stresses exceeds the tensile strength. Therefore, in tension, the 

failure surface is transformed into a Rankine failure surface. The principal stress (along the 

principal direction p) in the case of cracking under tension must satisfy the following equation: 

𝑓𝑝
𝑓

= 𝜎𝑡
𝑖𝑗 𝑛𝑖

𝑝
 𝑛𝑗

𝑝
− 𝐷𝑖𝑗𝑚𝑛 𝑑𝜀𝑚𝑛

𝑓
 𝑛𝑖

𝑘 𝑛𝑗
𝑘 − 𝑓𝑡 = 0 (15) 
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where 𝜎𝑡
𝑖𝑗  is a trial elastic prediction that has been made taking into account the current stain 

state. Assuming an associated form (gf=f f) for the fracturing strain increment, Eq. 14 takes the 

following form: 

𝑑𝜀𝑖𝑗
𝑓𝑝

= 𝑑𝜆𝑝 ⋅
∂𝑓𝑝

𝑓

∂𝜎𝑖𝑗
= 𝑑𝜆𝑝 ⋅ 𝑛𝑖

𝑝 ⋅ 𝑛𝑗
𝑝 (16) 

After substituting Eq. 16 into Eq. 15, the fracturing multiplier can be expressed in the fol-

lowing form: 

𝑑𝜆𝑝 =
𝜎𝑡

𝑖𝑗  𝑛𝑖
𝑝 𝑛𝑗

𝑝 − 𝑓𝑡(𝑤𝑝)

𝐷𝑖𝑗𝑚𝑛 𝑛𝑖
𝑝

 𝑛𝑗
𝑝

 𝑛𝑚
𝑝

 𝑛𝑛
𝑝  (17) 

where, 

𝑤𝑝 = 𝐿𝑡(𝜀𝑝̂ + 𝑑𝜆𝑝) (18) 

Eqs. 17 and 18 must be solved iteratively since for softening materials the tensile strength 

is a function of crack opening wp. The crack opening is defined by the following expression 

suggested by Hordijk [13]: 

𝜎

𝑓𝑡
= [1 + (𝑐1

𝑤

𝑤0
)

3

] 𝑒
−𝑐2

𝑤
𝑤0 −

𝑤

𝑤0

(1 + 𝑐1
3)𝑒−𝑐2 (19) 

where σ is the tensile concrete stress normal to crack, ft is the concrete tensile strength, c1 = 3, 

c2 = 6.93, w0 = 5.14 Gf / ft, and Gf is the fracture energy of the material. In Eq. 18, the Lt repre-

sents the characteristic length used as a crack band size introduced by Bazant and Oh (1983). 

The suggested limits for the values of the characteristic length related to the size of the finite 

elements from the work of Cervenka et al. [3], have been adopted for the needs of this work. 

The local fracturing strains can be calculated by using the expression of Rots and Blaau-

wendraad [14]: 

𝜀𝑓 = (𝐷 + 𝐷𝑐𝑟)−1𝐷 𝜀 (20) 

where Dcr is the stiffness inside the crack zone. It is defined by the following formulas: 

• Mode I 

𝐷𝑝𝑝𝑝𝑝
𝑐𝑟 =

𝑓𝑡(𝑤𝑝)

𝜀𝑝̂
𝑓

 (21) 

• Mode II and III 

𝐷𝑖𝑗𝑖𝑗
𝑐𝑟 = 𝑚𝑖𝑛(𝐷𝑖𝑖𝑖𝑖

𝑐𝑟 , 𝐷𝑗𝑗𝑗𝑗
𝑐𝑟 ) ⋅ 𝑟𝑔 (22) 

where rg is the shear coefficient which is an input parameter of the model. For the above ex-

pressions, large penalty numbers 𝐷𝑝𝑝𝑝𝑝
𝑐𝑟 =

𝑓𝑡(0)

𝑒
 (where e is a small number) are used to avoid 

cases during the onset of cracking that they may lead the above expression to infinity. The 

secant constitutive matrix in the material directions can be derived from Eq. 13 using Eq. 20: 

( )
1

cr

sD D D D D D
−

= −  +   (23) 
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The model is further described by Cervenka et al., [3]. The flow chart that describes the algo-

rithm through which the model has been applied for a single GP is shown in Fig. 2. 

 

Figure 2 Flow chart of the fracture model of concrete (adapted from [3]) 

According to the above-described formulations of concrete behaviour of concrete under 

tension [3] and compression [4], the proposed concrete material model combines the two dif-

ferent theories in an attempt to derive a more accurate material model. This is evaluated through 

the use of experimental data that are used to assess the ability of the proposed material model 

in capturing the behaviour of RC specimens that develop significant shear deformation. The 

following section discusses a first set of numerically obtained results. 
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5 NUMERICAL APPLICATIONS 

5.1 Leonhart’s shear beam 

The well-known Leonhart’s shear beam (Leonhardt and Walther [15]) is examined to val-

idate the proposed constitutive approach using three-dimensional hexahedral isoparametric fi-

nite elements, where the steel reinforcement is modeled through the use of embedded truss 

elements. The shear beam does not have shear reinforcement (stirrups) and according to the 

experimental data [15], it develops a severe shear failure at the end of the test. The geometry of 

the RC specimen which was tested through a four-point bending test, is presented in Fig. 3. Due 

to symmetry, half of the beam is modelled herein using the appropriate boundary conditions, 

which also allows its modeling through ATENA software. It must be also noted here that for 

the case of the proposed material model, the analysis foresees a displacement control nonlinear 

analysis. 

 

Figure 3 Leonhart's shear beam. Geometric and reinforcement details (adapted from [3]). 

 

Figure 4 Leonhart's shear beam. Comparison of the numerical results with the experimental data. 

fc = 28.5 MPa 

fy = 465 MPa 
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Figure 5 Crack pattern (Left) at first crack opening and (Right) prior to failure. (Down) Solid von Mises 

strain contour prior to failure. 

As it was stated above, the concrete domain is modelled by 8-noded hexahedral finite ele-

ments, and the steel reinforcement is modelled by truss finite elements. The numerical results 

are compared with the experimental ones in Fig. 4. Additionally, the numerical results are com-

pared with the numerical results obtained by ATENA software [16]. According to the curves in 

Fig. 4, it is easy to observe that the proposed constitutive model derives the best results when 

compared to the curve obtained by ATENA software that uses the model for both tension and 

compression of concrete as it was presented in [3]. It is also very interesting to note that the 

proposed material model manages to capture the concrete material deterioration in an almost 

perfect manner as the experiment evolves, while the model that adopts the material model pro-

posed in [3] fails to do so. It is noteworthy to state here that ATENA was also used herein to 

perform a displacement control analysis. It is evident and undeniable that the overall RC re-

sponse that derives from the ATENA software [16] that uses the Cervenka et al., [3] material 

model is not realistic in this regard since it fails to capture the basic mechanical response that 

RC structures usually exhibit, especially when the reinforcement ratio is low.  

The crack patterns in Fig. 5 show that the crack development starts from small diffused 

flexural cracks near the midspan which eventually lead to a large shear crack between the point 

of the applied load and the support (see the crack pattern and solid von Mises contour in Fig. 

5). This is in line with the crack formation reported in [15]. 
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5.2 Lefas and Kotsovos shear wall 

The RC shear wall specimen which is investigated experimentally in Lefas and Kotsovos 

[17], is denoted as shear wall SW31 and numerically studied herein. The geometric details of 

the RC shear wall are illustrated in Fig. 6, where it can be seen that is 650 mm wide, 1300 mm 

height, and 70 mm thick. The uniaxial compressive strength (fc) of SW31 was 35.2 MPa which 

is also the value defined within the proposed material model. The yielding stresses (fy) of the 

steel reinforcement were 420, 520, and 470 MPa for the 4-, 6- and 8-mm diameter bars used, 

respectively. The shear wall was subjected to different cyclic loading conditions.  

The concrete domain is modelled by 8-noded hexahedral finite elements, and the steel re-

inforcement is modelled with embedded truss finite elements. At the top and the bottom of the 

shear wall, 81 rigid 8-noded hexahedral elements are used to represent the rigid RC beams, 

while 50 concrete finite elements (130 mm x 130 mm x 65 mm) and 318 steel embedded ele-

ments are used to discretize the RC domain.  

 

Figure 6 Geometric and reinforcement detail of the SW31 [17] 

The numerical curves are compared with the corresponding experimental curve as can be 

depicted in Fig. 7. It is easy to observe that the numerical results are in good agreement with 

the experimental data in terms of stiffness and strength. The experimental results show that the 

specimens SW31 had a load-carrying capacity of 119 kN, respectively whereas the numerical 

predicted load-carrying capacity of the same specimens subjected to the same loading condi-

tions is 121 kN. This is an error that is less than 2%. 

The proposed model has used three approaches of smeared crack modelling for the needs 

of investigating the different available methods which are:  

1. rotated (update crack plane for each iteration),  

2. multidirectional (each crack can open in a different plane but remain fixed), and  

3. fixed (cracks can open in certain crack planes and remain fixed) smeared crack model. 

 



George Markou, Christos Mourlas and Manolis Papadrakakis 

 

 

Figure 7 Comparison of the numerical results with the experimental data of the SW31. 

The numerical results show that there is good agreement with the experimental data for all 

three crack approaches, thus similar responses are obtained. However, the model with the fixed 

approach (multidirectional and fixed smeared crack approach) derives a slightly stiffer behavior, 

especially in the post-cracking area. 

The numerically obtained crack pattern of the RC shear wall specimen is illustrated in Fig. 

8 when the maximum imposed displacement is reached. The cracks are formed within the areas 

of the section that are under tension due to the bending moment. Therefore, the cracks appear 

to be mainly horizontal. As the cracks form closer to the compressive zone of the section, they 

develop a relative inclination. Additionally, the figure shows a great concentration of cracks in 

the center of the shear wall which is dominated by a more complex state of stress due to triaxial 

phenomena attributed to the large normal and shear strains. 

 

Figure 8 Crack pattern of the SW31 prior to failure. 
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6 CONCLUSIONS 

This manuscript presents a conjunction of two constitutive modelling approaches for the 

simulation of concrete material in 3D. The modelling approach foresees that for the compres-

sive behavior of the uncracked concrete, the material model proposed in [1] is used, whereas 

when the concrete is under tension, then it is modelled by using the constitutive material model 

as presented in [3]. The proposed material model which is a combination of a model derived 

from experimental data regression [1] and a model based on the thermodynamics law [3] was 

evaluated through the use of two experimental tests. According to the obtained numerical re-

sults, it was found that the combination of these two concrete material models produces a solid 

constitutive approach that can simulate accurately the nonlinear behavior of concrete when it 

develops extreme shear, which leads to a shear failure. 

Future research work foresees the use of additional experimental data to be used for further 

validation of the proposed material model. In addition, the model will be expanded and inte-

grated with the ability to capture the cyclic response of concrete. Further validation work will 

be performed in the case of cyclic loading conditions. 
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